mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 21:52:45 +00:00 
			
		
		
		
	 feba7bc8a8
			
		
	
	
		feba7bc8a8
		
	
	
	
	
		
			
			The file does not contain any specific architectural code, thus it can be moved to the Kernel/Arch directory.
		
			
				
	
	
		
			358 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			358 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2021, Pankaj R <pankydev8@gmail.com>
 | |
|  * Copyright (c) 2022, the SerenityOS developers.
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include "NVMeController.h"
 | |
| #include "AK/Format.h"
 | |
| #include <AK/RefPtr.h>
 | |
| #include <AK/Types.h>
 | |
| #include <Kernel/Arch/SafeMem.h>
 | |
| #include <Kernel/Arch/x86/IO.h>
 | |
| #include <Kernel/Arch/x86/Processor.h>
 | |
| #include <Kernel/Bus/PCI/API.h>
 | |
| #include <Kernel/CommandLine.h>
 | |
| #include <Kernel/Devices/Device.h>
 | |
| #include <Kernel/FileSystem/ProcFS.h>
 | |
| #include <Kernel/Sections.h>
 | |
| 
 | |
| namespace Kernel {
 | |
| Atomic<u8> NVMeController::controller_id {};
 | |
| 
 | |
| UNMAP_AFTER_INIT ErrorOr<NonnullRefPtr<NVMeController>> NVMeController::try_initialize(Kernel::PCI::DeviceIdentifier const& device_identifier, bool is_queue_polled)
 | |
| {
 | |
|     auto controller = TRY(adopt_nonnull_ref_or_enomem(new NVMeController(device_identifier)));
 | |
|     TRY(controller->initialize(is_queue_polled));
 | |
|     NVMeController::controller_id++;
 | |
|     return controller;
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT NVMeController::NVMeController(const PCI::DeviceIdentifier& device_identifier)
 | |
|     : PCI::Device(device_identifier.address())
 | |
|     , m_pci_device_id(device_identifier)
 | |
| {
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT ErrorOr<void> NVMeController::initialize(bool is_queue_polled)
 | |
| {
 | |
|     // Nr of queues = one queue per core
 | |
|     auto nr_of_queues = Processor::count();
 | |
|     auto irq = is_queue_polled ? Optional<u8> {} : m_pci_device_id.interrupt_line().value();
 | |
| 
 | |
|     PCI::enable_memory_space(m_pci_device_id.address());
 | |
|     PCI::enable_bus_mastering(m_pci_device_id.address());
 | |
|     m_bar = PCI::get_BAR0(m_pci_device_id.address()) & BAR_ADDR_MASK;
 | |
|     static_assert(sizeof(ControllerRegister) == REG_SQ0TDBL_START);
 | |
|     static_assert(sizeof(NVMeSubmission) == (1 << SQ_WIDTH));
 | |
| 
 | |
|     // Map only until doorbell register for the controller
 | |
|     // Queues will individually map the doorbell register respectively
 | |
|     m_controller_regs = TRY(Memory::map_typed_writable<volatile ControllerRegister>(PhysicalAddress(m_bar)));
 | |
| 
 | |
|     auto caps = m_controller_regs->cap;
 | |
|     m_ready_timeout = Time::from_milliseconds((CAP_TO(caps) + 1) * 500); // CAP.TO is in 500ms units
 | |
| 
 | |
|     calculate_doorbell_stride();
 | |
|     TRY(create_admin_queue(irq));
 | |
|     VERIFY(m_admin_queue_ready == true);
 | |
| 
 | |
|     VERIFY(IO_QUEUE_SIZE < MQES(caps));
 | |
|     dbgln_if(NVME_DEBUG, "NVMe: IO queue depth is: {}", IO_QUEUE_SIZE);
 | |
| 
 | |
|     // Create an IO queue per core
 | |
|     for (u32 cpuid = 0; cpuid < nr_of_queues; ++cpuid) {
 | |
|         // qid is zero is used for admin queue
 | |
|         TRY(create_io_queue(cpuid + 1, irq));
 | |
|     }
 | |
|     TRY(identify_and_init_namespaces());
 | |
|     return {};
 | |
| }
 | |
| 
 | |
| bool NVMeController::wait_for_ready(bool expected_ready_bit_value)
 | |
| {
 | |
|     constexpr size_t one_ms_io_delay = 1000;
 | |
|     auto wait_iterations = m_ready_timeout.to_milliseconds();
 | |
| 
 | |
|     u32 expected_rdy = expected_ready_bit_value ? 1 : 0;
 | |
|     while (((m_controller_regs->csts >> CSTS_RDY_BIT) & 0x1) != expected_rdy) {
 | |
|         IO::delay(one_ms_io_delay);
 | |
| 
 | |
|         if (--wait_iterations == 0) {
 | |
|             if (((m_controller_regs->csts >> CSTS_RDY_BIT) & 0x1) != expected_rdy) {
 | |
|                 dbgln_if(NVME_DEBUG, "NVMEController: CSTS.RDY still not set to {} after {} ms", expected_rdy, m_ready_timeout.to_milliseconds());
 | |
|                 return false;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool NVMeController::reset_controller()
 | |
| {
 | |
|     if ((m_controller_regs->cc & (1 << CC_EN_BIT)) != 0) {
 | |
|         // If the EN bit is already set, we need to wait
 | |
|         // until the RDY bit is 1, otherwise the behavior is undefined
 | |
|         if (!wait_for_ready(true))
 | |
|             return false;
 | |
|     }
 | |
| 
 | |
|     auto cc = m_controller_regs->cc;
 | |
| 
 | |
|     cc = cc & ~(1 << CC_EN_BIT);
 | |
| 
 | |
|     m_controller_regs->cc = cc;
 | |
| 
 | |
|     full_memory_barrier();
 | |
| 
 | |
|     // Wait until the RDY bit is cleared
 | |
|     if (!wait_for_ready(false))
 | |
|         return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool NVMeController::start_controller()
 | |
| {
 | |
|     if (!(m_controller_regs->cc & (1 << CC_EN_BIT))) {
 | |
|         // If the EN bit is not already set, we need to wait
 | |
|         // until the RDY bit is 0, otherwise the behavior is undefined
 | |
|         if (!wait_for_ready(false))
 | |
|             return false;
 | |
|     }
 | |
| 
 | |
|     auto cc = m_controller_regs->cc;
 | |
| 
 | |
|     cc = cc | (1 << CC_EN_BIT);
 | |
|     cc = cc | (CQ_WIDTH << CC_IOCQES_BIT);
 | |
|     cc = cc | (SQ_WIDTH << CC_IOSQES_BIT);
 | |
| 
 | |
|     m_controller_regs->cc = cc;
 | |
| 
 | |
|     full_memory_barrier();
 | |
| 
 | |
|     // Wait until the RDY bit is set
 | |
|     if (!wait_for_ready(true))
 | |
|         return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT u32 NVMeController::get_admin_q_dept()
 | |
| {
 | |
|     u32 aqa = m_controller_regs->aqa;
 | |
|     // Queue depth is 0 based
 | |
|     u32 q_depth = min(ACQ_SIZE(aqa), ASQ_SIZE(aqa)) + 1;
 | |
|     dbgln_if(NVME_DEBUG, "NVMe: Admin queue depth is {}", q_depth);
 | |
|     return q_depth;
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT ErrorOr<void> NVMeController::identify_and_init_namespaces()
 | |
| {
 | |
| 
 | |
|     RefPtr<Memory::PhysicalPage> prp_dma_buffer;
 | |
|     OwnPtr<Memory::Region> prp_dma_region;
 | |
|     auto namespace_data_struct = TRY(ByteBuffer::create_zeroed(NVMe_IDENTIFY_SIZE));
 | |
|     u32 active_namespace_list[NVMe_IDENTIFY_SIZE / sizeof(u32)];
 | |
| 
 | |
|     {
 | |
|         auto buffer = TRY(MM.allocate_dma_buffer_page("Identify PRP", Memory::Region::Access::ReadWrite, prp_dma_buffer));
 | |
|         prp_dma_region = move(buffer);
 | |
|     }
 | |
| 
 | |
|     // Get the active namespace
 | |
|     {
 | |
|         NVMeSubmission sub {};
 | |
|         u16 status = 0;
 | |
|         sub.op = OP_ADMIN_IDENTIFY;
 | |
|         sub.identify.data_ptr.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(prp_dma_buffer->paddr().as_ptr()));
 | |
|         sub.identify.cns = NVMe_CNS_ID_ACTIVE_NS & 0xff;
 | |
|         status = submit_admin_command(sub, true);
 | |
|         if (status) {
 | |
|             dmesgln("Failed to identify active namespace command");
 | |
|             return EFAULT;
 | |
|         }
 | |
|         if (void* fault_at; !safe_memcpy(active_namespace_list, prp_dma_region->vaddr().as_ptr(), NVMe_IDENTIFY_SIZE, fault_at)) {
 | |
|             return EFAULT;
 | |
|         }
 | |
|     }
 | |
|     // Get the NAMESPACE attributes
 | |
|     {
 | |
|         NVMeSubmission sub {};
 | |
|         IdentifyNamespace id_ns {};
 | |
|         u16 status = 0;
 | |
|         for (auto nsid : active_namespace_list) {
 | |
|             memset(prp_dma_region->vaddr().as_ptr(), 0, NVMe_IDENTIFY_SIZE);
 | |
|             // Invalid NS
 | |
|             if (nsid == 0)
 | |
|                 break;
 | |
|             sub.op = OP_ADMIN_IDENTIFY;
 | |
|             sub.identify.data_ptr.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(prp_dma_buffer->paddr().as_ptr()));
 | |
|             sub.identify.cns = NVMe_CNS_ID_NS & 0xff;
 | |
|             sub.identify.nsid = nsid;
 | |
|             status = submit_admin_command(sub, true);
 | |
|             if (status) {
 | |
|                 dmesgln("Failed identify namespace with nsid {}", nsid);
 | |
|                 return EFAULT;
 | |
|             }
 | |
|             static_assert(sizeof(IdentifyNamespace) == NVMe_IDENTIFY_SIZE);
 | |
|             if (void* fault_at; !safe_memcpy(&id_ns, prp_dma_region->vaddr().as_ptr(), NVMe_IDENTIFY_SIZE, fault_at)) {
 | |
|                 return EFAULT;
 | |
|             }
 | |
|             auto val = get_ns_features(id_ns);
 | |
|             auto block_counts = val.get<0>();
 | |
|             auto block_size = 1 << val.get<1>();
 | |
| 
 | |
|             dbgln_if(NVME_DEBUG, "NVMe: Block count is {} and Block size is {}", block_counts, block_size);
 | |
| 
 | |
|             m_namespaces.append(TRY(NVMeNameSpace::try_create(m_queues, controller_id.load(), nsid, block_counts, block_size)));
 | |
|             m_device_count++;
 | |
|             dbgln_if(NVME_DEBUG, "NVMe: Initialized namespace with NSID: {}", nsid);
 | |
|         }
 | |
|     }
 | |
|     return {};
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT Tuple<u64, u8> NVMeController::get_ns_features(IdentifyNamespace& identify_data_struct)
 | |
| {
 | |
|     auto flbas = identify_data_struct.flbas & FLBA_SIZE_MASK;
 | |
|     auto namespace_size = identify_data_struct.nsze;
 | |
|     auto lba_format = identify_data_struct.lbaf[flbas];
 | |
| 
 | |
|     auto lba_size = (lba_format & LBA_SIZE_MASK) >> 16;
 | |
|     return Tuple<u64, u8>(namespace_size, lba_size);
 | |
| }
 | |
| 
 | |
| RefPtr<StorageDevice> NVMeController::device(u32 index) const
 | |
| {
 | |
|     return m_namespaces.at(index);
 | |
| }
 | |
| 
 | |
| size_t NVMeController::devices_count() const
 | |
| {
 | |
|     return m_device_count;
 | |
| }
 | |
| 
 | |
| bool NVMeController::reset()
 | |
| {
 | |
|     if (!reset_controller())
 | |
|         return false;
 | |
|     if (!start_controller())
 | |
|         return false;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool NVMeController::shutdown()
 | |
| {
 | |
|     TODO();
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| void NVMeController::complete_current_request([[maybe_unused]] AsyncDeviceRequest::RequestResult result)
 | |
| {
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT ErrorOr<void> NVMeController::create_admin_queue(Optional<u8> irq)
 | |
| {
 | |
|     auto qdepth = get_admin_q_dept();
 | |
|     OwnPtr<Memory::Region> cq_dma_region;
 | |
|     NonnullRefPtrVector<Memory::PhysicalPage> cq_dma_pages;
 | |
|     OwnPtr<Memory::Region> sq_dma_region;
 | |
|     NonnullRefPtrVector<Memory::PhysicalPage> sq_dma_pages;
 | |
|     auto cq_size = round_up_to_power_of_two(CQ_SIZE(qdepth), 4096);
 | |
|     auto sq_size = round_up_to_power_of_two(SQ_SIZE(qdepth), 4096);
 | |
|     if (!reset_controller()) {
 | |
|         dmesgln("Failed to reset the NVMe controller");
 | |
|         return EFAULT;
 | |
|     }
 | |
|     {
 | |
|         auto buffer = TRY(MM.allocate_dma_buffer_pages(cq_size, "Admin CQ queue", Memory::Region::Access::ReadWrite, cq_dma_pages));
 | |
|         cq_dma_region = move(buffer);
 | |
|     }
 | |
| 
 | |
|     // Phase bit is important to determine completion, so zero out the space
 | |
|     // so that we don't get any garbage phase bit value
 | |
|     memset(cq_dma_region->vaddr().as_ptr(), 0, cq_size);
 | |
| 
 | |
|     {
 | |
|         auto buffer = TRY(MM.allocate_dma_buffer_pages(sq_size, "Admin SQ queue", Memory::Region::Access::ReadWrite, sq_dma_pages));
 | |
|         sq_dma_region = move(buffer);
 | |
|     }
 | |
|     auto doorbell_regs = TRY(Memory::map_typed_writable<volatile DoorbellRegister>(PhysicalAddress(m_bar + REG_SQ0TDBL_START)));
 | |
| 
 | |
|     m_controller_regs->acq = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(cq_dma_pages.first().paddr().as_ptr()));
 | |
|     m_controller_regs->asq = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(sq_dma_pages.first().paddr().as_ptr()));
 | |
| 
 | |
|     if (!start_controller()) {
 | |
|         dmesgln("Failed to restart the NVMe controller");
 | |
|         return EFAULT;
 | |
|     }
 | |
|     set_admin_queue_ready_flag();
 | |
|     m_admin_queue = TRY(NVMeQueue::try_create(0, irq, qdepth, move(cq_dma_region), cq_dma_pages, move(sq_dma_region), sq_dma_pages, move(doorbell_regs)));
 | |
| 
 | |
|     dbgln_if(NVME_DEBUG, "NVMe: Admin queue created");
 | |
|     return {};
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT ErrorOr<void> NVMeController::create_io_queue(u8 qid, Optional<u8> irq)
 | |
| {
 | |
|     OwnPtr<Memory::Region> cq_dma_region;
 | |
|     NonnullRefPtrVector<Memory::PhysicalPage> cq_dma_pages;
 | |
|     OwnPtr<Memory::Region> sq_dma_region;
 | |
|     NonnullRefPtrVector<Memory::PhysicalPage> sq_dma_pages;
 | |
|     auto cq_size = round_up_to_power_of_two(CQ_SIZE(IO_QUEUE_SIZE), 4096);
 | |
|     auto sq_size = round_up_to_power_of_two(SQ_SIZE(IO_QUEUE_SIZE), 4096);
 | |
| 
 | |
|     {
 | |
|         auto buffer = TRY(MM.allocate_dma_buffer_pages(cq_size, "IO CQ queue", Memory::Region::Access::ReadWrite, cq_dma_pages));
 | |
|         cq_dma_region = move(buffer);
 | |
|     }
 | |
| 
 | |
|     // Phase bit is important to determine completion, so zero out the space
 | |
|     // so that we don't get any garbage phase bit value
 | |
|     memset(cq_dma_region->vaddr().as_ptr(), 0, cq_size);
 | |
| 
 | |
|     {
 | |
|         auto buffer = TRY(MM.allocate_dma_buffer_pages(sq_size, "IO SQ queue", Memory::Region::Access::ReadWrite, sq_dma_pages));
 | |
|         sq_dma_region = move(buffer);
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         NVMeSubmission sub {};
 | |
|         sub.op = OP_ADMIN_CREATE_COMPLETION_QUEUE;
 | |
|         sub.create_cq.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(cq_dma_pages.first().paddr().as_ptr()));
 | |
|         sub.create_cq.cqid = qid;
 | |
|         // The queue size is 0 based
 | |
|         sub.create_cq.qsize = AK::convert_between_host_and_little_endian(IO_QUEUE_SIZE - 1);
 | |
|         auto flags = irq.has_value() ? QUEUE_IRQ_ENABLED : QUEUE_IRQ_DISABLED;
 | |
|         flags |= QUEUE_PHY_CONTIGUOUS;
 | |
|         // TODO: Eventually move to MSI.
 | |
|         // For now using pin based interrupts. Clear the first 16 bits
 | |
|         // to use pin-based interrupts.
 | |
|         sub.create_cq.cq_flags = AK::convert_between_host_and_little_endian(flags & 0xFFFF);
 | |
|         submit_admin_command(sub, true);
 | |
|     }
 | |
|     {
 | |
|         NVMeSubmission sub {};
 | |
|         sub.op = OP_ADMIN_CREATE_SUBMISSION_QUEUE;
 | |
|         sub.create_sq.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(sq_dma_pages.first().paddr().as_ptr()));
 | |
|         sub.create_sq.sqid = qid;
 | |
|         // The queue size is 0 based
 | |
|         sub.create_sq.qsize = AK::convert_between_host_and_little_endian(IO_QUEUE_SIZE - 1);
 | |
|         auto flags = QUEUE_PHY_CONTIGUOUS;
 | |
|         sub.create_sq.cqid = qid;
 | |
|         sub.create_sq.sq_flags = AK::convert_between_host_and_little_endian(flags);
 | |
|         submit_admin_command(sub, true);
 | |
|     }
 | |
| 
 | |
|     auto queue_doorbell_offset = REG_SQ0TDBL_START + ((2 * qid) * (4 << m_dbl_stride));
 | |
|     auto doorbell_regs = TRY(Memory::map_typed_writable<volatile DoorbellRegister>(PhysicalAddress(m_bar + queue_doorbell_offset)));
 | |
| 
 | |
|     m_queues.append(TRY(NVMeQueue::try_create(qid, irq, IO_QUEUE_SIZE, move(cq_dma_region), cq_dma_pages, move(sq_dma_region), sq_dma_pages, move(doorbell_regs))));
 | |
|     dbgln_if(NVME_DEBUG, "NVMe: Created IO Queue with QID{}", m_queues.size());
 | |
|     return {};
 | |
| }
 | |
| }
 |