mirror of
https://github.com/RGBCube/serenity
synced 2025-05-23 18:55:08 +00:00

Previously, a libc-like out-of-line error information was used in the loader and its plugins. Now, all functions that may fail to do their job return some sort of Result. The universally-used error type ist the new LoaderError, which can contain information about the general error category (such as file format, I/O, unimplemented features), an error description, and location information, such as file index or sample index. Additionally, the loader plugins try to do as little work as possible in their constructors. Right after being constructed, a user should call initialize() and check the errors returned from there. (This is done transparently by Loader itself.) If a constructor caused an error, the call to initialize should check and return it immediately. This opportunity was used to rework a lot of the internal error propagation in both loader classes, especially FlacLoader. Therefore, a couple of other refactorings may have sneaked in as well. The adoption of LibAudio users is minimal. Piano's adoption is not important, as the code will receive major refactoring in the near future anyways. SoundPlayer's adoption is also less important, as changes to refactor it are in the works as well. aplay's adoption is the best and may serve as an example for other users. It also includes new buffering behavior. Buffer also gets some attention, making it OOM-safe and thereby also propagating its errors to the user.
794 lines
32 KiB
C++
794 lines
32 KiB
C++
/*
|
|
* Copyright (c) 2021, kleines Filmröllchen <malu.bertsch@gmail.com>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Debug.h>
|
|
#include <AK/FlyString.h>
|
|
#include <AK/Format.h>
|
|
#include <AK/Math.h>
|
|
#include <AK/ScopeGuard.h>
|
|
#include <AK/String.h>
|
|
#include <AK/StringBuilder.h>
|
|
#include <AK/Try.h>
|
|
#include <AK/UFixedBigInt.h>
|
|
#include <LibAudio/Buffer.h>
|
|
#include <LibAudio/FlacLoader.h>
|
|
#include <LibAudio/FlacTypes.h>
|
|
#include <LibAudio/LoaderError.h>
|
|
#include <LibCore/File.h>
|
|
|
|
namespace Audio {
|
|
|
|
FlacLoaderPlugin::FlacLoaderPlugin(StringView path)
|
|
: m_file(Core::File::construct(path))
|
|
{
|
|
if (!m_file->open(Core::OpenMode::ReadOnly)) {
|
|
m_error = LoaderError { String::formatted("Can't open file: {}", m_file->error_string()) };
|
|
return;
|
|
}
|
|
|
|
auto maybe_stream = Core::InputFileStream::open_buffered(path);
|
|
if (maybe_stream.is_error()) {
|
|
m_error = LoaderError { "Can't open file stream" };
|
|
return;
|
|
}
|
|
m_stream = make<FlacInputStream>(maybe_stream.release_value());
|
|
if (!m_stream)
|
|
m_error = LoaderError { "Can't open file stream" };
|
|
}
|
|
|
|
FlacLoaderPlugin::FlacLoaderPlugin(const ByteBuffer& buffer)
|
|
{
|
|
m_stream = make<FlacInputStream>(InputMemoryStream(buffer));
|
|
if (!m_stream)
|
|
m_error = LoaderError { "Can't open memory stream" };
|
|
}
|
|
|
|
MaybeLoaderError FlacLoaderPlugin::initialize()
|
|
{
|
|
if (m_error.has_value())
|
|
return m_error.release_value();
|
|
|
|
TRY(parse_header());
|
|
TRY(reset());
|
|
return {};
|
|
}
|
|
|
|
MaybeLoaderError FlacLoaderPlugin::parse_header()
|
|
{
|
|
InputBitStream bit_input = [&]() -> InputBitStream {
|
|
if (m_file) {
|
|
return InputBitStream(m_stream->get<Buffered<Core::InputFileStream>>());
|
|
}
|
|
return InputBitStream(m_stream->get<InputMemoryStream>());
|
|
}();
|
|
ScopeGuard handle_all_errors([&bit_input, this] {
|
|
m_stream->handle_any_error();
|
|
bit_input.handle_any_error();
|
|
});
|
|
|
|
// A mixture of VERIFY and the non-crashing TRY().
|
|
#define FLAC_VERIFY(check, category, msg) \
|
|
do { \
|
|
if (!(check)) { \
|
|
return LoaderError { category, static_cast<size_t>(m_data_start_location), String::formatted("FLAC header: {}", msg) }; \
|
|
} \
|
|
} while (0)
|
|
|
|
// Magic number
|
|
u32 flac = static_cast<u32>(bit_input.read_bits_big_endian(32));
|
|
m_data_start_location += 4;
|
|
FLAC_VERIFY(flac == 0x664C6143, LoaderError::Category::Format, "Magic number must be 'flaC'"); // "flaC"
|
|
|
|
// Receive the streaminfo block
|
|
auto streaminfo = TRY(next_meta_block(bit_input));
|
|
FLAC_VERIFY(streaminfo.type == FlacMetadataBlockType::STREAMINFO, LoaderError::Category::Format, "First block must be STREAMINFO");
|
|
InputMemoryStream streaminfo_data_memory(streaminfo.data.bytes());
|
|
InputBitStream streaminfo_data(streaminfo_data_memory);
|
|
ScopeGuard clear_streaminfo_errors([&streaminfo_data] { streaminfo_data.handle_any_error(); });
|
|
|
|
// STREAMINFO block
|
|
m_min_block_size = static_cast<u16>(streaminfo_data.read_bits_big_endian(16));
|
|
FLAC_VERIFY(m_min_block_size >= 16, LoaderError::Category::Format, "Minimum block size must be 16");
|
|
m_max_block_size = static_cast<u16>(streaminfo_data.read_bits_big_endian(16));
|
|
FLAC_VERIFY(m_max_block_size >= 16, LoaderError::Category::Format, "Maximum block size");
|
|
m_min_frame_size = static_cast<u32>(streaminfo_data.read_bits_big_endian(24));
|
|
m_max_frame_size = static_cast<u32>(streaminfo_data.read_bits_big_endian(24));
|
|
m_sample_rate = static_cast<u32>(streaminfo_data.read_bits_big_endian(20));
|
|
FLAC_VERIFY(m_sample_rate <= 655350, LoaderError::Category::Format, "Sample rate");
|
|
m_num_channels = static_cast<u8>(streaminfo_data.read_bits_big_endian(3)) + 1; // 0 = one channel
|
|
|
|
u8 bits_per_sample = static_cast<u8>(streaminfo_data.read_bits_big_endian(5)) + 1;
|
|
if (bits_per_sample == 8) {
|
|
// FIXME: Signed/Unsigned issues?
|
|
m_sample_format = PcmSampleFormat::Uint8;
|
|
} else if (bits_per_sample == 16) {
|
|
m_sample_format = PcmSampleFormat::Int16;
|
|
} else if (bits_per_sample == 24) {
|
|
m_sample_format = PcmSampleFormat::Int24;
|
|
} else if (bits_per_sample == 32) {
|
|
m_sample_format = PcmSampleFormat::Int32;
|
|
} else {
|
|
FLAC_VERIFY(false, LoaderError::Category::Format, "Sample bit depth invalid");
|
|
}
|
|
|
|
m_total_samples = static_cast<u64>(streaminfo_data.read_bits_big_endian(36));
|
|
FLAC_VERIFY(m_total_samples > 0, LoaderError::Category::Format, "Number of samples is zero");
|
|
// Parse checksum into a buffer first
|
|
[[maybe_unused]] u128 md5_checksum;
|
|
auto md5_bytes_read = streaminfo_data.read(md5_checksum.bytes());
|
|
FLAC_VERIFY(md5_bytes_read == md5_checksum.my_size(), LoaderError::Category::IO, "MD5 Checksum size");
|
|
md5_checksum.bytes().copy_to({ m_md5_checksum, sizeof(m_md5_checksum) });
|
|
|
|
// Parse other blocks
|
|
// TODO: For a simple first implementation, all other blocks are skipped as allowed by the FLAC specification.
|
|
// Especially the SEEKTABLE block may become useful in a more sophisticated version.
|
|
[[maybe_unused]] u16 meta_blocks_parsed = 1;
|
|
[[maybe_unused]] u16 total_meta_blocks = meta_blocks_parsed;
|
|
FlacRawMetadataBlock block = streaminfo;
|
|
while (!block.is_last_block) {
|
|
block = TRY(next_meta_block(bit_input));
|
|
++total_meta_blocks;
|
|
}
|
|
|
|
FLAC_VERIFY(!m_stream->handle_any_error(), LoaderError::Category::IO, "Stream");
|
|
|
|
dbgln_if(AFLACLOADER_DEBUG, "Parsed FLAC header: blocksize {}-{}{}, framesize {}-{}, {}Hz, {}bit, {} channels, {} samples total ({:.2f}s), MD5 {}, data start at {:x} bytes, {} headers total (skipped {})", m_min_block_size, m_max_block_size, is_fixed_blocksize_stream() ? " (constant)" : "", m_min_frame_size, m_max_frame_size, m_sample_rate, pcm_bits_per_sample(m_sample_format), m_num_channels, m_total_samples, static_cast<double>(m_total_samples) / static_cast<double>(m_sample_rate), md5_checksum, m_data_start_location, total_meta_blocks, total_meta_blocks - meta_blocks_parsed);
|
|
|
|
return {};
|
|
}
|
|
|
|
ErrorOr<FlacRawMetadataBlock, LoaderError> FlacLoaderPlugin::next_meta_block(InputBitStream& bit_input)
|
|
{
|
|
#define CHECK_IO_ERROR() \
|
|
do { \
|
|
if (bit_input.handle_any_error()) \
|
|
return LoaderError { LoaderError::Category::IO, "Read error" }; \
|
|
} while (0)
|
|
|
|
bool is_last_block = bit_input.read_bit_big_endian();
|
|
CHECK_IO_ERROR();
|
|
// The block type enum constants agree with the specification
|
|
FlacMetadataBlockType type = (FlacMetadataBlockType)bit_input.read_bits_big_endian(7);
|
|
CHECK_IO_ERROR();
|
|
m_data_start_location += 1;
|
|
FLAC_VERIFY(type != FlacMetadataBlockType::INVALID, LoaderError::Category::Format, "Invalid metadata block");
|
|
|
|
u32 block_length = static_cast<u32>(bit_input.read_bits_big_endian(24));
|
|
m_data_start_location += 3;
|
|
CHECK_IO_ERROR();
|
|
auto block_data_result = ByteBuffer::create_uninitialized(block_length);
|
|
FLAC_VERIFY(block_data_result.has_value(), LoaderError::Category::IO, "Out of memory");
|
|
auto block_data = block_data_result.release_value();
|
|
// Reads exactly the bytes necessary into the Bytes container
|
|
bit_input.read(block_data);
|
|
m_data_start_location += block_length;
|
|
CHECK_IO_ERROR();
|
|
return FlacRawMetadataBlock {
|
|
is_last_block,
|
|
type,
|
|
block_length,
|
|
block_data,
|
|
};
|
|
|
|
#undef CHECK_IO_ERROR
|
|
}
|
|
#undef FLAC_VERIFY
|
|
|
|
MaybeLoaderError FlacLoaderPlugin::reset()
|
|
{
|
|
TRY(seek(m_data_start_location));
|
|
m_current_frame.clear();
|
|
return {};
|
|
}
|
|
|
|
MaybeLoaderError FlacLoaderPlugin::seek(const int position)
|
|
{
|
|
if (!m_stream->seek(position))
|
|
return LoaderError { LoaderError::IO, m_loaded_samples, String::formatted("Invalid seek position {}", position) };
|
|
return {};
|
|
}
|
|
|
|
LoaderSamples FlacLoaderPlugin::get_more_samples(size_t max_bytes_to_read_from_input)
|
|
{
|
|
Vector<Sample> samples;
|
|
ssize_t remaining_samples = static_cast<ssize_t>(m_total_samples - m_loaded_samples);
|
|
if (remaining_samples <= 0)
|
|
return Buffer::create_empty();
|
|
|
|
size_t samples_to_read = min(max_bytes_to_read_from_input, remaining_samples);
|
|
while (samples_to_read > 0) {
|
|
if (!m_current_frame.has_value())
|
|
TRY(next_frame());
|
|
|
|
samples.append(m_current_frame_data.take_first());
|
|
if (m_current_frame_data.is_empty()) {
|
|
m_current_frame.clear();
|
|
}
|
|
--samples_to_read;
|
|
}
|
|
|
|
m_loaded_samples += samples.size();
|
|
auto maybe_buffer = Buffer::create_with_samples(move(samples));
|
|
if (maybe_buffer.is_error())
|
|
return LoaderError { LoaderError::Category::Internal, m_loaded_samples, "Couldn't allocate sample buffer" };
|
|
return maybe_buffer.release_value();
|
|
}
|
|
|
|
MaybeLoaderError FlacLoaderPlugin::next_frame()
|
|
{
|
|
#define FLAC_VERIFY(check, category, msg) \
|
|
do { \
|
|
if (!(check)) { \
|
|
return LoaderError { category, static_cast<size_t>(m_current_sample_or_frame), String::formatted("FLAC header: {}", msg) }; \
|
|
} \
|
|
} while (0)
|
|
InputBitStream bit_stream = m_stream->bit_stream();
|
|
|
|
// TODO: Check the CRC-16 checksum (and others) by keeping track of read data
|
|
|
|
// FLAC frame sync code starts header
|
|
u16 sync_code = static_cast<u16>(bit_stream.read_bits_big_endian(14));
|
|
FLAC_VERIFY(sync_code == 0b11111111111110, LoaderError::Category::Format, "Sync code");
|
|
bool reserved_bit = bit_stream.read_bit_big_endian();
|
|
FLAC_VERIFY(reserved_bit == 0, LoaderError::Category::Format, "Reserved frame header bit");
|
|
[[maybe_unused]] bool blocking_strategy = bit_stream.read_bit_big_endian();
|
|
|
|
u32 sample_count = TRY(convert_sample_count_code(static_cast<u8>(bit_stream.read_bits_big_endian(4))));
|
|
|
|
u32 frame_sample_rate = TRY(convert_sample_rate_code(static_cast<u8>(bit_stream.read_bits_big_endian(4))));
|
|
|
|
u8 channel_type_num = static_cast<u8>(bit_stream.read_bits_big_endian(4));
|
|
FLAC_VERIFY(channel_type_num < 0b1011, LoaderError::Format, "Channel assignment");
|
|
FlacFrameChannelType channel_type = (FlacFrameChannelType)channel_type_num;
|
|
|
|
PcmSampleFormat bit_depth = TRY(convert_bit_depth_code(static_cast<u8>(bit_stream.read_bits_big_endian(3))));
|
|
|
|
reserved_bit = bit_stream.read_bit_big_endian();
|
|
FLAC_VERIFY(reserved_bit == 0, LoaderError::Category::Format, "Reserved frame header end bit");
|
|
|
|
// FIXME: sample number can be 8-56 bits, frame number can be 8-48 bits
|
|
m_current_sample_or_frame = read_utf8_char(bit_stream);
|
|
|
|
// Conditional header variables
|
|
if (sample_count == FLAC_BLOCKSIZE_AT_END_OF_HEADER_8) {
|
|
sample_count = static_cast<u32>(bit_stream.read_bits_big_endian(8)) + 1;
|
|
} else if (sample_count == FLAC_BLOCKSIZE_AT_END_OF_HEADER_16) {
|
|
sample_count = static_cast<u32>(bit_stream.read_bits_big_endian(16)) + 1;
|
|
}
|
|
|
|
if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_8) {
|
|
frame_sample_rate = static_cast<u32>(bit_stream.read_bits_big_endian(8)) * 1000;
|
|
} else if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_16) {
|
|
frame_sample_rate = static_cast<u32>(bit_stream.read_bits_big_endian(16));
|
|
} else if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_16X10) {
|
|
frame_sample_rate = static_cast<u32>(bit_stream.read_bits_big_endian(16)) * 10;
|
|
}
|
|
|
|
// TODO: check header checksum, see above
|
|
[[maybe_unused]] u8 checksum = static_cast<u8>(bit_stream.read_bits(8));
|
|
|
|
dbgln_if(AFLACLOADER_DEBUG, "Frame: {} samples, {}bit {}Hz, channeltype {:x}, {} number {}, header checksum {}", sample_count, pcm_bits_per_sample(bit_depth), frame_sample_rate, channel_type_num, blocking_strategy ? "sample" : "frame", m_current_sample_or_frame, checksum);
|
|
|
|
m_current_frame = FlacFrameHeader {
|
|
sample_count,
|
|
frame_sample_rate,
|
|
channel_type,
|
|
bit_depth,
|
|
};
|
|
|
|
u8 subframe_count = frame_channel_type_to_channel_count(channel_type);
|
|
Vector<Vector<i32>> current_subframes;
|
|
current_subframes.ensure_capacity(subframe_count);
|
|
|
|
for (u8 i = 0; i < subframe_count; ++i) {
|
|
FlacSubframeHeader new_subframe = TRY(next_subframe_header(bit_stream, i));
|
|
Vector<i32> subframe_samples = TRY(parse_subframe(new_subframe, bit_stream));
|
|
current_subframes.append(move(subframe_samples));
|
|
}
|
|
|
|
bit_stream.align_to_byte_boundary();
|
|
|
|
// TODO: check checksum, see above
|
|
[[maybe_unused]] u16 footer_checksum = static_cast<u16>(bit_stream.read_bits_big_endian(16));
|
|
|
|
Vector<i32> left;
|
|
Vector<i32> right;
|
|
|
|
switch (channel_type) {
|
|
case FlacFrameChannelType::Mono:
|
|
left = right = current_subframes[0];
|
|
break;
|
|
case FlacFrameChannelType::Stereo:
|
|
// TODO mix together surround channels on each side?
|
|
case FlacFrameChannelType::StereoCenter:
|
|
case FlacFrameChannelType::Surround4p0:
|
|
case FlacFrameChannelType::Surround5p0:
|
|
case FlacFrameChannelType::Surround5p1:
|
|
case FlacFrameChannelType::Surround6p1:
|
|
case FlacFrameChannelType::Surround7p1:
|
|
left = current_subframes[0];
|
|
right = current_subframes[1];
|
|
break;
|
|
case FlacFrameChannelType::LeftSideStereo:
|
|
// channels are left (0) and side (1)
|
|
left = current_subframes[0];
|
|
right.ensure_capacity(left.size());
|
|
for (size_t i = 0; i < left.size(); ++i) {
|
|
// right = left - side
|
|
right.unchecked_append(left[i] - current_subframes[1][i]);
|
|
}
|
|
break;
|
|
case FlacFrameChannelType::RightSideStereo:
|
|
// channels are side (0) and right (1)
|
|
right = current_subframes[1];
|
|
left.ensure_capacity(right.size());
|
|
for (size_t i = 0; i < right.size(); ++i) {
|
|
// left = right + side
|
|
left.unchecked_append(right[i] + current_subframes[0][i]);
|
|
}
|
|
break;
|
|
case FlacFrameChannelType::MidSideStereo:
|
|
// channels are mid (0) and side (1)
|
|
left.ensure_capacity(current_subframes[0].size());
|
|
right.ensure_capacity(current_subframes[0].size());
|
|
for (size_t i = 0; i < current_subframes[0].size(); ++i) {
|
|
i64 mid = current_subframes[0][i];
|
|
i64 side = current_subframes[1][i];
|
|
mid *= 2;
|
|
// prevent integer division errors
|
|
left.unchecked_append(static_cast<i32>((mid + side) / 2));
|
|
right.unchecked_append(static_cast<i32>((mid - side) / 2));
|
|
}
|
|
break;
|
|
}
|
|
|
|
VERIFY(left.size() == right.size());
|
|
|
|
double sample_rescale = static_cast<double>(1 << (pcm_bits_per_sample(m_current_frame->bit_depth) - 1));
|
|
dbgln_if(AFLACLOADER_DEBUG, "Sample rescaled from {} bits: factor {:.1f}", pcm_bits_per_sample(m_current_frame->bit_depth), sample_rescale);
|
|
|
|
m_current_frame_data.clear_with_capacity();
|
|
m_current_frame_data.ensure_capacity(left.size());
|
|
// zip together channels
|
|
for (size_t i = 0; i < left.size(); ++i) {
|
|
Sample frame = { left[i] / sample_rescale, right[i] / sample_rescale };
|
|
m_current_frame_data.unchecked_append(frame);
|
|
}
|
|
|
|
return {};
|
|
#undef FLAC_VERIFY
|
|
}
|
|
|
|
ErrorOr<u32, LoaderError> FlacLoaderPlugin::convert_sample_count_code(u8 sample_count_code)
|
|
{
|
|
// single codes
|
|
switch (sample_count_code) {
|
|
case 0:
|
|
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), "Reserved block size" };
|
|
case 1:
|
|
return 192;
|
|
case 6:
|
|
return FLAC_BLOCKSIZE_AT_END_OF_HEADER_8;
|
|
case 7:
|
|
return FLAC_BLOCKSIZE_AT_END_OF_HEADER_16;
|
|
}
|
|
if (sample_count_code >= 2 && sample_count_code <= 5) {
|
|
return 576 * AK::exp2(sample_count_code - 2);
|
|
}
|
|
return 256 * AK::exp2(sample_count_code - 8);
|
|
}
|
|
|
|
ErrorOr<u32, LoaderError> FlacLoaderPlugin::convert_sample_rate_code(u8 sample_rate_code)
|
|
{
|
|
switch (sample_rate_code) {
|
|
case 0:
|
|
return m_sample_rate;
|
|
case 1:
|
|
return 88200;
|
|
case 2:
|
|
return 176400;
|
|
case 3:
|
|
return 192000;
|
|
case 4:
|
|
return 8000;
|
|
case 5:
|
|
return 16000;
|
|
case 6:
|
|
return 22050;
|
|
case 7:
|
|
return 24000;
|
|
case 8:
|
|
return 32000;
|
|
case 9:
|
|
return 44100;
|
|
case 10:
|
|
return 48000;
|
|
case 11:
|
|
return 96000;
|
|
case 12:
|
|
return FLAC_SAMPLERATE_AT_END_OF_HEADER_8;
|
|
case 13:
|
|
return FLAC_SAMPLERATE_AT_END_OF_HEADER_16;
|
|
case 14:
|
|
return FLAC_SAMPLERATE_AT_END_OF_HEADER_16X10;
|
|
default:
|
|
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), "Invalid sample rate code" };
|
|
}
|
|
}
|
|
|
|
ErrorOr<PcmSampleFormat, LoaderError> FlacLoaderPlugin::convert_bit_depth_code(u8 bit_depth_code)
|
|
{
|
|
switch (bit_depth_code) {
|
|
case 0:
|
|
return m_sample_format;
|
|
case 1:
|
|
return PcmSampleFormat::Uint8;
|
|
case 4:
|
|
return PcmSampleFormat::Int16;
|
|
case 6:
|
|
return PcmSampleFormat::Int24;
|
|
case 3:
|
|
case 7:
|
|
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), "Reserved sample size" };
|
|
default:
|
|
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), String::formatted("Unsupported sample size {}", bit_depth_code) };
|
|
}
|
|
}
|
|
|
|
u8 frame_channel_type_to_channel_count(FlacFrameChannelType channel_type)
|
|
{
|
|
if (channel_type <= 7)
|
|
return channel_type + 1;
|
|
return 2;
|
|
}
|
|
|
|
ErrorOr<FlacSubframeHeader, LoaderError> FlacLoaderPlugin::next_subframe_header(InputBitStream& bit_stream, u8 channel_index)
|
|
{
|
|
u8 bits_per_sample = static_cast<u16>(pcm_bits_per_sample(m_current_frame->bit_depth));
|
|
|
|
// For inter-channel correlation, the side channel needs an extra bit for its samples
|
|
switch (m_current_frame->channels) {
|
|
case LeftSideStereo:
|
|
case MidSideStereo:
|
|
if (channel_index == 1) {
|
|
++bits_per_sample;
|
|
}
|
|
break;
|
|
case RightSideStereo:
|
|
if (channel_index == 0) {
|
|
++bits_per_sample;
|
|
}
|
|
break;
|
|
// "normal" channel types
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// zero-bit padding
|
|
if (bit_stream.read_bit_big_endian() != 0)
|
|
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), "Zero bit padding" };
|
|
|
|
// subframe type (encoding)
|
|
u8 subframe_code = static_cast<u8>(bit_stream.read_bits_big_endian(6));
|
|
if ((subframe_code >= 0b000010 && subframe_code <= 0b000111) || (subframe_code > 0b001100 && subframe_code < 0b100000))
|
|
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), "Subframe type" };
|
|
|
|
FlacSubframeType subframe_type;
|
|
u8 order = 0;
|
|
// LPC has the highest bit set
|
|
if ((subframe_code & 0b100000) > 0) {
|
|
subframe_type = FlacSubframeType::LPC;
|
|
order = (subframe_code & 0b011111) + 1;
|
|
} else if ((subframe_code & 0b001000) > 0) {
|
|
// Fixed has the third-highest bit set
|
|
subframe_type = FlacSubframeType::Fixed;
|
|
order = (subframe_code & 0b000111);
|
|
} else {
|
|
subframe_type = (FlacSubframeType)subframe_code;
|
|
}
|
|
|
|
// wasted bits per sample (unary encoding)
|
|
bool has_wasted_bits = bit_stream.read_bit_big_endian();
|
|
u8 k = 0;
|
|
if (has_wasted_bits) {
|
|
bool current_k_bit = 0;
|
|
do {
|
|
current_k_bit = bit_stream.read_bit_big_endian();
|
|
++k;
|
|
} while (current_k_bit != 1);
|
|
}
|
|
|
|
return FlacSubframeHeader {
|
|
subframe_type,
|
|
order,
|
|
k,
|
|
bits_per_sample
|
|
};
|
|
}
|
|
|
|
ErrorOr<Vector<i32>, LoaderError> FlacLoaderPlugin::parse_subframe(FlacSubframeHeader& subframe_header, InputBitStream& bit_input)
|
|
{
|
|
Vector<i32> samples;
|
|
|
|
switch (subframe_header.type) {
|
|
case FlacSubframeType::Constant: {
|
|
u64 constant_value = bit_input.read_bits_big_endian(subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample);
|
|
dbgln_if(AFLACLOADER_DEBUG, "Constant subframe: {}", constant_value);
|
|
|
|
samples.ensure_capacity(m_current_frame->sample_count);
|
|
VERIFY(subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample != 0);
|
|
i32 constant = sign_extend(static_cast<u32>(constant_value), subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample);
|
|
for (u32 i = 0; i < m_current_frame->sample_count; ++i) {
|
|
samples.unchecked_append(constant);
|
|
}
|
|
break;
|
|
}
|
|
case FlacSubframeType::Fixed: {
|
|
dbgln_if(AFLACLOADER_DEBUG, "Fixed LPC subframe order {}", subframe_header.order);
|
|
samples = TRY(decode_fixed_lpc(subframe_header, bit_input));
|
|
break;
|
|
}
|
|
case FlacSubframeType::Verbatim: {
|
|
dbgln_if(AFLACLOADER_DEBUG, "Verbatim subframe");
|
|
samples = TRY(decode_verbatim(subframe_header, bit_input));
|
|
break;
|
|
}
|
|
case FlacSubframeType::LPC: {
|
|
dbgln_if(AFLACLOADER_DEBUG, "Custom LPC subframe order {}", subframe_header.order);
|
|
samples = TRY(decode_custom_lpc(subframe_header, bit_input));
|
|
break;
|
|
}
|
|
default:
|
|
return LoaderError { LoaderError::Category::Unimplemented, static_cast<size_t>(m_current_sample_or_frame), "Unhandled FLAC subframe type" };
|
|
}
|
|
|
|
for (size_t i = 0; i < samples.size(); ++i) {
|
|
samples[i] <<= subframe_header.wasted_bits_per_sample;
|
|
}
|
|
|
|
ResampleHelper<i32> resampler(m_current_frame->sample_rate, m_sample_rate);
|
|
return resampler.resample(samples);
|
|
}
|
|
|
|
// Decode a subframe that isn't actually encoded, usually seen in random data
|
|
ErrorOr<Vector<i32>, LoaderError> FlacLoaderPlugin::decode_verbatim(FlacSubframeHeader& subframe, InputBitStream& bit_input)
|
|
{
|
|
Vector<i32> decoded;
|
|
decoded.ensure_capacity(m_current_frame->sample_count);
|
|
|
|
VERIFY(subframe.bits_per_sample - subframe.wasted_bits_per_sample != 0);
|
|
for (size_t i = 0; i < m_current_frame->sample_count; ++i) {
|
|
decoded.unchecked_append(sign_extend(
|
|
static_cast<u32>(bit_input.read_bits_big_endian(subframe.bits_per_sample - subframe.wasted_bits_per_sample)),
|
|
subframe.bits_per_sample - subframe.wasted_bits_per_sample));
|
|
}
|
|
|
|
return decoded;
|
|
}
|
|
|
|
// Decode a subframe encoded with a custom linear predictor coding, i.e. the subframe provides the polynomial order and coefficients
|
|
ErrorOr<Vector<i32>, LoaderError> FlacLoaderPlugin::decode_custom_lpc(FlacSubframeHeader& subframe, InputBitStream& bit_input)
|
|
{
|
|
Vector<i32> decoded;
|
|
decoded.ensure_capacity(m_current_frame->sample_count);
|
|
|
|
VERIFY(subframe.bits_per_sample - subframe.wasted_bits_per_sample != 0);
|
|
// warm-up samples
|
|
for (auto i = 0; i < subframe.order; ++i) {
|
|
decoded.unchecked_append(sign_extend(
|
|
static_cast<u32>(bit_input.read_bits_big_endian(subframe.bits_per_sample - subframe.wasted_bits_per_sample)),
|
|
subframe.bits_per_sample - subframe.wasted_bits_per_sample));
|
|
}
|
|
|
|
// precision of the coefficients
|
|
u8 lpc_precision = static_cast<u8>(bit_input.read_bits_big_endian(4));
|
|
if (lpc_precision == 0b1111)
|
|
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), "Invalid linear predictor coefficient precision" };
|
|
lpc_precision += 1;
|
|
|
|
// shift needed on the data (signed!)
|
|
i8 lpc_shift = sign_extend(static_cast<u32>(bit_input.read_bits_big_endian(5)), 5);
|
|
|
|
Vector<i32> coefficients;
|
|
coefficients.ensure_capacity(subframe.order);
|
|
// read coefficients
|
|
for (auto i = 0; i < subframe.order; ++i) {
|
|
u32 raw_coefficient = static_cast<u32>(bit_input.read_bits_big_endian(lpc_precision));
|
|
i32 coefficient = static_cast<i32>(sign_extend(raw_coefficient, lpc_precision));
|
|
coefficients.unchecked_append(coefficient);
|
|
}
|
|
|
|
dbgln_if(AFLACLOADER_DEBUG, "{}-bit {} shift coefficients: {}", lpc_precision, lpc_shift, coefficients);
|
|
|
|
// decode residual
|
|
decoded = TRY(decode_residual(decoded, subframe, bit_input));
|
|
|
|
// approximate the waveform with the predictor
|
|
for (size_t i = subframe.order; i < m_current_frame->sample_count; ++i) {
|
|
// (see below)
|
|
i64 sample = 0;
|
|
for (size_t t = 0; t < subframe.order; ++t) {
|
|
// It's really important that we compute in 64-bit land here.
|
|
// Even though FLAC operates at a maximum bit depth of 32 bits, modern encoders use super-large coefficients for maximum compression.
|
|
// These will easily overflow 32 bits and cause strange white noise that apruptly stops intermittently (at the end of a frame).
|
|
// The simple fix of course is to do intermediate computations in 64 bits.
|
|
sample += static_cast<i64>(coefficients[t]) * static_cast<i64>(decoded[i - t - 1]);
|
|
}
|
|
decoded[i] += sample >> lpc_shift;
|
|
}
|
|
|
|
return decoded;
|
|
}
|
|
|
|
// Decode a subframe encoded with one of the fixed linear predictor codings
|
|
ErrorOr<Vector<i32>, LoaderError> FlacLoaderPlugin::decode_fixed_lpc(FlacSubframeHeader& subframe, InputBitStream& bit_input)
|
|
{
|
|
Vector<i32> decoded;
|
|
decoded.ensure_capacity(m_current_frame->sample_count);
|
|
|
|
VERIFY(subframe.bits_per_sample - subframe.wasted_bits_per_sample != 0);
|
|
// warm-up samples
|
|
for (auto i = 0; i < subframe.order; ++i) {
|
|
decoded.unchecked_append(sign_extend(
|
|
static_cast<u32>(bit_input.read_bits_big_endian(subframe.bits_per_sample - subframe.wasted_bits_per_sample)),
|
|
subframe.bits_per_sample - subframe.wasted_bits_per_sample));
|
|
}
|
|
|
|
TRY(decode_residual(decoded, subframe, bit_input));
|
|
|
|
dbgln_if(AFLACLOADER_DEBUG, "decoded length {}, {} order predictor", decoded.size(), subframe.order);
|
|
|
|
switch (subframe.order) {
|
|
case 0:
|
|
// s_0(t) = 0
|
|
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
|
|
decoded[i] += 0;
|
|
break;
|
|
case 1:
|
|
// s_1(t) = s(t-1)
|
|
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
|
|
decoded[i] += decoded[i - 1];
|
|
break;
|
|
case 2:
|
|
// s_2(t) = 2s(t-1) - s(t-2)
|
|
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
|
|
decoded[i] += 2 * decoded[i - 1] - decoded[i - 2];
|
|
break;
|
|
case 3:
|
|
// s_3(t) = 3s(t-1) - 3s(t-2) + s(t-3)
|
|
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
|
|
decoded[i] += 3 * decoded[i - 1] - 3 * decoded[i - 2] + decoded[i - 3];
|
|
break;
|
|
case 4:
|
|
// s_4(t) = 4s(t-1) - 6s(t-2) + 4s(t-3) - s(t-4)
|
|
for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
|
|
decoded[i] += 4 * decoded[i - 1] - 6 * decoded[i - 2] + 4 * decoded[i - 3] - decoded[i - 4];
|
|
break;
|
|
default:
|
|
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), String::formatted("Unrecognized predictor order {}", subframe.order) };
|
|
}
|
|
return decoded;
|
|
}
|
|
|
|
// Decode the residual, the "error" between the function approximation and the actual audio data
|
|
ErrorOr<Vector<i32>, LoaderError> FlacLoaderPlugin::decode_residual(Vector<i32>& decoded, FlacSubframeHeader& subframe, InputBitStream& bit_input)
|
|
{
|
|
u8 residual_mode = static_cast<u8>(bit_input.read_bits_big_endian(2));
|
|
u8 partition_order = static_cast<u8>(bit_input.read_bits_big_endian(4));
|
|
size_t partitions = 1 << partition_order;
|
|
|
|
if (residual_mode == FlacResidualMode::Rice4Bit) {
|
|
// decode a single Rice partition with four bits for the order k
|
|
for (size_t i = 0; i < partitions; ++i) {
|
|
auto rice_partition = decode_rice_partition(4, partitions, i, subframe, bit_input);
|
|
decoded.extend(move(rice_partition));
|
|
}
|
|
} else if (residual_mode == FlacResidualMode::Rice5Bit) {
|
|
// five bits equivalent
|
|
for (size_t i = 0; i < partitions; ++i) {
|
|
auto rice_partition = decode_rice_partition(5, partitions, i, subframe, bit_input);
|
|
decoded.extend(move(rice_partition));
|
|
}
|
|
} else
|
|
return LoaderError { LoaderError::Category::Format, static_cast<size_t>(m_current_sample_or_frame), "Reserved residual coding method" };
|
|
|
|
return decoded;
|
|
}
|
|
|
|
// Decode a single Rice partition as part of the residual, every partition can have its own Rice parameter k
|
|
ALWAYS_INLINE Vector<i32> FlacLoaderPlugin::decode_rice_partition(u8 partition_type, u32 partitions, u32 partition_index, FlacSubframeHeader& subframe, InputBitStream& bit_input)
|
|
{
|
|
// Rice parameter / Exp-Golomb order
|
|
u8 k = static_cast<u8>(bit_input.read_bits_big_endian(partition_type));
|
|
|
|
u32 residual_sample_count;
|
|
if (partitions == 0)
|
|
residual_sample_count = m_current_frame->sample_count - subframe.order;
|
|
else
|
|
residual_sample_count = m_current_frame->sample_count / partitions;
|
|
if (partition_index == 0)
|
|
residual_sample_count -= subframe.order;
|
|
|
|
Vector<i32> rice_partition;
|
|
rice_partition.resize(residual_sample_count);
|
|
|
|
// escape code for unencoded binary partition
|
|
if (k == (1 << partition_type) - 1) {
|
|
u8 unencoded_bps = static_cast<u8>(bit_input.read_bits_big_endian(5));
|
|
for (size_t r = 0; r < residual_sample_count; ++r) {
|
|
rice_partition[r] = static_cast<u8>(bit_input.read_bits_big_endian(unencoded_bps));
|
|
}
|
|
} else {
|
|
for (size_t r = 0; r < residual_sample_count; ++r) {
|
|
rice_partition[r] = decode_unsigned_exp_golomb(k, bit_input);
|
|
}
|
|
}
|
|
|
|
return rice_partition;
|
|
}
|
|
|
|
// Decode a single number encoded with Rice/Exponential-Golomb encoding (the unsigned variant)
|
|
ALWAYS_INLINE i32 decode_unsigned_exp_golomb(u8 k, InputBitStream& bit_input)
|
|
{
|
|
u8 q = 0;
|
|
while (bit_input.read_bit_big_endian() == 0)
|
|
++q;
|
|
|
|
// least significant bits (remainder)
|
|
u32 rem = static_cast<u32>(bit_input.read_bits_big_endian(k));
|
|
u32 value = q << k | rem;
|
|
|
|
return rice_to_signed(value);
|
|
}
|
|
|
|
u64 read_utf8_char(InputStream& input)
|
|
{
|
|
u64 character;
|
|
u8 buffer = 0;
|
|
Bytes buffer_bytes { &buffer, 1 };
|
|
input.read(buffer_bytes);
|
|
u8 start_byte = buffer_bytes[0];
|
|
// Signal byte is zero: ASCII character
|
|
if ((start_byte & 0b10000000) == 0) {
|
|
return start_byte;
|
|
} else if ((start_byte & 0b11000000) == 0b10000000) {
|
|
// illegal continuation byte
|
|
return 0;
|
|
}
|
|
// This algorithm is too good and supports the theoretical max 0xFF start byte
|
|
u8 length = 1;
|
|
while (((start_byte << length) & 0b10000000) == 0b10000000)
|
|
++length;
|
|
u8 bits_from_start_byte = 8 - (length + 1);
|
|
u8 start_byte_bitmask = AK::exp2(bits_from_start_byte) - 1;
|
|
character = start_byte_bitmask & start_byte;
|
|
for (u8 i = length - 1; i > 0; --i) {
|
|
input.read(buffer_bytes);
|
|
u8 current_byte = buffer_bytes[0];
|
|
character = (character << 6) | (current_byte & 0b00111111);
|
|
}
|
|
return character;
|
|
}
|
|
|
|
i64 sign_extend(u32 n, u8 size)
|
|
{
|
|
// negative
|
|
if ((n & (1 << (size - 1))) > 0) {
|
|
return static_cast<i64>(n | (0xffffffff << size));
|
|
}
|
|
// positive
|
|
return n;
|
|
}
|
|
|
|
i32 rice_to_signed(u32 x)
|
|
{
|
|
// positive numbers are even, negative numbers are odd
|
|
// bitmask for conditionally inverting the entire number, thereby "negating" it
|
|
i32 sign = -static_cast<i32>(x & 1);
|
|
// copies the sign's sign onto the actual magnitude of x
|
|
return static_cast<i32>(sign ^ (x >> 1));
|
|
}
|
|
}
|