1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-20 14:35:07 +00:00
serenity/Kernel/VM/Region.cpp
Andreas Kling 9eef39d68a Kernel: Start implementing x86 SMAP support
Supervisor Mode Access Prevention (SMAP) is an x86 CPU feature that
prevents the kernel from accessing userspace memory. With SMAP enabled,
trying to read/write a userspace memory address while in the kernel
will now generate a page fault.

Since it's sometimes necessary to read/write userspace memory, there
are two new instructions that quickly switch the protection on/off:
STAC (disables protection) and CLAC (enables protection.)
These are exposed in kernel code via the stac() and clac() helpers.

There's also a SmapDisabler RAII object that can be used to ensure
that you don't forget to re-enable protection before returning to
userspace code.

THis patch also adds copy_to_user(), copy_from_user() and memset_user()
which are the "correct" way of doing things. These functions allow us
to briefly disable protection for a specific purpose, and then turn it
back on immediately after it's done. Going forward all kernel code
should be moved to using these and all uses of SmapDisabler are to be
considered FIXME's.

Note that we're not realizing the full potential of this feature since
I've used SmapDisabler quite liberally in this initial bring-up patch.
2020-01-05 18:14:51 +01:00

444 lines
15 KiB
C++

#include <Kernel/FileSystem/Inode.h>
#include <Kernel/Process.h>
#include <Kernel/Thread.h>
#include <Kernel/VM/AnonymousVMObject.h>
#include <Kernel/VM/InodeVMObject.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/Region.h>
//#define MM_DEBUG
//#define PAGE_FAULT_DEBUG
Region::Region(const Range& range, const String& name, u8 access)
: m_range(range)
, m_vmobject(AnonymousVMObject::create_with_size(size()))
, m_name(name)
, m_access(access)
{
MM.register_region(*this);
}
Region::Region(const Range& range, NonnullRefPtr<Inode> inode, const String& name, u8 access)
: m_range(range)
, m_vmobject(InodeVMObject::create_with_inode(*inode))
, m_name(name)
, m_access(access)
{
MM.register_region(*this);
}
Region::Region(const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, const String& name, u8 access)
: m_range(range)
, m_offset_in_vmobject(offset_in_vmobject)
, m_vmobject(move(vmobject))
, m_name(name)
, m_access(access)
{
MM.register_region(*this);
}
Region::~Region()
{
// Make sure we disable interrupts so we don't get interrupted between unmapping and unregistering.
// Unmapping the region will give the VM back to the RangeAllocator, so an interrupt handler would
// find the address<->region mappings in an invalid state there.
InterruptDisabler disabler;
if (m_page_directory) {
unmap(ShouldDeallocateVirtualMemoryRange::Yes);
ASSERT(!m_page_directory);
}
MM.unregister_region(*this);
}
NonnullOwnPtr<Region> Region::clone()
{
ASSERT(current);
// FIXME: What should we do for privately mapped InodeVMObjects?
if (m_shared || vmobject().is_inode()) {
ASSERT(!m_stack);
#ifdef MM_DEBUG
dbgprintf("%s<%u> Region::clone(): sharing %s (V%p)\n",
current->process().name().characters(),
current->pid(),
m_name.characters(),
vaddr().get());
#endif
// Create a new region backed by the same VMObject.
return Region::create_user_accessible(m_range, m_vmobject, m_offset_in_vmobject, m_name, m_access);
}
#ifdef MM_DEBUG
dbgprintf("%s<%u> Region::clone(): cowing %s (V%p)\n",
current->process().name().characters(),
current->pid(),
m_name.characters(),
vaddr().get());
#endif
// Set up a COW region. The parent (this) region becomes COW as well!
ensure_cow_map().fill(true);
remap();
auto clone_region = Region::create_user_accessible(m_range, m_vmobject->clone(), m_offset_in_vmobject, m_name, m_access);
clone_region->ensure_cow_map();
if (m_stack) {
ASSERT(is_readable());
ASSERT(is_writable());
ASSERT(!is_shared());
ASSERT(vmobject().is_anonymous());
clone_region->set_stack(true);
}
return clone_region;
}
bool Region::commit()
{
InterruptDisabler disabler;
#ifdef MM_DEBUG
dbgprintf("MM: commit %u pages in Region %p (VMO=%p) at V%p\n", vmobject().page_count(), this, &vmobject(), vaddr().get());
#endif
for (size_t i = 0; i < page_count(); ++i) {
if (!commit(i))
return false;
}
return true;
}
bool Region::commit(size_t page_index)
{
ASSERT(vmobject().is_anonymous() || vmobject().is_purgeable());
InterruptDisabler disabler;
#ifdef MM_DEBUG
dbgprintf("MM: commit single page (%zu) in Region %p (VMO=%p) at V%p\n", page_index, vmobject().page_count(), this, &vmobject(), vaddr().get());
#endif
auto& vmobject_physical_page_entry = vmobject().physical_pages()[first_page_index() + page_index];
if (!vmobject_physical_page_entry.is_null())
return true;
auto physical_page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
if (!physical_page) {
kprintf("MM: commit was unable to allocate a physical page\n");
return false;
}
vmobject_physical_page_entry = move(physical_page);
remap_page(page_index);
return true;
}
u32 Region::cow_pages() const
{
if (!m_cow_map)
return 0;
u32 count = 0;
for (int i = 0; i < m_cow_map->size(); ++i)
count += m_cow_map->get(i);
return count;
}
size_t Region::amount_dirty() const
{
if (!vmobject().is_inode())
return amount_resident();
return static_cast<const InodeVMObject&>(vmobject()).amount_dirty();
}
size_t Region::amount_resident() const
{
size_t bytes = 0;
for (size_t i = 0; i < page_count(); ++i) {
if (m_vmobject->physical_pages()[first_page_index() + i])
bytes += PAGE_SIZE;
}
return bytes;
}
size_t Region::amount_shared() const
{
size_t bytes = 0;
for (size_t i = 0; i < page_count(); ++i) {
auto& physical_page = m_vmobject->physical_pages()[first_page_index() + i];
if (physical_page && physical_page->ref_count() > 1)
bytes += PAGE_SIZE;
}
return bytes;
}
NonnullOwnPtr<Region> Region::create_user_accessible(const Range& range, const StringView& name, u8 access)
{
auto region = make<Region>(range, name, access);
region->m_user_accessible = true;
return region;
}
NonnullOwnPtr<Region> Region::create_user_accessible(const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, const StringView& name, u8 access)
{
auto region = make<Region>(range, move(vmobject), offset_in_vmobject, name, access);
region->m_user_accessible = true;
return region;
}
NonnullOwnPtr<Region> Region::create_user_accessible(const Range& range, NonnullRefPtr<Inode> inode, const StringView& name, u8 access)
{
auto region = make<Region>(range, move(inode), name, access);
region->m_user_accessible = true;
return region;
}
NonnullOwnPtr<Region> Region::create_kernel_only(const Range& range, const StringView& name, u8 access)
{
auto region = make<Region>(range, name, access);
region->m_user_accessible = false;
return region;
}
bool Region::should_cow(size_t page_index) const
{
if (m_shared)
return false;
return m_cow_map && m_cow_map->get(page_index);
}
void Region::set_should_cow(size_t page_index, bool cow)
{
ASSERT(!m_shared);
ensure_cow_map().set(page_index, cow);
}
Bitmap& Region::ensure_cow_map() const
{
if (!m_cow_map)
m_cow_map = make<Bitmap>(page_count(), true);
return *m_cow_map;
}
void Region::map_individual_page_impl(size_t page_index)
{
auto page_vaddr = vaddr().offset(page_index * PAGE_SIZE);
auto& pte = MM.ensure_pte(*m_page_directory, page_vaddr);
auto& physical_page = vmobject().physical_pages()[first_page_index() + page_index];
if (!physical_page) {
pte.set_physical_page_base(0);
pte.set_present(false);
} else {
pte.set_physical_page_base(physical_page->paddr().get());
pte.set_present(is_readable());
if (should_cow(page_index))
pte.set_writable(false);
else
pte.set_writable(is_writable());
if (g_cpu_supports_nx)
pte.set_execute_disabled(!is_executable());
pte.set_user_allowed(is_user_accessible());
}
m_page_directory->flush(page_vaddr);
#ifdef MM_DEBUG
dbg() << "MM: >> region map (PD=" << m_page_directory->cr3() << ", PTE=" << (void*)pte.raw() << "{" << &pte << "}) " << name() << " " << page_vaddr << " => " << physical_page->paddr() << " (@" << physical_page.ptr() << ")";
#endif
}
void Region::remap_page(size_t page_index)
{
ASSERT(m_page_directory);
InterruptDisabler disabler;
ASSERT(vmobject().physical_pages()[first_page_index() + page_index]);
map_individual_page_impl(page_index);
}
void Region::unmap(ShouldDeallocateVirtualMemoryRange deallocate_range)
{
InterruptDisabler disabler;
ASSERT(m_page_directory);
for (size_t i = 0; i < page_count(); ++i) {
auto vaddr = this->vaddr().offset(i * PAGE_SIZE);
auto& pte = MM.ensure_pte(*m_page_directory, vaddr);
pte.set_physical_page_base(0);
pte.set_present(false);
pte.set_writable(false);
pte.set_user_allowed(false);
m_page_directory->flush(vaddr);
#ifdef MM_DEBUG
auto& physical_page = vmobject().physical_pages()[first_page_index() + i];
dbgprintf("MM: >> Unmapped V%p => P%p <<\n", vaddr.get(), physical_page ? physical_page->paddr().get() : 0);
#endif
}
if (deallocate_range == ShouldDeallocateVirtualMemoryRange::Yes)
m_page_directory->range_allocator().deallocate(range());
m_page_directory = nullptr;
}
void Region::map(PageDirectory& page_directory)
{
ASSERT(!m_page_directory || m_page_directory == &page_directory);
InterruptDisabler disabler;
m_page_directory = page_directory;
#ifdef MM_DEBUG
dbgprintf("MM: Region::map() will map VMO pages %u - %u (VMO page count: %u)\n", first_page_index(), last_page_index(), vmobject().page_count());
#endif
for (size_t page_index = 0; page_index < page_count(); ++page_index)
map_individual_page_impl(page_index);
}
void Region::remap()
{
ASSERT(m_page_directory);
map(*m_page_directory);
}
PageFaultResponse Region::handle_fault(const PageFault& fault)
{
auto page_index_in_region = page_index_from_address(fault.vaddr());
if (fault.type() == PageFault::Type::PageNotPresent) {
if (!is_readable()) {
dbgprintf("NP(non-readable) fault in Region{%p}[%u]\n", this, page_index_in_region);
return PageFaultResponse::ShouldCrash;
}
if (vmobject().is_inode()) {
#ifdef PAGE_FAULT_DEBUG
dbgprintf("NP(inode) fault in Region{%p}[%u]\n", this, page_index_in_region);
#endif
return handle_inode_fault(page_index_in_region);
}
#ifdef PAGE_FAULT_DEBUG
dbgprintf("NP(zero) fault in Region{%p}[%u]\n", this, page_index_in_region);
#endif
return handle_zero_fault(page_index_in_region);
}
ASSERT(fault.type() == PageFault::Type::ProtectionViolation);
if (fault.access() == PageFault::Access::Write && is_writable() && should_cow(page_index_in_region)) {
#ifdef PAGE_FAULT_DEBUG
dbgprintf("PV(cow) fault in Region{%p}[%u]\n", this, page_index_in_region);
#endif
return handle_cow_fault(page_index_in_region);
}
kprintf("PV(error) fault in Region{%p}[%u] at V%p\n", this, page_index_in_region, fault.vaddr().get());
return PageFaultResponse::ShouldCrash;
}
PageFaultResponse Region::handle_zero_fault(size_t page_index_in_region)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(vmobject().is_anonymous());
sti();
LOCKER(vmobject().m_paging_lock);
cli();
auto& vmobject_physical_page_entry = vmobject().physical_pages()[first_page_index() + page_index_in_region];
if (!vmobject_physical_page_entry.is_null()) {
#ifdef PAGE_FAULT_DEBUG
dbgprintf("MM: zero_page() but page already present. Fine with me!\n");
#endif
remap_page(page_index_in_region);
return PageFaultResponse::Continue;
}
if (current)
current->did_zero_fault();
auto physical_page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
if (physical_page.is_null()) {
kprintf("MM: handle_zero_fault was unable to allocate a physical page\n");
return PageFaultResponse::ShouldCrash;
}
#ifdef PAGE_FAULT_DEBUG
dbgprintf(" >> ZERO P%p\n", physical_page->paddr().get());
#endif
vmobject_physical_page_entry = move(physical_page);
remap_page(page_index_in_region);
return PageFaultResponse::Continue;
}
PageFaultResponse Region::handle_cow_fault(size_t page_index_in_region)
{
ASSERT_INTERRUPTS_DISABLED();
auto& vmobject_physical_page_entry = vmobject().physical_pages()[first_page_index() + page_index_in_region];
if (vmobject_physical_page_entry->ref_count() == 1) {
#ifdef PAGE_FAULT_DEBUG
dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
#endif
set_should_cow(page_index_in_region, false);
remap_page(page_index_in_region);
return PageFaultResponse::Continue;
}
if (current)
current->did_cow_fault();
#ifdef PAGE_FAULT_DEBUG
dbgprintf(" >> It's a COW page and it's time to COW!\n");
#endif
auto physical_page_to_copy = move(vmobject_physical_page_entry);
auto physical_page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
if (physical_page.is_null()) {
kprintf("MM: handle_cow_fault was unable to allocate a physical page\n");
return PageFaultResponse::ShouldCrash;
}
u8* dest_ptr = MM.quickmap_page(*physical_page);
const u8* src_ptr = vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
#ifdef PAGE_FAULT_DEBUG
dbgprintf(" >> COW P%p <- P%p\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
#endif
copy_to_user(dest_ptr, src_ptr, PAGE_SIZE);
vmobject_physical_page_entry = move(physical_page);
MM.unquickmap_page();
set_should_cow(page_index_in_region, false);
remap_page(page_index_in_region);
return PageFaultResponse::Continue;
}
PageFaultResponse Region::handle_inode_fault(size_t page_index_in_region)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(vmobject().is_inode());
auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject());
auto& vmobject_physical_page_entry = inode_vmobject.physical_pages()[first_page_index() + page_index_in_region];
sti();
LOCKER(vmobject().m_paging_lock);
cli();
#ifdef PAGE_FAULT_DEBUG
dbg() << *current << " inode fault in " << name() << " page index: " << page_index_in_region;
#endif
if (!vmobject_physical_page_entry.is_null()) {
#ifdef PAGE_FAULT_DEBUG
dbgprintf("MM: page_in_from_inode() but page already present. Fine with me!\n");
#endif
remap_page(page_index_in_region);
return PageFaultResponse::Continue;
}
if (current)
current->did_inode_fault();
#ifdef MM_DEBUG
dbgprintf("MM: page_in_from_inode ready to read from inode\n");
#endif
sti();
u8 page_buffer[PAGE_SIZE];
auto& inode = inode_vmobject.inode();
auto nread = inode.read_bytes((first_page_index() + page_index_in_region) * PAGE_SIZE, PAGE_SIZE, page_buffer, nullptr);
if (nread < 0) {
kprintf("MM: handle_inode_fault had error (%d) while reading!\n", nread);
return PageFaultResponse::ShouldCrash;
}
if (nread < PAGE_SIZE) {
// If we read less than a page, zero out the rest to avoid leaking uninitialized data.
memset(page_buffer + nread, 0, PAGE_SIZE - nread);
}
cli();
vmobject_physical_page_entry = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
if (vmobject_physical_page_entry.is_null()) {
kprintf("MM: handle_inode_fault was unable to allocate a physical page\n");
return PageFaultResponse::ShouldCrash;
}
u8* dest_ptr = MM.quickmap_page(*vmobject_physical_page_entry);
copy_to_user(dest_ptr, page_buffer, PAGE_SIZE);
MM.unquickmap_page();
remap_page(page_index_in_region);
return PageFaultResponse::Continue;
}