mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 17:22:43 +00:00 
			
		
		
		
	 0a0089fc11
			
		
	
	
		0a0089fc11
		
	
	
	
	
		
			
			Instead of scaling by 1/10th N times, scale 10^N and then divide by that. Avoid doing this beyond double-infinity. This decreases the progressive error for numbers outside of integer range immensely. Not a full 100% fix; there is still a single ULP difference detected by a Javascript test
		
			
				
	
	
		
			1207 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1207 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/Assertions.h>
 | |
| #include <AK/HashMap.h>
 | |
| #include <AK/Noncopyable.h>
 | |
| #include <AK/Random.h>
 | |
| #include <AK/StdLibExtras.h>
 | |
| #include <AK/Types.h>
 | |
| #include <AK/Utf8View.h>
 | |
| #include <LibELF/AuxiliaryVector.h>
 | |
| #include <LibPthread/pthread.h>
 | |
| #include <alloca.h>
 | |
| #include <assert.h>
 | |
| #include <ctype.h>
 | |
| #include <errno.h>
 | |
| #include <fcntl.h>
 | |
| #include <signal.h>
 | |
| #include <spawn.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <sys/internals.h>
 | |
| #include <sys/mman.h>
 | |
| #include <sys/stat.h>
 | |
| #include <sys/wait.h>
 | |
| #include <syscall.h>
 | |
| #include <unistd.h>
 | |
| 
 | |
| static void strtons(const char* str, char** endptr)
 | |
| {
 | |
|     assert(endptr);
 | |
|     char* ptr = const_cast<char*>(str);
 | |
|     while (isspace(*ptr)) {
 | |
|         ptr += 1;
 | |
|     }
 | |
|     *endptr = ptr;
 | |
| }
 | |
| 
 | |
| enum Sign {
 | |
|     Negative,
 | |
|     Positive,
 | |
| };
 | |
| 
 | |
| static Sign strtosign(const char* str, char** endptr)
 | |
| {
 | |
|     assert(endptr);
 | |
|     if (*str == '+') {
 | |
|         *endptr = const_cast<char*>(str + 1);
 | |
|         return Sign::Positive;
 | |
|     } else if (*str == '-') {
 | |
|         *endptr = const_cast<char*>(str + 1);
 | |
|         return Sign::Negative;
 | |
|     } else {
 | |
|         *endptr = const_cast<char*>(str);
 | |
|         return Sign::Positive;
 | |
|     }
 | |
| }
 | |
| 
 | |
| enum DigitConsumeDecision {
 | |
|     Consumed,
 | |
|     PosOverflow,
 | |
|     NegOverflow,
 | |
|     Invalid,
 | |
| };
 | |
| 
 | |
| template<typename T, T min_value, T max_value>
 | |
| class NumParser {
 | |
|     AK_MAKE_NONMOVABLE(NumParser);
 | |
| 
 | |
| public:
 | |
|     NumParser(Sign sign, int base)
 | |
|         : m_base(base)
 | |
|         , m_num(0)
 | |
|         , m_sign(sign)
 | |
|     {
 | |
|         m_cutoff = positive() ? (max_value / base) : (min_value / base);
 | |
|         m_max_digit_after_cutoff = positive() ? (max_value % base) : (min_value % base);
 | |
|     }
 | |
| 
 | |
|     int parse_digit(char ch)
 | |
|     {
 | |
|         int digit;
 | |
|         if (isdigit(ch))
 | |
|             digit = ch - '0';
 | |
|         else if (islower(ch))
 | |
|             digit = ch - ('a' - 10);
 | |
|         else if (isupper(ch))
 | |
|             digit = ch - ('A' - 10);
 | |
|         else
 | |
|             return -1;
 | |
| 
 | |
|         if (static_cast<T>(digit) >= m_base)
 | |
|             return -1;
 | |
| 
 | |
|         return digit;
 | |
|     }
 | |
| 
 | |
|     DigitConsumeDecision consume(char ch)
 | |
|     {
 | |
|         int digit = parse_digit(ch);
 | |
|         if (digit == -1)
 | |
|             return DigitConsumeDecision::Invalid;
 | |
| 
 | |
|         if (!can_append_digit(digit)) {
 | |
|             if (m_sign != Sign::Negative) {
 | |
|                 return DigitConsumeDecision::PosOverflow;
 | |
|             } else {
 | |
|                 return DigitConsumeDecision::NegOverflow;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         m_num *= m_base;
 | |
|         m_num += positive() ? digit : -digit;
 | |
| 
 | |
|         return DigitConsumeDecision::Consumed;
 | |
|     }
 | |
| 
 | |
|     T number() const { return m_num; };
 | |
| 
 | |
| private:
 | |
|     bool can_append_digit(int digit)
 | |
|     {
 | |
|         const bool is_below_cutoff = positive() ? (m_num < m_cutoff) : (m_num > m_cutoff);
 | |
| 
 | |
|         if (is_below_cutoff) {
 | |
|             return true;
 | |
|         } else {
 | |
|             return m_num == m_cutoff && digit < m_max_digit_after_cutoff;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     bool positive() const
 | |
|     {
 | |
|         return m_sign != Sign::Negative;
 | |
|     }
 | |
| 
 | |
|     const T m_base;
 | |
|     T m_num;
 | |
|     T m_cutoff;
 | |
|     int m_max_digit_after_cutoff;
 | |
|     Sign m_sign;
 | |
| };
 | |
| 
 | |
| typedef NumParser<int, INT_MIN, INT_MAX> IntParser;
 | |
| typedef NumParser<long long, LONG_LONG_MIN, LONG_LONG_MAX> LongLongParser;
 | |
| typedef NumParser<unsigned long long, 0ULL, ULONG_LONG_MAX> ULongLongParser;
 | |
| 
 | |
| static bool is_either(char* str, int offset, char lower, char upper)
 | |
| {
 | |
|     char ch = *(str + offset);
 | |
|     return ch == lower || ch == upper;
 | |
| }
 | |
| 
 | |
| template<typename Callback>
 | |
| inline int generate_unique_filename(char* pattern, Callback callback)
 | |
| {
 | |
|     size_t length = strlen(pattern);
 | |
| 
 | |
|     if (length < 6 || memcmp(pattern + length - 6, "XXXXXX", 6))
 | |
|         return EINVAL;
 | |
| 
 | |
|     size_t start = length - 6;
 | |
| 
 | |
|     constexpr char random_characters[] = "abcdefghijklmnopqrstuvwxyz0123456789";
 | |
| 
 | |
|     for (int attempt = 0; attempt < 100; ++attempt) {
 | |
|         for (int i = 0; i < 6; ++i)
 | |
|             pattern[start + i] = random_characters[(arc4random() % (sizeof(random_characters) - 1))];
 | |
|         if (callback() == IterationDecision::Break)
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     return EEXIST;
 | |
| }
 | |
| 
 | |
| extern "C" {
 | |
| 
 | |
| long getauxval(long type)
 | |
| {
 | |
|     errno = 0;
 | |
|     char** env;
 | |
|     for (env = environ; *env; ++env) {
 | |
|     }
 | |
| 
 | |
|     auxv_t* auxvp = (auxv_t*)++env;
 | |
|     for (; auxvp->a_type != AT_NULL; ++auxvp) {
 | |
|         if (auxvp->a_type == type)
 | |
|             return auxvp->a_un.a_val;
 | |
|     }
 | |
|     errno = ENOENT;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void exit(int status)
 | |
| {
 | |
|     __cxa_finalize(nullptr);
 | |
| 
 | |
|     if (secure_getenv("LIBC_DUMP_MALLOC_STATS"))
 | |
|         serenity_dump_malloc_stats();
 | |
| 
 | |
|     extern void _fini();
 | |
|     _fini();
 | |
|     fflush(stdout);
 | |
|     fflush(stderr);
 | |
| 
 | |
| #ifndef _DYNAMIC_LOADER
 | |
|     __pthread_key_destroy_for_current_thread();
 | |
| #endif
 | |
| 
 | |
|     _exit(status);
 | |
| }
 | |
| 
 | |
| static void __atexit_to_cxa_atexit(void* handler)
 | |
| {
 | |
|     reinterpret_cast<void (*)()>(handler)();
 | |
| }
 | |
| 
 | |
| int atexit(void (*handler)())
 | |
| {
 | |
|     return __cxa_atexit(__atexit_to_cxa_atexit, (void*)handler, nullptr);
 | |
| }
 | |
| 
 | |
| void abort()
 | |
| {
 | |
|     // For starters, send ourselves a SIGABRT.
 | |
|     raise(SIGABRT);
 | |
|     // If that didn't kill us, try harder.
 | |
|     sigset_t set;
 | |
|     sigemptyset(&set);
 | |
|     sigaddset(&set, SIGABRT);
 | |
|     sigprocmask(SIG_UNBLOCK, &set, nullptr);
 | |
|     raise(SIGABRT);
 | |
|     _abort();
 | |
| }
 | |
| 
 | |
| static HashTable<const char*> s_malloced_environment_variables;
 | |
| 
 | |
| static void free_environment_variable_if_needed(const char* var)
 | |
| {
 | |
|     if (!s_malloced_environment_variables.contains(var))
 | |
|         return;
 | |
|     free(const_cast<char*>(var));
 | |
|     s_malloced_environment_variables.remove(var);
 | |
| }
 | |
| 
 | |
| char* getenv(const char* name)
 | |
| {
 | |
|     size_t vl = strlen(name);
 | |
|     for (size_t i = 0; environ[i]; ++i) {
 | |
|         const char* decl = environ[i];
 | |
|         char* eq = strchr(decl, '=');
 | |
|         if (!eq)
 | |
|             continue;
 | |
|         size_t varLength = eq - decl;
 | |
|         if (vl != varLength)
 | |
|             continue;
 | |
|         if (strncmp(decl, name, varLength) == 0) {
 | |
|             return eq + 1;
 | |
|         }
 | |
|     }
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| char* secure_getenv(const char* name)
 | |
| {
 | |
|     if (getauxval(AT_SECURE))
 | |
|         return nullptr;
 | |
|     return getenv(name);
 | |
| }
 | |
| 
 | |
| int unsetenv(const char* name)
 | |
| {
 | |
|     auto new_var_len = strlen(name);
 | |
|     size_t environ_size = 0;
 | |
|     int skip = -1;
 | |
| 
 | |
|     for (; environ[environ_size]; ++environ_size) {
 | |
|         char* old_var = environ[environ_size];
 | |
|         char* old_eq = strchr(old_var, '=');
 | |
|         VERIFY(old_eq);
 | |
|         size_t old_var_len = old_eq - old_var;
 | |
| 
 | |
|         if (new_var_len != old_var_len)
 | |
|             continue; // can't match
 | |
| 
 | |
|         if (strncmp(name, old_var, new_var_len) == 0)
 | |
|             skip = environ_size;
 | |
|     }
 | |
| 
 | |
|     if (skip == -1)
 | |
|         return 0; // not found: no failure.
 | |
| 
 | |
|     // Shuffle the existing array down by one.
 | |
|     memmove(&environ[skip], &environ[skip + 1], ((environ_size - 1) - skip) * sizeof(environ[0]));
 | |
|     environ[environ_size - 1] = nullptr;
 | |
| 
 | |
|     free_environment_variable_if_needed(name);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int clearenv()
 | |
| {
 | |
|     size_t environ_size = 0;
 | |
|     for (; environ[environ_size]; ++environ_size) {
 | |
|         environ[environ_size] = NULL;
 | |
|     }
 | |
|     *environ = NULL;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int setenv(const char* name, const char* value, int overwrite)
 | |
| {
 | |
|     if (!overwrite && getenv(name))
 | |
|         return 0;
 | |
|     auto length = strlen(name) + strlen(value) + 2;
 | |
|     auto* var = (char*)malloc(length);
 | |
|     snprintf(var, length, "%s=%s", name, value);
 | |
|     s_malloced_environment_variables.set(var);
 | |
|     return putenv(var);
 | |
| }
 | |
| 
 | |
| int putenv(char* new_var)
 | |
| {
 | |
|     char* new_eq = strchr(new_var, '=');
 | |
| 
 | |
|     if (!new_eq)
 | |
|         return unsetenv(new_var);
 | |
| 
 | |
|     auto new_var_len = new_eq - new_var;
 | |
|     int environ_size = 0;
 | |
|     for (; environ[environ_size]; ++environ_size) {
 | |
|         char* old_var = environ[environ_size];
 | |
|         char* old_eq = strchr(old_var, '=');
 | |
|         VERIFY(old_eq);
 | |
|         auto old_var_len = old_eq - old_var;
 | |
| 
 | |
|         if (new_var_len != old_var_len)
 | |
|             continue; // can't match
 | |
| 
 | |
|         if (strncmp(new_var, old_var, new_var_len) == 0) {
 | |
|             free_environment_variable_if_needed(old_var);
 | |
|             environ[environ_size] = new_var;
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // At this point, we need to append the new var.
 | |
|     // 2 here: one for the new var, one for the sentinel value.
 | |
|     char** new_environ = (char**)malloc((environ_size + 2) * sizeof(char*));
 | |
|     if (new_environ == nullptr) {
 | |
|         errno = ENOMEM;
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; environ[i]; ++i) {
 | |
|         new_environ[i] = environ[i];
 | |
|     }
 | |
| 
 | |
|     new_environ[environ_size] = new_var;
 | |
|     new_environ[environ_size + 1] = nullptr;
 | |
| 
 | |
|     // swap new and old
 | |
|     // note that the initial environ is not heap allocated!
 | |
|     extern bool __environ_is_malloced;
 | |
|     if (__environ_is_malloced)
 | |
|         free(environ);
 | |
|     __environ_is_malloced = true;
 | |
|     environ = new_environ;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const char* __progname = NULL;
 | |
| 
 | |
| const char* getprogname()
 | |
| {
 | |
|     return __progname;
 | |
| }
 | |
| 
 | |
| void setprogname(const char* progname)
 | |
| {
 | |
|     for (int i = strlen(progname) - 1; i >= 0; i--) {
 | |
|         if (progname[i] == '/') {
 | |
|             __progname = progname + i + 1;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     __progname = progname;
 | |
| }
 | |
| 
 | |
| double strtod(const char* str, char** endptr)
 | |
| {
 | |
|     // Parse spaces, sign, and base
 | |
|     char* parse_ptr = const_cast<char*>(str);
 | |
|     strtons(parse_ptr, &parse_ptr);
 | |
|     const Sign sign = strtosign(parse_ptr, &parse_ptr);
 | |
| 
 | |
|     // Parse inf/nan, if applicable.
 | |
|     if (is_either(parse_ptr, 0, 'i', 'I')) {
 | |
|         if (is_either(parse_ptr, 1, 'n', 'N')) {
 | |
|             if (is_either(parse_ptr, 2, 'f', 'F')) {
 | |
|                 parse_ptr += 3;
 | |
|                 if (is_either(parse_ptr, 0, 'i', 'I')) {
 | |
|                     if (is_either(parse_ptr, 1, 'n', 'N')) {
 | |
|                         if (is_either(parse_ptr, 2, 'i', 'I')) {
 | |
|                             if (is_either(parse_ptr, 3, 't', 'T')) {
 | |
|                                 if (is_either(parse_ptr, 4, 'y', 'Y')) {
 | |
|                                     parse_ptr += 5;
 | |
|                                 }
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 if (endptr)
 | |
|                     *endptr = parse_ptr;
 | |
|                 // Don't set errno to ERANGE here:
 | |
|                 // The caller may want to distinguish between "input is
 | |
|                 // literal infinity" and "input is not literal infinity
 | |
|                 // but did not fit into double".
 | |
|                 if (sign != Sign::Negative) {
 | |
|                     return __builtin_huge_val();
 | |
|                 } else {
 | |
|                     return -__builtin_huge_val();
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (is_either(parse_ptr, 0, 'n', 'N')) {
 | |
|         if (is_either(parse_ptr, 1, 'a', 'A')) {
 | |
|             if (is_either(parse_ptr, 2, 'n', 'N')) {
 | |
|                 if (endptr)
 | |
|                     *endptr = parse_ptr + 3;
 | |
|                 errno = ERANGE;
 | |
|                 if (sign != Sign::Negative) {
 | |
|                     return __builtin_nan("");
 | |
|                 } else {
 | |
|                     return -__builtin_nan("");
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Parse base
 | |
|     char exponent_lower;
 | |
|     char exponent_upper;
 | |
|     int base = 10;
 | |
|     if (*parse_ptr == '0') {
 | |
|         const char base_ch = *(parse_ptr + 1);
 | |
|         if (base_ch == 'x' || base_ch == 'X') {
 | |
|             base = 16;
 | |
|             parse_ptr += 2;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (base == 10) {
 | |
|         exponent_lower = 'e';
 | |
|         exponent_upper = 'E';
 | |
|     } else {
 | |
|         exponent_lower = 'p';
 | |
|         exponent_upper = 'P';
 | |
|     }
 | |
| 
 | |
|     // Parse "digits", possibly keeping track of the exponent offset.
 | |
|     // We parse the most significant digits and the position in the
 | |
|     // base-`base` representation separately. This allows us to handle
 | |
|     // numbers like `0.0000000000000000000000000000000000001234` or
 | |
|     // `1234567890123456789012345678901234567890` with ease.
 | |
|     LongLongParser digits { sign, base };
 | |
|     bool digits_usable = false;
 | |
|     bool should_continue = true;
 | |
|     bool digits_overflow = false;
 | |
|     bool after_decimal = false;
 | |
|     int exponent = 0;
 | |
|     do {
 | |
|         if (!after_decimal && *parse_ptr == '.') {
 | |
|             after_decimal = true;
 | |
|             parse_ptr += 1;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         bool is_a_digit;
 | |
|         if (digits_overflow) {
 | |
|             is_a_digit = digits.parse_digit(*parse_ptr) != -1;
 | |
|         } else {
 | |
|             DigitConsumeDecision decision = digits.consume(*parse_ptr);
 | |
|             switch (decision) {
 | |
|             case DigitConsumeDecision::Consumed:
 | |
|                 is_a_digit = true;
 | |
|                 // The very first actual digit must pass here:
 | |
|                 digits_usable = true;
 | |
|                 break;
 | |
|             case DigitConsumeDecision::PosOverflow:
 | |
|             case DigitConsumeDecision::NegOverflow:
 | |
|                 is_a_digit = true;
 | |
|                 digits_overflow = true;
 | |
|                 break;
 | |
|             case DigitConsumeDecision::Invalid:
 | |
|                 is_a_digit = false;
 | |
|                 break;
 | |
|             default:
 | |
|                 VERIFY_NOT_REACHED();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (is_a_digit) {
 | |
|             exponent -= after_decimal ? 1 : 0;
 | |
|             exponent += digits_overflow ? 1 : 0;
 | |
|         }
 | |
| 
 | |
|         should_continue = is_a_digit;
 | |
|         parse_ptr += should_continue;
 | |
|     } while (should_continue);
 | |
| 
 | |
|     if (!digits_usable) {
 | |
|         // No actual number value available.
 | |
|         if (endptr)
 | |
|             *endptr = const_cast<char*>(str);
 | |
|         return 0.0;
 | |
|     }
 | |
| 
 | |
|     // Parse exponent.
 | |
|     // We already know the next character is not a digit in the current base,
 | |
|     // nor a valid decimal point. Check whether it's an exponent sign.
 | |
|     if (*parse_ptr == exponent_lower || *parse_ptr == exponent_upper) {
 | |
|         // Need to keep the old parse_ptr around, in case of rollback.
 | |
|         char* old_parse_ptr = parse_ptr;
 | |
|         parse_ptr += 1;
 | |
| 
 | |
|         // Can't use atol or strtol here: Must accept excessive exponents,
 | |
|         // even exponents >64 bits.
 | |
|         Sign exponent_sign = strtosign(parse_ptr, &parse_ptr);
 | |
|         IntParser exponent_parser { exponent_sign, base };
 | |
|         bool exponent_usable = false;
 | |
|         bool exponent_overflow = false;
 | |
|         should_continue = true;
 | |
|         do {
 | |
|             bool is_a_digit;
 | |
|             if (exponent_overflow) {
 | |
|                 is_a_digit = exponent_parser.parse_digit(*parse_ptr) != -1;
 | |
|             } else {
 | |
|                 DigitConsumeDecision decision = exponent_parser.consume(*parse_ptr);
 | |
|                 switch (decision) {
 | |
|                 case DigitConsumeDecision::Consumed:
 | |
|                     is_a_digit = true;
 | |
|                     // The very first actual digit must pass here:
 | |
|                     exponent_usable = true;
 | |
|                     break;
 | |
|                 case DigitConsumeDecision::PosOverflow:
 | |
|                 case DigitConsumeDecision::NegOverflow:
 | |
|                     is_a_digit = true;
 | |
|                     exponent_overflow = true;
 | |
|                     break;
 | |
|                 case DigitConsumeDecision::Invalid:
 | |
|                     is_a_digit = false;
 | |
|                     break;
 | |
|                 default:
 | |
|                     VERIFY_NOT_REACHED();
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             should_continue = is_a_digit;
 | |
|             parse_ptr += should_continue;
 | |
|         } while (should_continue);
 | |
| 
 | |
|         if (!exponent_usable) {
 | |
|             parse_ptr = old_parse_ptr;
 | |
|         } else if (exponent_overflow) {
 | |
|             // Technically this is wrong. If someone gives us 5GB of digits,
 | |
|             // and then an exponent of -5_000_000_000, the resulting exponent
 | |
|             // should be around 0.
 | |
|             // However, I think it's safe to assume that we never have to deal
 | |
|             // with that many digits anyway.
 | |
|             if (sign != Sign::Negative) {
 | |
|                 exponent = INT_MIN;
 | |
|             } else {
 | |
|                 exponent = INT_MAX;
 | |
|             }
 | |
|         } else {
 | |
|             // Literal exponent is usable and fits in an int.
 | |
|             // However, `exponent + exponent_parser.number()` might overflow an int.
 | |
|             // This would result in the wrong sign of the exponent!
 | |
|             long long new_exponent = static_cast<long long>(exponent) + static_cast<long long>(exponent_parser.number());
 | |
|             if (new_exponent < INT_MIN) {
 | |
|                 exponent = INT_MIN;
 | |
|             } else if (new_exponent > INT_MAX) {
 | |
|                 exponent = INT_MAX;
 | |
|             } else {
 | |
|                 exponent = static_cast<int>(new_exponent);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Parsing finished. now we only have to compute the result.
 | |
|     if (endptr)
 | |
|         *endptr = const_cast<char*>(parse_ptr);
 | |
| 
 | |
|     // If `digits` is zero, we don't even have to look at `exponent`.
 | |
|     if (digits.number() == 0) {
 | |
|         if (sign != Sign::Negative) {
 | |
|             return 0.0;
 | |
|         } else {
 | |
|             return -0.0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Deal with extreme exponents.
 | |
|     // The smallest normal is 2^-1022.
 | |
|     // The smallest denormal is 2^-1074.
 | |
|     // The largest number in `digits` is 2^63 - 1.
 | |
|     // Therefore, if "base^exponent" is smaller than 2^-(1074+63), the result is 0.0 anyway.
 | |
|     // This threshold is roughly 5.3566 * 10^-343.
 | |
|     // So if the resulting exponent is -344 or lower (closer to -inf),
 | |
|     // the result is 0.0 anyway.
 | |
|     // We only need to avoid false positives, so we can ignore base 16.
 | |
|     if (exponent <= -344) {
 | |
|         errno = ERANGE;
 | |
|         // Definitely can't be represented more precisely.
 | |
|         // I lied, sometimes the result is +0.0, and sometimes -0.0.
 | |
|         if (sign != Sign::Negative) {
 | |
|             return 0.0;
 | |
|         } else {
 | |
|             return -0.0;
 | |
|         }
 | |
|     }
 | |
|     // The largest normal is 2^+1024-eps.
 | |
|     // The smallest number in `digits` is 1.
 | |
|     // Therefore, if "base^exponent" is 2^+1024, the result is INF anyway.
 | |
|     // This threshold is roughly 1.7977 * 10^-308.
 | |
|     // So if the resulting exponent is +309 or higher,
 | |
|     // the result is INF anyway.
 | |
|     // We only need to avoid false positives, so we can ignore base 16.
 | |
|     if (exponent >= 309) {
 | |
|         errno = ERANGE;
 | |
|         // Definitely can't be represented more precisely.
 | |
|         // I lied, sometimes the result is +INF, and sometimes -INF.
 | |
|         if (sign != Sign::Negative) {
 | |
|             return __builtin_huge_val();
 | |
|         } else {
 | |
|             return -__builtin_huge_val();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // TODO: If `exponent` is large, this could be made faster.
 | |
|     double value = digits.number();
 | |
|     double scale = 1;
 | |
| 
 | |
|     if (exponent < 0) {
 | |
|         exponent = -exponent;
 | |
|         for (int i = 0; i < min(exponent, 300); ++i) {
 | |
|             scale *= base;
 | |
|         }
 | |
|         value /= scale;
 | |
|         for (int i = 300; i < exponent; i++) {
 | |
|             value /= base;
 | |
|         }
 | |
|         if (value == -0.0 || value == +0.0) {
 | |
|             errno = ERANGE;
 | |
|         }
 | |
|     } else if (exponent > 0) {
 | |
|         for (int i = 0; i < exponent; ++i) {
 | |
|             scale *= base;
 | |
|         }
 | |
|         value *= scale;
 | |
|         if (value == -__builtin_huge_val() || value == +__builtin_huge_val()) {
 | |
|             errno = ERANGE;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| long double strtold(const char* str, char** endptr)
 | |
| {
 | |
|     assert(sizeof(double) == sizeof(long double));
 | |
|     return strtod(str, endptr);
 | |
| }
 | |
| 
 | |
| float strtof(const char* str, char** endptr)
 | |
| {
 | |
|     return strtod(str, endptr);
 | |
| }
 | |
| 
 | |
| double atof(const char* str)
 | |
| {
 | |
|     return strtod(str, nullptr);
 | |
| }
 | |
| 
 | |
| int atoi(const char* str)
 | |
| {
 | |
|     long value = strtol(str, nullptr, 10);
 | |
|     if (value > INT_MAX) {
 | |
|         return INT_MAX;
 | |
|     }
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| long atol(const char* str)
 | |
| {
 | |
|     return strtol(str, nullptr, 10);
 | |
| }
 | |
| 
 | |
| long long atoll(const char* str)
 | |
| {
 | |
|     return strtoll(str, nullptr, 10);
 | |
| }
 | |
| 
 | |
| static char ptsname_buf[32];
 | |
| char* ptsname(int fd)
 | |
| {
 | |
|     if (ptsname_r(fd, ptsname_buf, sizeof(ptsname_buf)) < 0)
 | |
|         return nullptr;
 | |
|     return ptsname_buf;
 | |
| }
 | |
| 
 | |
| int ptsname_r(int fd, char* buffer, size_t size)
 | |
| {
 | |
|     int rc = syscall(SC_ptsname, fd, buffer, size);
 | |
|     __RETURN_WITH_ERRNO(rc, rc, -1);
 | |
| }
 | |
| 
 | |
| static unsigned long s_next_rand = 1;
 | |
| 
 | |
| int rand()
 | |
| {
 | |
|     s_next_rand = s_next_rand * 1103515245 + 12345;
 | |
|     return ((unsigned)(s_next_rand / ((RAND_MAX + 1) * 2)) % (RAND_MAX + 1));
 | |
| }
 | |
| 
 | |
| void srand(unsigned seed)
 | |
| {
 | |
|     s_next_rand = seed;
 | |
| }
 | |
| 
 | |
| int abs(int i)
 | |
| {
 | |
|     return i < 0 ? -i : i;
 | |
| }
 | |
| 
 | |
| long long int llabs(long long int i)
 | |
| {
 | |
|     return i < 0 ? -i : i;
 | |
| }
 | |
| 
 | |
| long int random()
 | |
| {
 | |
|     return rand();
 | |
| }
 | |
| 
 | |
| void srandom(unsigned seed)
 | |
| {
 | |
|     srand(seed);
 | |
| }
 | |
| 
 | |
| int system(const char* command)
 | |
| {
 | |
|     if (!command)
 | |
|         return 1;
 | |
| 
 | |
|     pid_t child;
 | |
|     const char* argv[] = { "sh", "-c", command, nullptr };
 | |
|     if ((errno = posix_spawn(&child, "/bin/sh", nullptr, nullptr, const_cast<char**>(argv), environ)))
 | |
|         return -1;
 | |
|     int wstatus;
 | |
|     waitpid(child, &wstatus, 0);
 | |
|     return WEXITSTATUS(wstatus);
 | |
| }
 | |
| 
 | |
| char* mktemp(char* pattern)
 | |
| {
 | |
|     auto error = generate_unique_filename(pattern, [&] {
 | |
|         struct stat st;
 | |
|         int rc = lstat(pattern, &st);
 | |
|         if (rc < 0 && errno == ENOENT)
 | |
|             return IterationDecision::Break;
 | |
|         return IterationDecision::Continue;
 | |
|     });
 | |
|     if (error) {
 | |
|         pattern[0] = '\0';
 | |
|         errno = error;
 | |
|     }
 | |
|     return pattern;
 | |
| }
 | |
| 
 | |
| int mkstemp(char* pattern)
 | |
| {
 | |
|     int fd = -1;
 | |
|     auto error = generate_unique_filename(pattern, [&] {
 | |
|         fd = open(pattern, O_RDWR | O_CREAT | O_EXCL, S_IRUSR | S_IWUSR); // I'm using the flags I saw glibc using.
 | |
|         if (fd >= 0)
 | |
|             return IterationDecision::Break;
 | |
|         return IterationDecision::Continue;
 | |
|     });
 | |
|     if (error) {
 | |
|         errno = error;
 | |
|         return -1;
 | |
|     }
 | |
|     return fd;
 | |
| }
 | |
| 
 | |
| char* mkdtemp(char* pattern)
 | |
| {
 | |
|     auto error = generate_unique_filename(pattern, [&] {
 | |
|         if (mkdir(pattern, 0700) == 0)
 | |
|             return IterationDecision::Break;
 | |
|         return IterationDecision::Continue;
 | |
|     });
 | |
|     if (error) {
 | |
|         errno = error;
 | |
|         return nullptr;
 | |
|     }
 | |
|     return pattern;
 | |
| }
 | |
| 
 | |
| void* bsearch(const void* key, const void* base, size_t nmemb, size_t size, int (*compar)(const void*, const void*))
 | |
| {
 | |
|     char* start = static_cast<char*>(const_cast<void*>(base));
 | |
|     while (nmemb > 0) {
 | |
|         char* middle_memb = start + (nmemb / 2) * size;
 | |
|         int comparison = compar(key, middle_memb);
 | |
|         if (comparison == 0)
 | |
|             return middle_memb;
 | |
|         else if (comparison > 0) {
 | |
|             start = middle_memb + size;
 | |
|             --nmemb;
 | |
|         }
 | |
|         nmemb /= 2;
 | |
|     }
 | |
| 
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| div_t div(int numerator, int denominator)
 | |
| {
 | |
|     div_t result;
 | |
|     result.quot = numerator / denominator;
 | |
|     result.rem = numerator % denominator;
 | |
| 
 | |
|     if (numerator >= 0 && result.rem < 0) {
 | |
|         result.quot++;
 | |
|         result.rem -= denominator;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| ldiv_t ldiv(long numerator, long denominator)
 | |
| {
 | |
|     ldiv_t result;
 | |
|     result.quot = numerator / denominator;
 | |
|     result.rem = numerator % denominator;
 | |
| 
 | |
|     if (numerator >= 0 && result.rem < 0) {
 | |
|         result.quot++;
 | |
|         result.rem -= denominator;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| lldiv_t lldiv(long long numerator, long long denominator)
 | |
| {
 | |
|     lldiv_t result;
 | |
|     result.quot = numerator / denominator;
 | |
|     result.rem = numerator % denominator;
 | |
| 
 | |
|     if (numerator >= 0 && result.rem < 0) {
 | |
|         result.quot++;
 | |
|         result.rem -= denominator;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| int mblen(char const* s, size_t n)
 | |
| {
 | |
|     // FIXME: Implement locale support
 | |
|     if (!s)
 | |
|         return 0;
 | |
|     return (MB_CUR_MAX > n) ? n : MB_CUR_MAX;
 | |
| }
 | |
| 
 | |
| size_t mbstowcs(wchar_t*, const char*, size_t)
 | |
| {
 | |
|     dbgln("FIXME: Implement mbstowcs()");
 | |
|     TODO();
 | |
| }
 | |
| 
 | |
| int mbtowc(wchar_t* wch, const char* data, [[maybe_unused]] size_t data_size)
 | |
| {
 | |
|     // FIXME: This needs a real implementation.
 | |
|     if (wch && data) {
 | |
|         *wch = *data;
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (!wch && data) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int wctomb(char*, wchar_t)
 | |
| {
 | |
|     dbgln("FIXME: Implement wctomb()");
 | |
|     TODO();
 | |
| }
 | |
| 
 | |
| size_t wcstombs(char* dest, const wchar_t* src, size_t max)
 | |
| {
 | |
|     char* original_dest = dest;
 | |
|     while ((size_t)(dest - original_dest) < max) {
 | |
|         StringView v { (const char*)src, sizeof(wchar_t) };
 | |
| 
 | |
|         // FIXME: dependent on locale, for now utf-8 is supported.
 | |
|         Utf8View utf8 { v };
 | |
|         if (*utf8.begin() == '\0') {
 | |
|             *dest = '\0';
 | |
|             return (size_t)(dest - original_dest); // Exclude null character in returned size
 | |
|         }
 | |
| 
 | |
|         for (auto byte : utf8) {
 | |
|             if (byte != '\0')
 | |
|                 *dest++ = byte;
 | |
|         }
 | |
|         ++src;
 | |
|     }
 | |
|     return max;
 | |
| }
 | |
| 
 | |
| long strtol(const char* str, char** endptr, int base)
 | |
| {
 | |
|     long long value = strtoll(str, endptr, base);
 | |
|     if (value < LONG_MIN) {
 | |
|         errno = ERANGE;
 | |
|         return LONG_MIN;
 | |
|     } else if (value > LONG_MAX) {
 | |
|         errno = ERANGE;
 | |
|         return LONG_MAX;
 | |
|     }
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| unsigned long strtoul(const char* str, char** endptr, int base)
 | |
| {
 | |
|     unsigned long long value = strtoull(str, endptr, base);
 | |
|     if (value > ULONG_MAX) {
 | |
|         errno = ERANGE;
 | |
|         return ULONG_MAX;
 | |
|     }
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| long long strtoll(const char* str, char** endptr, int base)
 | |
| {
 | |
|     // Parse spaces and sign
 | |
|     char* parse_ptr = const_cast<char*>(str);
 | |
|     strtons(parse_ptr, &parse_ptr);
 | |
|     const Sign sign = strtosign(parse_ptr, &parse_ptr);
 | |
| 
 | |
|     // Parse base
 | |
|     if (base == 0) {
 | |
|         if (*parse_ptr == '0') {
 | |
|             if (tolower(*(parse_ptr + 1)) == 'x') {
 | |
|                 base = 16;
 | |
|                 parse_ptr += 2;
 | |
|             } else {
 | |
|                 base = 8;
 | |
|             }
 | |
|         } else {
 | |
|             base = 10;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Parse actual digits.
 | |
|     LongLongParser digits { sign, base };
 | |
|     bool digits_usable = false;
 | |
|     bool should_continue = true;
 | |
|     bool overflow = false;
 | |
|     do {
 | |
|         bool is_a_digit;
 | |
|         if (overflow) {
 | |
|             is_a_digit = digits.parse_digit(*parse_ptr) >= 0;
 | |
|         } else {
 | |
|             DigitConsumeDecision decision = digits.consume(*parse_ptr);
 | |
|             switch (decision) {
 | |
|             case DigitConsumeDecision::Consumed:
 | |
|                 is_a_digit = true;
 | |
|                 // The very first actual digit must pass here:
 | |
|                 digits_usable = true;
 | |
|                 break;
 | |
|             case DigitConsumeDecision::PosOverflow:
 | |
|             case DigitConsumeDecision::NegOverflow:
 | |
|                 is_a_digit = true;
 | |
|                 overflow = true;
 | |
|                 break;
 | |
|             case DigitConsumeDecision::Invalid:
 | |
|                 is_a_digit = false;
 | |
|                 break;
 | |
|             default:
 | |
|                 VERIFY_NOT_REACHED();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         should_continue = is_a_digit;
 | |
|         parse_ptr += should_continue;
 | |
|     } while (should_continue);
 | |
| 
 | |
|     if (!digits_usable) {
 | |
|         // No actual number value available.
 | |
|         if (endptr)
 | |
|             *endptr = const_cast<char*>(str);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (endptr)
 | |
|         *endptr = parse_ptr;
 | |
| 
 | |
|     if (overflow) {
 | |
|         errno = ERANGE;
 | |
|         if (sign != Sign::Negative) {
 | |
|             return LONG_LONG_MAX;
 | |
|         } else {
 | |
|             return LONG_LONG_MIN;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return digits.number();
 | |
| }
 | |
| 
 | |
| unsigned long long strtoull(const char* str, char** endptr, int base)
 | |
| {
 | |
|     // Parse spaces and sign
 | |
|     char* parse_ptr = const_cast<char*>(str);
 | |
|     strtons(parse_ptr, &parse_ptr);
 | |
| 
 | |
|     if (base == 16) {
 | |
|         // Dr. POSIX: "If the value of base is 16, the characters 0x or 0X may optionally precede
 | |
|         //             the sequence of letters and digits, following the sign if present."
 | |
|         if (*parse_ptr == '0') {
 | |
|             if (tolower(*(parse_ptr + 1)) == 'x')
 | |
|                 parse_ptr += 2;
 | |
|         }
 | |
|     }
 | |
|     // Parse base
 | |
|     if (base == 0) {
 | |
|         if (*parse_ptr == '0') {
 | |
|             if (tolower(*(parse_ptr + 1)) == 'x') {
 | |
|                 base = 16;
 | |
|                 parse_ptr += 2;
 | |
|             } else {
 | |
|                 base = 8;
 | |
|             }
 | |
|         } else {
 | |
|             base = 10;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Parse actual digits.
 | |
|     ULongLongParser digits { Sign::Positive, base };
 | |
|     bool digits_usable = false;
 | |
|     bool should_continue = true;
 | |
|     bool overflow = false;
 | |
|     do {
 | |
|         bool is_a_digit;
 | |
|         if (overflow) {
 | |
|             is_a_digit = digits.parse_digit(*parse_ptr) >= 0;
 | |
|         } else {
 | |
|             DigitConsumeDecision decision = digits.consume(*parse_ptr);
 | |
|             switch (decision) {
 | |
|             case DigitConsumeDecision::Consumed:
 | |
|                 is_a_digit = true;
 | |
|                 // The very first actual digit must pass here:
 | |
|                 digits_usable = true;
 | |
|                 break;
 | |
|             case DigitConsumeDecision::PosOverflow:
 | |
|             case DigitConsumeDecision::NegOverflow:
 | |
|                 is_a_digit = true;
 | |
|                 overflow = true;
 | |
|                 break;
 | |
|             case DigitConsumeDecision::Invalid:
 | |
|                 is_a_digit = false;
 | |
|                 break;
 | |
|             default:
 | |
|                 VERIFY_NOT_REACHED();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         should_continue = is_a_digit;
 | |
|         parse_ptr += should_continue;
 | |
|     } while (should_continue);
 | |
| 
 | |
|     if (!digits_usable) {
 | |
|         // No actual number value available.
 | |
|         if (endptr)
 | |
|             *endptr = const_cast<char*>(str);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (endptr)
 | |
|         *endptr = parse_ptr;
 | |
| 
 | |
|     if (overflow) {
 | |
|         errno = ERANGE;
 | |
|         return LONG_LONG_MAX;
 | |
|     }
 | |
| 
 | |
|     return digits.number();
 | |
| }
 | |
| 
 | |
| // Serenity's PRNG is not cryptographically secure. Do not rely on this for
 | |
| // any real crypto! These functions (for now) are for compatibility.
 | |
| // TODO: In the future, rand can be made deterministic and this not.
 | |
| uint32_t arc4random(void)
 | |
| {
 | |
|     uint32_t buf;
 | |
|     syscall(SC_getrandom, &buf, sizeof(buf), 0);
 | |
|     return buf;
 | |
| }
 | |
| 
 | |
| void arc4random_buf(void* buffer, size_t buffer_size)
 | |
| {
 | |
|     // arc4random_buf should never fail, but user supplied buffers could fail.
 | |
|     // However, if the user passes a garbage buffer, that's on them.
 | |
|     syscall(SC_getrandom, buffer, buffer_size, 0);
 | |
| }
 | |
| 
 | |
| uint32_t arc4random_uniform(uint32_t max_bounds)
 | |
| {
 | |
|     return AK::get_random_uniform(max_bounds);
 | |
| }
 | |
| 
 | |
| char* realpath(const char* pathname, char* buffer)
 | |
| {
 | |
|     if (!pathname) {
 | |
|         errno = EFAULT;
 | |
|         return nullptr;
 | |
|     }
 | |
|     size_t size = PATH_MAX;
 | |
|     bool self_allocated = false;
 | |
|     if (buffer == nullptr) {
 | |
|         // Since we self-allocate, try to sneakily use a smaller buffer instead, in an attempt to use less memory.
 | |
|         size = 64;
 | |
|         buffer = (char*)malloc(size);
 | |
|         self_allocated = true;
 | |
|     }
 | |
|     Syscall::SC_realpath_params params { { pathname, strlen(pathname) }, { buffer, size } };
 | |
|     int rc = syscall(SC_realpath, ¶ms);
 | |
|     if (rc < 0) {
 | |
|         if (self_allocated)
 | |
|             free(buffer);
 | |
|         errno = -rc;
 | |
|         return nullptr;
 | |
|     }
 | |
|     if (self_allocated && static_cast<size_t>(rc) > size) {
 | |
|         // There was silent truncation, *and* we can simply retry without the caller noticing.
 | |
|         free(buffer);
 | |
|         size = static_cast<size_t>(rc);
 | |
|         buffer = (char*)malloc(size);
 | |
|         params.buffer = { buffer, size };
 | |
|         rc = syscall(SC_realpath, ¶ms);
 | |
|         if (rc < 0) {
 | |
|             // Can only happen if we lose a race. Let's pretend we lost the race in the first place.
 | |
|             free(buffer);
 | |
|             errno = -rc;
 | |
|             return nullptr;
 | |
|         }
 | |
|         size_t new_size = static_cast<size_t>(rc);
 | |
|         if (new_size < size) {
 | |
|             // If we're here, the symlink has become longer while we were looking at it.
 | |
|             // There's not much we can do, unless we want to loop endlessly
 | |
|             // in this case. Let's leave it up to the caller whether to loop.
 | |
|             free(buffer);
 | |
|             errno = EAGAIN;
 | |
|             return nullptr;
 | |
|         }
 | |
|     }
 | |
|     errno = 0;
 | |
|     return buffer;
 | |
| }
 | |
| 
 | |
| int posix_openpt(int flags)
 | |
| {
 | |
|     if (flags & ~(O_RDWR | O_NOCTTY | O_CLOEXEC)) {
 | |
|         errno = EINVAL;
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     return open("/dev/ptmx", flags);
 | |
| }
 | |
| 
 | |
| int grantpt([[maybe_unused]] int fd)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int unlockpt([[maybe_unused]] int fd)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| }
 | |
| 
 | |
| void _Exit(int status)
 | |
| {
 | |
|     _exit(status);
 | |
| }
 |