mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 16:22:43 +00:00 
			
		
		
		
	 ea85c99a01
			
		
	
	
		ea85c99a01
		
	
	
	
	
		
			
			Due to the way JPEG XL encodes its lossless images, it is sometimes interesting to embed a large image and crop the result at the end. This patch adds the functionality to crop a frame. Note that JPEG XL supports image composition (almost like layers in image editing software programs) and I tried to make these changes be a step toward image composing. It's a small step as we are still unable to read multiple frames, and we only support the `kReplace` blending mode.
		
			
				
	
	
		
			2731 lines
		
	
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2731 lines
		
	
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2023, Lucas Chollet <lucas.chollet@serenityos.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/BitStream.h>
 | |
| #include <AK/Endian.h>
 | |
| #include <AK/FixedArray.h>
 | |
| #include <AK/String.h>
 | |
| #include <LibCompress/Brotli.h>
 | |
| #include <LibGfx/ImageFormats/ExifOrientedBitmap.h>
 | |
| #include <LibGfx/ImageFormats/JPEGXLLoader.h>
 | |
| 
 | |
| namespace Gfx {
 | |
| 
 | |
| /// 4.2 - Functions
 | |
| static ALWAYS_INLINE i32 unpack_signed(u32 u)
 | |
| {
 | |
|     if (u % 2 == 0)
 | |
|         return static_cast<i32>(u / 2);
 | |
|     return -static_cast<i32>((u + 1) / 2);
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// B.2 - Field types
 | |
| // This is defined as a macro in order to get lazy-evaluated parameter
 | |
| // Note that the lambda will capture your context by reference.
 | |
| #define U32(d0, d1, d2, d3)                            \
 | |
|     ({                                                 \
 | |
|         u8 const selector = TRY(stream.read_bits(2));  \
 | |
|         auto value = [&, selector]() -> ErrorOr<u32> { \
 | |
|             if (selector == 0)                         \
 | |
|                 return (d0);                           \
 | |
|             if (selector == 1)                         \
 | |
|                 return (d1);                           \
 | |
|             if (selector == 2)                         \
 | |
|                 return (d2);                           \
 | |
|             if (selector == 3)                         \
 | |
|                 return (d3);                           \
 | |
|             VERIFY_NOT_REACHED();                      \
 | |
|         }();                                           \
 | |
|         TRY(value);                                    \
 | |
|     })
 | |
| 
 | |
| static ALWAYS_INLINE ErrorOr<u64> U64(LittleEndianInputBitStream& stream)
 | |
| {
 | |
|     u8 const selector = TRY(stream.read_bits(2));
 | |
|     if (selector == 0)
 | |
|         return 0;
 | |
|     if (selector == 1)
 | |
|         return 1 + TRY(stream.read_bits(4));
 | |
|     if (selector == 2)
 | |
|         return 17 + TRY(stream.read_bits(8));
 | |
| 
 | |
|     VERIFY(selector == 3);
 | |
| 
 | |
|     u64 value = TRY(stream.read_bits(12));
 | |
|     u8 shift = 12;
 | |
|     while (TRY(stream.read_bits(1)) == 1) {
 | |
|         if (shift == 60) {
 | |
|             value += TRY(stream.read_bits(4)) << shift;
 | |
|             break;
 | |
|         }
 | |
|         value += TRY(stream.read_bits(8)) << shift;
 | |
|         shift += 8;
 | |
|     }
 | |
| 
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| template<Enum E>
 | |
| ErrorOr<E> read_enum(LittleEndianInputBitStream& stream)
 | |
| {
 | |
|     return static_cast<E>(U32(0, 1, 2 + TRY(stream.read_bits(4)), 18 + TRY(stream.read_bits(6))));
 | |
| }
 | |
| 
 | |
| // This is not specified
 | |
| static ErrorOr<String> read_string(LittleEndianInputBitStream& stream)
 | |
| {
 | |
|     auto const name_length = U32(0, TRY(stream.read_bits(4)), 16 + TRY(stream.read_bits(5)), 48 + TRY(stream.read_bits(10)));
 | |
|     auto string_buffer = TRY(FixedArray<u8>::create(name_length));
 | |
|     TRY(stream.read_until_filled(string_buffer.span()));
 | |
|     return String::from_utf8(StringView { string_buffer.span() });
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// D.2 - Image dimensions
 | |
| struct SizeHeader {
 | |
|     u32 height {};
 | |
|     u32 width {};
 | |
| };
 | |
| 
 | |
| static u32 aspect_ratio(u32 height, u32 ratio)
 | |
| {
 | |
|     if (ratio == 1)
 | |
|         return height;
 | |
|     if (ratio == 2)
 | |
|         return height * 12 / 10;
 | |
|     if (ratio == 3)
 | |
|         return height * 4 / 3;
 | |
|     if (ratio == 4)
 | |
|         return height * 3 / 2;
 | |
|     if (ratio == 5)
 | |
|         return height * 16 / 9;
 | |
|     if (ratio == 6)
 | |
|         return height * 5 / 4;
 | |
|     if (ratio == 7)
 | |
|         return height * 2 / 1;
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| static ErrorOr<SizeHeader> read_size_header(LittleEndianInputBitStream& stream)
 | |
| {
 | |
|     SizeHeader size {};
 | |
|     auto const div8 = TRY(stream.read_bit());
 | |
| 
 | |
|     if (div8) {
 | |
|         auto const h_div8 = 1 + TRY(stream.read_bits(5));
 | |
|         size.height = 8 * h_div8;
 | |
|     } else {
 | |
|         size.height = U32(
 | |
|             1 + TRY(stream.read_bits(9)),
 | |
|             1 + TRY(stream.read_bits(13)),
 | |
|             1 + TRY(stream.read_bits(18)),
 | |
|             1 + TRY(stream.read_bits(30)));
 | |
|     }
 | |
| 
 | |
|     auto const ratio = TRY(stream.read_bits(3));
 | |
| 
 | |
|     if (ratio == 0) {
 | |
|         if (div8) {
 | |
|             auto const w_div8 = 1 + TRY(stream.read_bits(5));
 | |
|             size.width = 8 * w_div8;
 | |
|         } else {
 | |
|             size.width = U32(
 | |
|                 1 + TRY(stream.read_bits(9)),
 | |
|                 1 + TRY(stream.read_bits(13)),
 | |
|                 1 + TRY(stream.read_bits(18)),
 | |
|                 1 + TRY(stream.read_bits(30)));
 | |
|         }
 | |
|     } else {
 | |
|         size.width = aspect_ratio(size.height, ratio);
 | |
|     }
 | |
| 
 | |
|     return size;
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// D.3.5 - BitDepth
 | |
| struct BitDepth {
 | |
|     u32 bits_per_sample { 8 };
 | |
|     u8 exp_bits {};
 | |
| };
 | |
| 
 | |
| static ErrorOr<BitDepth> read_bit_depth(LittleEndianInputBitStream& stream)
 | |
| {
 | |
|     BitDepth bit_depth;
 | |
|     bool const float_sample = TRY(stream.read_bit());
 | |
| 
 | |
|     if (float_sample) {
 | |
|         bit_depth.bits_per_sample = U32(32, 16, 24, 1 + TRY(stream.read_bits(6)));
 | |
|         bit_depth.exp_bits = 1 + TRY(stream.read_bits(4));
 | |
|     } else {
 | |
|         bit_depth.bits_per_sample = U32(8, 10, 12, 1 + TRY(stream.read_bits(6)));
 | |
|     }
 | |
| 
 | |
|     return bit_depth;
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// E.2 - ColourEncoding
 | |
| struct ColourEncoding {
 | |
|     enum class ColourSpace {
 | |
|         kRGB = 0,
 | |
|         kGrey = 1,
 | |
|         kXYB = 2,
 | |
|         kUnknown = 3,
 | |
|     };
 | |
| 
 | |
|     enum class WhitePoint {
 | |
|         kD65 = 1,
 | |
|         kCustom = 2,
 | |
|         kE = 10,
 | |
|         kDCI = 11,
 | |
|     };
 | |
| 
 | |
|     enum class Primaries {
 | |
|         kSRGB = 1,
 | |
|         kCustom = 2,
 | |
|         k2100 = 3,
 | |
|         kP3 = 11,
 | |
|     };
 | |
| 
 | |
|     enum class RenderingIntent {
 | |
|         kPerceptual = 0,
 | |
|         kRelative = 1,
 | |
|         kSaturation = 2,
 | |
|         kAbsolute = 3,
 | |
|     };
 | |
| 
 | |
|     struct Customxy {
 | |
|         u32 ux {};
 | |
|         u32 uy {};
 | |
|     };
 | |
| 
 | |
|     enum class TransferFunction {
 | |
|         k709 = 1,
 | |
|         kUnknown = 2,
 | |
|         kLinear = 8,
 | |
|         kSRGB = 13,
 | |
|         kPQ = 16,
 | |
|         kDCI = 17,
 | |
|         kHLG = 18,
 | |
|     };
 | |
| 
 | |
|     struct CustomTransferFunction {
 | |
|         bool have_gamma { false };
 | |
|         u32 gamma {};
 | |
|         TransferFunction transfer_function { TransferFunction::kSRGB };
 | |
|     };
 | |
| 
 | |
|     bool want_icc = false;
 | |
|     ColourSpace colour_space { ColourSpace::kRGB };
 | |
|     WhitePoint white_point { WhitePoint::kD65 };
 | |
|     Primaries primaries { Primaries::kSRGB };
 | |
| 
 | |
|     Customxy white {};
 | |
|     Customxy red {};
 | |
|     Customxy green {};
 | |
|     Customxy blue {};
 | |
| 
 | |
|     CustomTransferFunction tf {};
 | |
| 
 | |
|     RenderingIntent rendering_intent { RenderingIntent::kRelative };
 | |
| };
 | |
| 
 | |
| [[maybe_unused]] static ErrorOr<ColourEncoding::Customxy> read_custom_xy(LittleEndianInputBitStream& stream)
 | |
| {
 | |
|     ColourEncoding::Customxy custom_xy;
 | |
| 
 | |
|     auto const read_custom = [&stream]() -> ErrorOr<u32> {
 | |
|         return U32(
 | |
|             TRY(stream.read_bits(19)),
 | |
|             524288 + TRY(stream.read_bits(19)),
 | |
|             1048576 + TRY(stream.read_bits(20)),
 | |
|             2097152 + TRY(stream.read_bits(21)));
 | |
|     };
 | |
| 
 | |
|     custom_xy.ux = TRY(read_custom());
 | |
|     custom_xy.uy = TRY(read_custom());
 | |
| 
 | |
|     return custom_xy;
 | |
| }
 | |
| 
 | |
| static ErrorOr<ColourEncoding::CustomTransferFunction> read_custom_transfer_function(LittleEndianInputBitStream& stream)
 | |
| {
 | |
|     ColourEncoding::CustomTransferFunction custom_transfer_function;
 | |
| 
 | |
|     custom_transfer_function.have_gamma = TRY(stream.read_bit());
 | |
| 
 | |
|     if (custom_transfer_function.have_gamma)
 | |
|         custom_transfer_function.gamma = TRY(stream.read_bits(24));
 | |
|     else
 | |
|         custom_transfer_function.transfer_function = TRY(read_enum<ColourEncoding::TransferFunction>(stream));
 | |
| 
 | |
|     return custom_transfer_function;
 | |
| }
 | |
| 
 | |
| static ErrorOr<ColourEncoding> read_colour_encoding(LittleEndianInputBitStream& stream)
 | |
| {
 | |
|     ColourEncoding colour_encoding;
 | |
|     bool const all_default = TRY(stream.read_bit());
 | |
| 
 | |
|     if (!all_default) {
 | |
|         colour_encoding.want_icc = TRY(stream.read_bit());
 | |
|         colour_encoding.colour_space = TRY(read_enum<ColourEncoding::ColourSpace>(stream));
 | |
| 
 | |
|         auto const use_desc = !all_default && !colour_encoding.want_icc;
 | |
|         auto const not_xyb = colour_encoding.colour_space != ColourEncoding::ColourSpace::kXYB;
 | |
| 
 | |
|         if (use_desc && not_xyb)
 | |
|             colour_encoding.white_point = TRY(read_enum<ColourEncoding::WhitePoint>(stream));
 | |
| 
 | |
|         if (colour_encoding.white_point == ColourEncoding::WhitePoint::kCustom)
 | |
|             colour_encoding.white = TRY(read_custom_xy(stream));
 | |
| 
 | |
|         auto const has_primaries = use_desc && not_xyb && colour_encoding.colour_space != ColourEncoding::ColourSpace::kGrey;
 | |
| 
 | |
|         if (has_primaries)
 | |
|             colour_encoding.primaries = TRY(read_enum<ColourEncoding::Primaries>(stream));
 | |
| 
 | |
|         if (colour_encoding.primaries == ColourEncoding::Primaries::kCustom) {
 | |
|             colour_encoding.red = TRY(read_custom_xy(stream));
 | |
|             colour_encoding.green = TRY(read_custom_xy(stream));
 | |
|             colour_encoding.blue = TRY(read_custom_xy(stream));
 | |
|         }
 | |
| 
 | |
|         if (use_desc) {
 | |
|             colour_encoding.tf = TRY(read_custom_transfer_function(stream));
 | |
|             colour_encoding.rendering_intent = TRY(read_enum<ColourEncoding::RenderingIntent>(stream));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return colour_encoding;
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// B.3 - Extensions
 | |
| struct Extensions {
 | |
|     u64 extensions {};
 | |
| };
 | |
| 
 | |
| static ErrorOr<Extensions> read_extensions(LittleEndianInputBitStream& stream)
 | |
| {
 | |
|     Extensions extensions;
 | |
|     extensions.extensions = TRY(U64(stream));
 | |
| 
 | |
|     if (extensions.extensions != 0)
 | |
|         TODO();
 | |
| 
 | |
|     return extensions;
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// K.2 - Non-separable upsampling
 | |
| Array s_d_up2 {
 | |
|     -0.01716200, -0.03452303, -0.04022174, -0.02921014, -0.00624645,
 | |
|     0.14111091, 0.28896755, 0.00278718, -0.01610267, 0.56661550,
 | |
|     0.03777607, -0.01986694, -0.03144731, -0.01185068, -0.00213539
 | |
| };
 | |
| 
 | |
| Array s_d_up4 = {
 | |
|     -0.02419067, -0.03491987, -0.03693351, -0.03094285, -0.00529785,
 | |
|     -0.01663432, -0.03556863, -0.03888905, -0.03516850, -0.00989469,
 | |
|     0.23651958, 0.33392945, -0.01073543, -0.01313181, -0.03556694,
 | |
|     0.13048175, 0.40103025, 0.03951150, -0.02077584, 0.46914198,
 | |
|     -0.00209270, -0.01484589, -0.04064806, 0.18942530, 0.56279892,
 | |
|     0.06674400, -0.02335494, -0.03551682, -0.00754830, -0.02267919,
 | |
|     -0.02363578, 0.00315804, -0.03399098, -0.01359519, -0.00091653,
 | |
|     -0.00335467, -0.01163294, -0.01610294, -0.00974088, -0.00191622,
 | |
|     -0.01095446, -0.03198464, -0.04455121, -0.02799790, -0.00645912,
 | |
|     0.06390599, 0.22963888, 0.00630981, -0.01897349, 0.67537268,
 | |
|     0.08483369, -0.02534994, -0.02205197, -0.01667999, -0.00384443
 | |
| };
 | |
| 
 | |
| Array s_d_up8 {
 | |
|     -0.02928613, -0.03706353, -0.03783812, -0.03324558, -0.00447632, -0.02519406, -0.03752601, -0.03901508, -0.03663285, -0.00646649,
 | |
|     -0.02066407, -0.03838633, -0.04002101, -0.03900035, -0.00901973, -0.01626393, -0.03954148, -0.04046620, -0.03979621, -0.01224485,
 | |
|     0.29895328, 0.35757708, -0.02447552, -0.01081748, -0.04314594, 0.23903219, 0.41119301, -0.00573046, -0.01450239, -0.04246845,
 | |
|     0.17567618, 0.45220643, 0.02287757, -0.01936783, -0.03583255, 0.11572472, 0.47416733, 0.06284440, -0.02685066, 0.42720050,
 | |
|     -0.02248939, -0.01155273, -0.04562755, 0.28689496, 0.49093869, -0.00007891, -0.01545926, -0.04562659, 0.21238920, 0.53980934,
 | |
|     0.03369474, -0.02070211, -0.03866988, 0.14229550, 0.56593398, 0.08045181, -0.02888298, -0.03680918, -0.00542229, -0.02920477,
 | |
|     -0.02788574, -0.02118180, -0.03942402, -0.00775547, -0.02433614, -0.03193943, -0.02030828, -0.04044014, -0.01074016, -0.01930822,
 | |
|     -0.03620399, -0.01974125, -0.03919545, -0.01456093, -0.00045072, -0.00360110, -0.01020207, -0.01231907, -0.00638988, -0.00071592,
 | |
|     -0.00279122, -0.00957115, -0.01288327, -0.00730937, -0.00107783, -0.00210156, -0.00890705, -0.01317668, -0.00813895, -0.00153491,
 | |
|     -0.02128481, -0.04173044, -0.04831487, -0.03293190, -0.00525260, -0.01720322, -0.04052736, -0.05045706, -0.03607317, -0.00738030,
 | |
|     -0.01341764, -0.03965629, -0.05151616, -0.03814886, -0.01005819, 0.18968273, 0.33063684, -0.01300105, -0.01372950, -0.04017465,
 | |
|     0.13727832, 0.36402234, 0.01027890, -0.01832107, -0.03365072, 0.08734506, 0.38194295, 0.04338228, -0.02525993, 0.56408126,
 | |
|     0.00458352, -0.01648227, -0.04887868, 0.24585519, 0.62026135, 0.04314807, -0.02213737, -0.04158014, 0.16637289, 0.65027023,
 | |
|     0.09621636, -0.03101388, -0.04082742, -0.00904519, -0.02790922, -0.02117818, 0.00798662, -0.03995711, -0.01243427, -0.02231705,
 | |
|     -0.02946266, 0.00992055, -0.03600283, -0.01684920, -0.00111684, -0.00411204, -0.01297130, -0.01723725, -0.01022545, -0.00165306,
 | |
|     -0.00313110, -0.01218016, -0.01763266, -0.01125620, -0.00231663, -0.01374149, -0.03797620, -0.05142937, -0.03117307, -0.00581914,
 | |
|     -0.01064003, -0.03608089, -0.05272168, -0.03375670, -0.00795586, 0.09628104, 0.27129991, -0.00353779, -0.01734151, -0.03153981,
 | |
|     0.05686230, 0.28500998, 0.02230594, -0.02374955, 0.68214326, 0.05018048, -0.02320852, -0.04383616, 0.18459474, 0.71517975,
 | |
|     0.10805613, -0.03263677, -0.03637639, -0.01394373, -0.02511203, -0.01728636, 0.05407331, -0.02867568, -0.01893131, -0.00240854,
 | |
|     -0.00446511, -0.01636187, -0.02377053, -0.01522848, -0.00333334, -0.00819975, -0.02964169, -0.04499287, -0.02745350, -0.00612408,
 | |
|     0.02727416, 0.19446600, 0.00159832, -0.02232473, 0.74982506, 0.11452620, -0.03348048, -0.01605681, -0.02070339, -0.00458223
 | |
| };
 | |
| ///
 | |
| 
 | |
| /// D.3 - Image metadata
 | |
| 
 | |
| struct PreviewHeader {
 | |
| };
 | |
| 
 | |
| struct AnimationHeader {
 | |
| };
 | |
| 
 | |
| struct ExtraChannelInfo {
 | |
|     enum class ExtraChannelType {
 | |
|         kAlpha = 0,
 | |
|         kDepth = 1,
 | |
|         kSpotColour = 2,
 | |
|         kSelectionMask = 3,
 | |
|         kBlack = 4,
 | |
|         kCFA = 5,
 | |
|         kThermal = 6,
 | |
|         kNonOptional = 15,
 | |
|         kOptional = 16,
 | |
|     };
 | |
| 
 | |
|     bool d_alpha { true };
 | |
|     ExtraChannelType type { ExtraChannelType::kAlpha };
 | |
|     BitDepth bit_depth {};
 | |
|     u32 dim_shift {};
 | |
|     String name;
 | |
|     bool alpha_associated { false };
 | |
| };
 | |
| 
 | |
| static ErrorOr<ExtraChannelInfo> read_extra_channel_info(LittleEndianInputBitStream& stream)
 | |
| {
 | |
|     ExtraChannelInfo extra_channel_info;
 | |
| 
 | |
|     extra_channel_info.d_alpha = TRY(stream.read_bit());
 | |
| 
 | |
|     if (!extra_channel_info.d_alpha) {
 | |
|         extra_channel_info.type = TRY(read_enum<ExtraChannelInfo::ExtraChannelType>(stream));
 | |
|         extra_channel_info.bit_depth = TRY(read_bit_depth(stream));
 | |
|         extra_channel_info.dim_shift = U32(0, 3, 4, 1 + TRY(stream.read_bits(3)));
 | |
|         extra_channel_info.name = TRY(read_string(stream));
 | |
| 
 | |
|         if (extra_channel_info.type == ExtraChannelInfo::ExtraChannelType::kAlpha)
 | |
|             extra_channel_info.alpha_associated = TRY(stream.read_bit());
 | |
|     }
 | |
| 
 | |
|     if (extra_channel_info.type != ExtraChannelInfo::ExtraChannelType::kAlpha) {
 | |
|         TODO();
 | |
|     }
 | |
| 
 | |
|     return extra_channel_info;
 | |
| }
 | |
| 
 | |
| struct ToneMapping {
 | |
|     float intensity_target { 255 };
 | |
|     float min_nits { 0 };
 | |
|     bool relative_to_max_display { false };
 | |
|     float linear_below { 0 };
 | |
| };
 | |
| 
 | |
| static ErrorOr<ToneMapping> read_tone_mapping(LittleEndianInputBitStream& stream)
 | |
| {
 | |
|     ToneMapping tone_mapping;
 | |
|     bool const all_default = TRY(stream.read_bit());
 | |
| 
 | |
|     if (!all_default) {
 | |
|         TODO();
 | |
|     }
 | |
| 
 | |
|     return tone_mapping;
 | |
| }
 | |
| 
 | |
| struct OpsinInverseMatrix {
 | |
| };
 | |
| 
 | |
| static ErrorOr<OpsinInverseMatrix> read_opsin_inverse_matrix(LittleEndianInputBitStream&)
 | |
| {
 | |
|     TODO();
 | |
| }
 | |
| 
 | |
| struct ImageMetadata {
 | |
|     u8 orientation { 1 };
 | |
|     Optional<SizeHeader> intrinsic_size;
 | |
|     Optional<PreviewHeader> preview;
 | |
|     Optional<AnimationHeader> animation;
 | |
|     BitDepth bit_depth;
 | |
|     bool modular_16bit_buffers { true };
 | |
|     u16 num_extra_channels {};
 | |
|     Vector<ExtraChannelInfo, 4> ec_info;
 | |
|     bool xyb_encoded { true };
 | |
|     ColourEncoding colour_encoding;
 | |
|     ToneMapping tone_mapping;
 | |
|     Extensions extensions;
 | |
|     bool default_m;
 | |
|     OpsinInverseMatrix opsin_inverse_matrix;
 | |
|     u8 cw_mask { 0 };
 | |
| 
 | |
|     Array<double, 15> up2_weight = s_d_up2;
 | |
|     Array<double, 55> up4_weight = s_d_up4;
 | |
|     Array<double, 210> up8_weight = s_d_up8;
 | |
| 
 | |
|     u16 number_of_color_channels() const
 | |
|     {
 | |
|         if (!xyb_encoded && colour_encoding.colour_space == ColourEncoding::ColourSpace::kGrey)
 | |
|             return 1;
 | |
|         return 3;
 | |
|     }
 | |
| 
 | |
|     u16 number_of_channels() const
 | |
|     {
 | |
|         return number_of_color_channels() + num_extra_channels;
 | |
|     }
 | |
| 
 | |
|     Optional<u16> alpha_channel() const
 | |
|     {
 | |
|         for (u16 i = 0; i < ec_info.size(); ++i) {
 | |
|             if (ec_info[i].type == ExtraChannelInfo::ExtraChannelType::kAlpha)
 | |
|                 return i + number_of_color_channels();
 | |
|         }
 | |
| 
 | |
|         return OptionalNone {};
 | |
|     }
 | |
| };
 | |
| 
 | |
| static ErrorOr<ImageMetadata> read_metadata_header(LittleEndianInputBitStream& stream)
 | |
| {
 | |
|     ImageMetadata metadata;
 | |
|     bool const all_default = TRY(stream.read_bit());
 | |
| 
 | |
|     if (!all_default) {
 | |
|         bool const extra_fields = TRY(stream.read_bit());
 | |
| 
 | |
|         if (extra_fields) {
 | |
|             metadata.orientation = 1 + TRY(stream.read_bits(3));
 | |
| 
 | |
|             bool const have_intr_size = TRY(stream.read_bit());
 | |
|             if (have_intr_size)
 | |
|                 metadata.intrinsic_size = TRY(read_size_header(stream));
 | |
| 
 | |
|             bool const have_preview = TRY(stream.read_bit());
 | |
|             if (have_preview)
 | |
|                 TODO();
 | |
| 
 | |
|             bool const have_animation = TRY(stream.read_bit());
 | |
|             if (have_animation)
 | |
|                 TODO();
 | |
|         }
 | |
| 
 | |
|         metadata.bit_depth = TRY(read_bit_depth(stream));
 | |
|         metadata.modular_16bit_buffers = TRY(stream.read_bit());
 | |
|         metadata.num_extra_channels = U32(0, 1, 2 + TRY(stream.read_bits(4)), 1 + TRY(stream.read_bits(12)));
 | |
| 
 | |
|         for (u16 i {}; i < metadata.num_extra_channels; ++i)
 | |
|             metadata.ec_info.append(TRY(read_extra_channel_info(stream)));
 | |
| 
 | |
|         metadata.xyb_encoded = TRY(stream.read_bit());
 | |
| 
 | |
|         metadata.colour_encoding = TRY(read_colour_encoding(stream));
 | |
| 
 | |
|         if (extra_fields)
 | |
|             metadata.tone_mapping = TRY(read_tone_mapping(stream));
 | |
| 
 | |
|         metadata.extensions = TRY(read_extensions(stream));
 | |
|     }
 | |
| 
 | |
|     metadata.default_m = TRY(stream.read_bit());
 | |
| 
 | |
|     if (!metadata.default_m && metadata.xyb_encoded)
 | |
|         metadata.opsin_inverse_matrix = TRY(read_opsin_inverse_matrix(stream));
 | |
| 
 | |
|     if (!metadata.default_m)
 | |
|         metadata.cw_mask = TRY(stream.read_bits(3));
 | |
| 
 | |
|     if (metadata.cw_mask != 0)
 | |
|         TODO();
 | |
| 
 | |
|     return metadata;
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// Table F.7 — BlendingInfo bundle
 | |
| struct BlendingInfo {
 | |
|     enum class BlendMode {
 | |
|         kReplace = 0,
 | |
|         kAdd = 1,
 | |
|         kBlend = 2,
 | |
|         kMulAdd = 3,
 | |
|         kMul = 4,
 | |
|     };
 | |
| 
 | |
|     BlendMode mode {};
 | |
|     u8 alpha_channel {};
 | |
|     bool clamp { false };
 | |
|     u8 source {};
 | |
| };
 | |
| 
 | |
| static ErrorOr<BlendingInfo> read_blending_info(LittleEndianInputBitStream& stream, ImageMetadata const& metadata, bool full_frame)
 | |
| {
 | |
|     BlendingInfo blending_info;
 | |
| 
 | |
|     blending_info.mode = static_cast<BlendingInfo::BlendMode>(U32(0, 1, 2, 3 + TRY(stream.read_bits(2))));
 | |
| 
 | |
|     bool const extra = metadata.num_extra_channels > 0;
 | |
| 
 | |
|     if (extra) {
 | |
|         auto const blend_or_mul_add = blending_info.mode == BlendingInfo::BlendMode::kBlend
 | |
|             || blending_info.mode == BlendingInfo::BlendMode::kMulAdd;
 | |
| 
 | |
|         if (blend_or_mul_add)
 | |
|             blending_info.alpha_channel = U32(0, 1, 2, 3 + TRY(stream.read_bits(3)));
 | |
| 
 | |
|         if (blend_or_mul_add || blending_info.mode == BlendingInfo::BlendMode::kMul)
 | |
|             blending_info.clamp = TRY(stream.read_bit());
 | |
|     }
 | |
| 
 | |
|     if (blending_info.mode != BlendingInfo::BlendMode::kReplace
 | |
|         || !full_frame) {
 | |
|         blending_info.source = TRY(stream.read_bits(2));
 | |
|     }
 | |
| 
 | |
|     return blending_info;
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// J.1 - General
 | |
| struct RestorationFilter {
 | |
|     bool gab { true };
 | |
|     u8 epf_iters { 2 };
 | |
|     Extensions extensions;
 | |
| };
 | |
| 
 | |
| static ErrorOr<RestorationFilter> read_restoration_filter(LittleEndianInputBitStream& stream)
 | |
| {
 | |
|     RestorationFilter restoration_filter;
 | |
| 
 | |
|     auto const all_defaults = TRY(stream.read_bit());
 | |
| 
 | |
|     if (!all_defaults) {
 | |
|         restoration_filter.gab = TRY(stream.read_bit());
 | |
| 
 | |
|         if (restoration_filter.gab) {
 | |
|             TODO();
 | |
|         }
 | |
| 
 | |
|         restoration_filter.epf_iters = TRY(stream.read_bits(2));
 | |
|         if (restoration_filter.epf_iters != 0) {
 | |
|             TODO();
 | |
|         }
 | |
| 
 | |
|         restoration_filter.extensions = TRY(read_extensions(stream));
 | |
|     }
 | |
| 
 | |
|     return restoration_filter;
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// Table F.6 — Passes bundle
 | |
| struct Passes {
 | |
|     u8 num_passes { 1 };
 | |
| };
 | |
| 
 | |
| static ErrorOr<Passes> read_passes(LittleEndianInputBitStream& stream)
 | |
| {
 | |
|     Passes passes;
 | |
| 
 | |
|     passes.num_passes = U32(1, 2, 3, 4 + TRY(stream.read_bits(3)));
 | |
| 
 | |
|     if (passes.num_passes != 1) {
 | |
|         TODO();
 | |
|     }
 | |
| 
 | |
|     return passes;
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// F.2 - FrameHeader
 | |
| struct FrameHeader {
 | |
|     enum class FrameType {
 | |
|         kRegularFrame = 0,
 | |
|         kLFFrame = 1,
 | |
|         kReferenceOnly = 2,
 | |
|         kSkipProgressive = 3,
 | |
|     };
 | |
| 
 | |
|     enum class Encoding {
 | |
|         kVarDCT = 0,
 | |
|         kModular = 1,
 | |
|     };
 | |
| 
 | |
|     enum class Flags {
 | |
|         None = 0,
 | |
|         kNoise = 1,
 | |
|         kPatches = 1 << 1,
 | |
|         kSplines = 1 << 4,
 | |
|         kUseLfFrame = 1 << 5,
 | |
|         kSkipAdaptiveLFSmoothing = 1 << 7,
 | |
|     };
 | |
| 
 | |
|     FrameType frame_type { FrameType::kRegularFrame };
 | |
|     Encoding encoding { Encoding::kVarDCT };
 | |
|     Flags flags { Flags::None };
 | |
| 
 | |
|     bool do_YCbCr { false };
 | |
| 
 | |
|     Array<u8, 3> jpeg_upsampling {};
 | |
|     u8 upsampling {};
 | |
|     FixedArray<u8> ec_upsampling {};
 | |
| 
 | |
|     u8 group_size_shift { 1 };
 | |
|     Passes passes {};
 | |
| 
 | |
|     u8 lf_level {};
 | |
|     bool have_crop { false };
 | |
|     i32 x0 {};
 | |
|     i32 y0 {};
 | |
|     u32 width {};
 | |
|     u32 height {};
 | |
| 
 | |
|     BlendingInfo blending_info {};
 | |
|     FixedArray<BlendingInfo> ec_blending_info {};
 | |
| 
 | |
|     u32 duration {};
 | |
| 
 | |
|     bool is_last { true };
 | |
|     u8 save_as_reference {};
 | |
|     bool save_before_ct {};
 | |
| 
 | |
|     String name {};
 | |
|     RestorationFilter restoration_filter {};
 | |
|     Extensions extensions {};
 | |
| };
 | |
| 
 | |
| static int operator&(FrameHeader::Flags first, FrameHeader::Flags second)
 | |
| {
 | |
|     return static_cast<int>(first) & static_cast<int>(second);
 | |
| }
 | |
| 
 | |
| static ErrorOr<FrameHeader> read_frame_header(LittleEndianInputBitStream& stream,
 | |
|     SizeHeader size_header,
 | |
|     ImageMetadata const& metadata)
 | |
| {
 | |
|     FrameHeader frame_header;
 | |
|     bool const all_default = TRY(stream.read_bit());
 | |
| 
 | |
|     if (!all_default) {
 | |
|         frame_header.frame_type = static_cast<FrameHeader::FrameType>(TRY(stream.read_bits(2)));
 | |
|         frame_header.encoding = static_cast<FrameHeader::Encoding>(TRY(stream.read_bits(1)));
 | |
| 
 | |
|         frame_header.flags = static_cast<FrameHeader::Flags>(TRY(U64(stream)));
 | |
| 
 | |
|         if (!metadata.xyb_encoded)
 | |
|             frame_header.do_YCbCr = TRY(stream.read_bit());
 | |
| 
 | |
|         if (!(frame_header.flags & FrameHeader::Flags::kUseLfFrame)) {
 | |
|             if (frame_header.do_YCbCr) {
 | |
|                 frame_header.jpeg_upsampling[0] = TRY(stream.read_bits(2));
 | |
|                 frame_header.jpeg_upsampling[1] = TRY(stream.read_bits(2));
 | |
|                 frame_header.jpeg_upsampling[2] = TRY(stream.read_bits(2));
 | |
|             }
 | |
| 
 | |
|             frame_header.upsampling = U32(1, 2, 4, 8);
 | |
| 
 | |
|             frame_header.ec_upsampling = TRY(FixedArray<u8>::create(metadata.num_extra_channels));
 | |
|             for (u16 i {}; i < metadata.num_extra_channels; ++i)
 | |
|                 frame_header.ec_upsampling[i] = U32(1, 2, 4, 8);
 | |
|         }
 | |
| 
 | |
|         if (frame_header.encoding == FrameHeader::Encoding::kModular)
 | |
|             frame_header.group_size_shift = TRY(stream.read_bits(2));
 | |
| 
 | |
|         if (frame_header.encoding == FrameHeader::Encoding::kVarDCT)
 | |
|             TODO();
 | |
| 
 | |
|         if (frame_header.frame_type != FrameHeader::FrameType::kReferenceOnly)
 | |
|             frame_header.passes = TRY(read_passes(stream));
 | |
| 
 | |
|         if (frame_header.frame_type == FrameHeader::FrameType::kLFFrame)
 | |
|             TODO();
 | |
| 
 | |
|         if (frame_header.frame_type != FrameHeader::FrameType::kLFFrame)
 | |
|             frame_header.have_crop = TRY(stream.read_bit());
 | |
| 
 | |
|         if (frame_header.have_crop) {
 | |
|             auto const read_crop_dimension = [&]() -> ErrorOr<u32> {
 | |
|                 return U32(TRY(stream.read_bits(8)), 256 + TRY(stream.read_bits(11)), 2304 + TRY(stream.read_bits(14)), 18688 + TRY(stream.read_bits(30)));
 | |
|             };
 | |
| 
 | |
|             if (frame_header.frame_type != FrameHeader::FrameType::kReferenceOnly) {
 | |
|                 frame_header.x0 = unpack_signed(TRY(read_crop_dimension()));
 | |
|                 frame_header.y0 = unpack_signed(TRY(read_crop_dimension()));
 | |
|             }
 | |
| 
 | |
|             frame_header.width = TRY(read_crop_dimension());
 | |
|             frame_header.height = TRY(read_crop_dimension());
 | |
|         }
 | |
| 
 | |
|         bool const normal_frame = frame_header.frame_type == FrameHeader::FrameType::kRegularFrame
 | |
|             || frame_header.frame_type == FrameHeader::FrameType::kSkipProgressive;
 | |
| 
 | |
|         // Let full_frame be true if and only if have_crop is false or if the frame area given
 | |
|         // by width and height and offsets x0 and y0 completely covers the image area.
 | |
|         bool const cover_image_area = frame_header.x0 <= 0 && frame_header.y0 <= 0
 | |
|             && (frame_header.width + frame_header.x0 >= size_header.width)
 | |
|             && (frame_header.height + frame_header.y0 == size_header.height);
 | |
|         bool const full_frame = !frame_header.have_crop || cover_image_area;
 | |
| 
 | |
|         if (normal_frame) {
 | |
|             frame_header.blending_info = TRY(read_blending_info(stream, metadata, full_frame));
 | |
| 
 | |
|             frame_header.ec_blending_info = TRY(FixedArray<BlendingInfo>::create(metadata.num_extra_channels));
 | |
|             for (u16 i {}; i < metadata.num_extra_channels; ++i)
 | |
|                 frame_header.ec_blending_info[i] = TRY(read_blending_info(stream, metadata, full_frame));
 | |
| 
 | |
|             if (metadata.animation.has_value())
 | |
|                 TODO();
 | |
| 
 | |
|             frame_header.is_last = TRY(stream.read_bit());
 | |
|         }
 | |
| 
 | |
|         // FIXME: Ensure that is_last has the correct default value
 | |
|         VERIFY(normal_frame);
 | |
| 
 | |
|         auto const resets_canvas = full_frame && frame_header.blending_info.mode == BlendingInfo::BlendMode::kReplace;
 | |
|         auto const can_reference = !frame_header.is_last && (frame_header.duration == 0 || frame_header.save_as_reference != 0) && frame_header.frame_type != FrameHeader::FrameType::kLFFrame;
 | |
| 
 | |
|         if (frame_header.frame_type != FrameHeader::FrameType::kLFFrame) {
 | |
|             if (!frame_header.is_last)
 | |
|                 TODO();
 | |
|         }
 | |
| 
 | |
|         frame_header.save_before_ct = !normal_frame;
 | |
|         if (frame_header.frame_type == FrameHeader::FrameType::kReferenceOnly || (resets_canvas && can_reference))
 | |
|             frame_header.save_before_ct = TRY(stream.read_bit());
 | |
| 
 | |
|         frame_header.name = TRY(read_string(stream));
 | |
| 
 | |
|         frame_header.restoration_filter = TRY(read_restoration_filter(stream));
 | |
| 
 | |
|         frame_header.extensions = TRY(read_extensions(stream));
 | |
|     }
 | |
| 
 | |
|     return frame_header;
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// F.3  TOC
 | |
| struct TOC {
 | |
|     FixedArray<u32> entries;
 | |
|     FixedArray<u32> group_offsets;
 | |
| };
 | |
| 
 | |
| static u64 num_toc_entries(FrameHeader const& frame_header, u64 num_groups, u64 num_lf_groups)
 | |
| {
 | |
|     // F.3.1 - General
 | |
|     if (num_groups == 1 && frame_header.passes.num_passes == 1)
 | |
|         return 1;
 | |
| 
 | |
|     return 1 + num_lf_groups + 1 + num_groups * frame_header.passes.num_passes;
 | |
| }
 | |
| 
 | |
| static ErrorOr<TOC> read_toc(LittleEndianInputBitStream& stream, FrameHeader const& frame_header, u64 num_groups, u64 num_lf_groups)
 | |
| {
 | |
|     TOC toc;
 | |
| 
 | |
|     bool const permuted_toc = TRY(stream.read_bit());
 | |
| 
 | |
|     if (permuted_toc) {
 | |
|         // Read permutations
 | |
|         TODO();
 | |
|     }
 | |
| 
 | |
|     // F.3.3 - Decoding TOC
 | |
|     stream.align_to_byte_boundary();
 | |
| 
 | |
|     auto const toc_entries = num_toc_entries(frame_header, num_groups, num_lf_groups);
 | |
| 
 | |
|     toc.entries = TRY(FixedArray<u32>::create(toc_entries));
 | |
|     toc.group_offsets = TRY(FixedArray<u32>::create(toc_entries));
 | |
| 
 | |
|     for (u32 i {}; i < toc_entries; ++i) {
 | |
|         auto const new_entry = U32(
 | |
|             TRY(stream.read_bits(10)),
 | |
|             1024 + TRY(stream.read_bits(14)),
 | |
|             17408 + TRY(stream.read_bits(22)),
 | |
|             4211712 + TRY(stream.read_bits(30)));
 | |
| 
 | |
|         toc.entries[i] = new_entry;
 | |
|         toc.group_offsets[i] = (i == 0 ? 0 : toc.group_offsets[i - 1]) + new_entry;
 | |
|     }
 | |
| 
 | |
|     if (permuted_toc)
 | |
|         TODO();
 | |
| 
 | |
|     stream.align_to_byte_boundary();
 | |
| 
 | |
|     return toc;
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// G.1.2 - LF channel dequantization weights
 | |
| struct LfChannelDequantization {
 | |
|     float m_x_lf_unscaled { 4096 };
 | |
|     float m_y_lf_unscaled { 512 };
 | |
|     float m_b_lf_unscaled { 256 };
 | |
| };
 | |
| 
 | |
| static ErrorOr<LfChannelDequantization> read_lf_channel_dequantization(LittleEndianInputBitStream& stream)
 | |
| {
 | |
|     LfChannelDequantization lf_channel_dequantization;
 | |
| 
 | |
|     auto const all_default = TRY(stream.read_bit());
 | |
| 
 | |
|     if (!all_default) {
 | |
|         TODO();
 | |
|     }
 | |
| 
 | |
|     return lf_channel_dequantization;
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// C - Entropy decoding
 | |
| class ANSHistogram {
 | |
| public:
 | |
|     static ErrorOr<ANSHistogram> read_histogram(LittleEndianInputBitStream& stream, u8 log_alphabet_size)
 | |
|     {
 | |
|         ANSHistogram histogram;
 | |
| 
 | |
|         auto const alphabet_size = TRY(histogram.read_ans_distribution(stream, log_alphabet_size));
 | |
| 
 | |
|         // C.2.6 - Alias mapping
 | |
| 
 | |
|         histogram.m_log_bucket_size = 12 - log_alphabet_size;
 | |
|         histogram.m_bucket_size = 1 << histogram.m_log_bucket_size;
 | |
|         auto const table_size = 1 << log_alphabet_size;
 | |
| 
 | |
|         Optional<u64> index_of_unique_symbol {};
 | |
|         for (u64 i {}; i < histogram.m_distribution.size(); ++i) {
 | |
|             if (histogram.m_distribution[i] == 1 << 12)
 | |
|                 index_of_unique_symbol = i;
 | |
|         }
 | |
| 
 | |
|         TRY(histogram.m_symbols.try_resize(table_size));
 | |
|         TRY(histogram.m_offsets.try_resize(table_size));
 | |
|         TRY(histogram.m_cutoffs.try_resize(table_size));
 | |
| 
 | |
|         if (index_of_unique_symbol.has_value()) {
 | |
|             auto const s = *index_of_unique_symbol;
 | |
|             for (i32 i = 0; i < table_size; i++) {
 | |
|                 histogram.m_symbols[i] = s;
 | |
|                 histogram.m_offsets[i] = histogram.m_bucket_size * i;
 | |
|                 histogram.m_cutoffs[i] = 0;
 | |
|             }
 | |
|             return histogram;
 | |
|         }
 | |
| 
 | |
|         Vector<u16> overfull;
 | |
|         Vector<u16> underfull;
 | |
| 
 | |
|         for (u16 i {}; i < alphabet_size; i++) {
 | |
|             histogram.m_cutoffs[i] = histogram.m_distribution[i];
 | |
|             histogram.m_symbols[i] = i;
 | |
|             if (histogram.m_cutoffs[i] > histogram.m_bucket_size)
 | |
|                 TRY(overfull.try_append(i));
 | |
|             else if (histogram.m_cutoffs[i] < histogram.m_bucket_size)
 | |
|                 TRY(underfull.try_append(i));
 | |
|         }
 | |
| 
 | |
|         for (u16 i = alphabet_size; i < table_size; i++) {
 | |
|             histogram.m_cutoffs[i] = 0;
 | |
|             TRY(underfull.try_append(i));
 | |
|         }
 | |
| 
 | |
|         while (overfull.size() > 0) {
 | |
|             VERIFY(underfull.size() > 0);
 | |
|             auto const o = overfull.take_last();
 | |
|             auto const u = underfull.take_last();
 | |
| 
 | |
|             auto const by = histogram.m_bucket_size - histogram.m_cutoffs[u];
 | |
|             histogram.m_cutoffs[o] -= by;
 | |
|             histogram.m_symbols[u] = o;
 | |
|             histogram.m_offsets[u] = histogram.m_cutoffs[o];
 | |
|             if (histogram.m_cutoffs[o] < histogram.m_bucket_size)
 | |
|                 TRY(underfull.try_append(o));
 | |
|             else if (histogram.m_cutoffs[o] > histogram.m_bucket_size)
 | |
|                 TRY(overfull.try_append(o));
 | |
|         }
 | |
| 
 | |
|         for (u16 i {}; i < table_size; i++) {
 | |
|             if (histogram.m_cutoffs[i] == histogram.m_bucket_size) {
 | |
|                 histogram.m_symbols[i] = i;
 | |
|                 histogram.m_offsets[i] = 0;
 | |
|                 histogram.m_cutoffs[i] = 0;
 | |
|             } else {
 | |
|                 histogram.m_offsets[i] -= histogram.m_cutoffs[i];
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return histogram;
 | |
|     }
 | |
| 
 | |
|     ErrorOr<u16> read_symbol(LittleEndianInputBitStream& stream, Optional<u32>& state) const
 | |
|     {
 | |
|         if (!state.has_value())
 | |
|             state = TRY(stream.read_bits(32));
 | |
| 
 | |
|         auto const index = *state & 0xFFF;
 | |
|         auto const symbol_and_offset = alias_mapping(index);
 | |
|         state = m_distribution[symbol_and_offset.symbol] * (*state >> 12) + symbol_and_offset.offset;
 | |
|         if (*state < (1 << 16))
 | |
|             state = (*state << 16) | TRY(stream.read_bits(16));
 | |
|         return symbol_and_offset.symbol;
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     static ErrorOr<u8> U8(LittleEndianInputBitStream& stream)
 | |
|     {
 | |
|         if (TRY(stream.read_bit()) == 0)
 | |
|             return 0;
 | |
|         auto const n = TRY(stream.read_bits(3));
 | |
|         return TRY(stream.read_bits(n)) + (1 << n);
 | |
|     }
 | |
| 
 | |
|     struct SymbolAndOffset {
 | |
|         u16 symbol {};
 | |
|         u16 offset {};
 | |
|     };
 | |
| 
 | |
|     SymbolAndOffset alias_mapping(u32 x) const
 | |
|     {
 | |
|         // C.2.6 - Alias mapping
 | |
|         auto const i = x >> m_log_bucket_size;
 | |
|         auto const pos = x & (m_bucket_size - 1);
 | |
|         u16 const symbol = pos >= m_cutoffs[i] ? m_symbols[i] : i;
 | |
|         u16 const offset = pos >= m_cutoffs[i] ? m_offsets[i] + pos : pos;
 | |
| 
 | |
|         return { symbol, offset };
 | |
|     }
 | |
| 
 | |
|     static ErrorOr<u16> read_with_prefix(LittleEndianInputBitStream& stream)
 | |
|     {
 | |
|         auto const prefix = TRY(stream.read_bits(3));
 | |
| 
 | |
|         switch (prefix) {
 | |
|         case 0:
 | |
|             return 10;
 | |
|         case 1:
 | |
|             for (auto const possibility : { 4, 0, 11, 13 }) {
 | |
|                 if (TRY(stream.read_bit()))
 | |
|                     return possibility;
 | |
|             }
 | |
|             return 12;
 | |
|         case 2:
 | |
|             return 7;
 | |
|         case 3:
 | |
|             return TRY(stream.read_bit()) ? 1 : 3;
 | |
|         case 4:
 | |
|             return 6;
 | |
|         case 5:
 | |
|             return 8;
 | |
|         case 6:
 | |
|             return 9;
 | |
|         case 7:
 | |
|             return TRY(stream.read_bit()) ? 2 : 5;
 | |
|         default:
 | |
|             VERIFY_NOT_REACHED();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ErrorOr<u16> read_ans_distribution(LittleEndianInputBitStream& stream, u8 log_alphabet_size)
 | |
|     {
 | |
|         // C.2.5  ANS distribution decoding
 | |
|         auto const table_size = 1 << log_alphabet_size;
 | |
| 
 | |
|         m_distribution = TRY(FixedArray<i32>::create(table_size));
 | |
| 
 | |
|         if (TRY(stream.read_bit())) {
 | |
|             u16 alphabet_size {};
 | |
|             if (TRY(stream.read_bit())) {
 | |
|                 auto const v1 = TRY(U8(stream));
 | |
|                 auto const v2 = TRY(U8(stream));
 | |
|                 VERIFY(v1 != v2);
 | |
|                 m_distribution[v1] = TRY(stream.read_bits(12));
 | |
|                 m_distribution[v2] = (1 << 12) - m_distribution[v1];
 | |
|                 alphabet_size = 1 + max(v1, v2);
 | |
|             } else {
 | |
|                 auto const x = TRY(U8(stream));
 | |
|                 m_distribution[x] = 1 << 12;
 | |
|                 alphabet_size = 1 + x;
 | |
|             }
 | |
|             return alphabet_size;
 | |
|         }
 | |
| 
 | |
|         if (TRY(stream.read_bit())) {
 | |
|             auto const alphabet_size = TRY(U8(stream)) + 1;
 | |
|             for (u16 i = 0; i < alphabet_size; i++)
 | |
|                 m_distribution[i] = (1 << 12) / alphabet_size;
 | |
|             for (u16 i = 0; i < ((1 << 12) % alphabet_size); i++)
 | |
|                 m_distribution[i]++;
 | |
|             return alphabet_size;
 | |
|         }
 | |
| 
 | |
|         u8 len = 0;
 | |
|         while (len < 3) {
 | |
|             if (TRY(stream.read_bit()))
 | |
|                 len++;
 | |
|             else
 | |
|                 break;
 | |
|         }
 | |
| 
 | |
|         u8 const shift = TRY(stream.read_bits(len)) + (1 << len) - 1;
 | |
|         VERIFY(shift <= 13);
 | |
| 
 | |
|         auto const alphabet_size = TRY(U8(stream)) + 3;
 | |
| 
 | |
|         i32 omit_log = -1;
 | |
|         i32 omit_pos = -1;
 | |
| 
 | |
|         auto same = TRY(FixedArray<i32>::create(alphabet_size));
 | |
|         auto logcounts = TRY(FixedArray<i32>::create(alphabet_size));
 | |
| 
 | |
|         u8 rle {};
 | |
|         for (u16 i = 0; i < alphabet_size; i++) {
 | |
|             logcounts[i] = TRY(read_with_prefix(stream));
 | |
| 
 | |
|             if (logcounts[i] == 13) {
 | |
|                 rle = TRY(U8(stream));
 | |
|                 same[i] = rle + 5;
 | |
|                 i += rle + 3;
 | |
|                 continue;
 | |
|             }
 | |
|             if (logcounts[i] > omit_log) {
 | |
|                 omit_log = logcounts[i];
 | |
|                 omit_pos = i;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         VERIFY(m_distribution[omit_pos] >= 0);
 | |
|         VERIFY(omit_pos + 1 >= alphabet_size || logcounts[omit_pos + 1] != 13);
 | |
| 
 | |
|         i32 prev = 0;
 | |
|         i32 numsame = 0;
 | |
|         i64 total_count {};
 | |
|         for (u16 i = 0; i < alphabet_size; i++) {
 | |
|             if (same[i] != 0) {
 | |
|                 numsame = same[i] - 1;
 | |
|                 prev = i > 0 ? m_distribution[i - 1] : 0;
 | |
|             }
 | |
|             if (numsame > 0) {
 | |
|                 m_distribution[i] = prev;
 | |
|                 numsame--;
 | |
|             } else {
 | |
|                 auto const code = logcounts[i];
 | |
|                 if (i == omit_pos || code == 0)
 | |
|                     continue;
 | |
| 
 | |
|                 if (code == 1) {
 | |
|                     m_distribution[i] = 1;
 | |
|                 } else {
 | |
|                     auto const bitcount = min(max(0, shift - ((12 - code + 1) >> 1)), code - 1);
 | |
|                     m_distribution[i] = (1 << (code - 1)) + (TRY(stream.read_bits(bitcount)) << (code - 1 - bitcount));
 | |
|                 }
 | |
|             }
 | |
|             total_count += m_distribution[i];
 | |
|         }
 | |
|         m_distribution[omit_pos] = (1 << 12) - total_count;
 | |
|         VERIFY(m_distribution[omit_pos] >= 0);
 | |
| 
 | |
|         return alphabet_size;
 | |
|     }
 | |
| 
 | |
|     Vector<u16> m_symbols;
 | |
|     Vector<u16> m_offsets;
 | |
|     Vector<u16> m_cutoffs;
 | |
| 
 | |
|     FixedArray<i32> m_distribution;
 | |
| 
 | |
|     u16 m_log_bucket_size {};
 | |
|     u16 m_bucket_size {};
 | |
| };
 | |
| 
 | |
| struct LZ77 {
 | |
|     bool lz77_enabled {};
 | |
| 
 | |
|     u32 min_symbol {};
 | |
|     u32 min_length {};
 | |
| };
 | |
| 
 | |
| static ErrorOr<LZ77> read_lz77(LittleEndianInputBitStream& stream)
 | |
| {
 | |
|     LZ77 lz77;
 | |
| 
 | |
|     lz77.lz77_enabled = TRY(stream.read_bit());
 | |
| 
 | |
|     if (lz77.lz77_enabled) {
 | |
|         lz77.min_symbol = U32(224, 512, 4096, 8 + TRY(stream.read_bits(15)));
 | |
|         lz77.min_length = U32(3, 4, 5 + TRY(stream.read_bits(2)), 9 + TRY(stream.read_bits(8)));
 | |
|     }
 | |
| 
 | |
|     return lz77;
 | |
| }
 | |
| 
 | |
| class EntropyDecoder {
 | |
|     AK_MAKE_NONCOPYABLE(EntropyDecoder);
 | |
|     AK_MAKE_DEFAULT_MOVABLE(EntropyDecoder);
 | |
| 
 | |
| public:
 | |
|     EntropyDecoder() = default;
 | |
|     ~EntropyDecoder()
 | |
|     {
 | |
|         if (m_state.has_value() && *m_state != 0x130000)
 | |
|             dbgln("JPEGXLLoader: ANS decoder left in invalid state");
 | |
|     }
 | |
| 
 | |
|     static ErrorOr<EntropyDecoder> create(LittleEndianInputBitStream& stream, u32 initial_num_distrib)
 | |
|     {
 | |
|         EntropyDecoder entropy_decoder;
 | |
|         // C.2 - Distribution decoding
 | |
|         entropy_decoder.m_lz77 = TRY(read_lz77(stream));
 | |
| 
 | |
|         if (entropy_decoder.m_lz77.lz77_enabled) {
 | |
|             entropy_decoder.m_lz_dist_ctx = initial_num_distrib++;
 | |
|             entropy_decoder.m_lz_len_conf = TRY(read_config(stream, 8));
 | |
| 
 | |
|             entropy_decoder.m_lz77_window = TRY(FixedArray<u32>::create(1 << 20));
 | |
|         }
 | |
| 
 | |
|         TRY(entropy_decoder.read_pre_clustered_distributions(stream, initial_num_distrib));
 | |
| 
 | |
|         bool const use_prefix_code = TRY(stream.read_bit());
 | |
| 
 | |
|         if (!use_prefix_code)
 | |
|             entropy_decoder.m_log_alphabet_size = 5 + TRY(stream.read_bits(2));
 | |
| 
 | |
|         for (auto& config : entropy_decoder.m_configs)
 | |
|             config = TRY(read_config(stream, entropy_decoder.m_log_alphabet_size));
 | |
| 
 | |
|         if (use_prefix_code) {
 | |
|             entropy_decoder.m_distributions = Vector<BrotliCanonicalCode> {};
 | |
|             auto& distributions = entropy_decoder.m_distributions.get<Vector<BrotliCanonicalCode>>();
 | |
|             TRY(distributions.try_resize(entropy_decoder.m_configs.size()));
 | |
| 
 | |
|             Vector<u16> counts;
 | |
|             TRY(counts.try_resize(entropy_decoder.m_configs.size()));
 | |
| 
 | |
|             for (auto& count : counts) {
 | |
|                 if (TRY(stream.read_bit())) {
 | |
|                     auto const n = TRY(stream.read_bits(4));
 | |
|                     count = 1 + (1 << n) + TRY(stream.read_bits(n));
 | |
|                 } else {
 | |
|                     count = 1;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // After reading the counts, the decoder reads each D[i] (implicitly
 | |
|             // described by a prefix code) as specified in C.2.4, with alphabet_size = count[i].
 | |
|             for (u32 i {}; i < distributions.size(); ++i) {
 | |
|                 // The alphabet size mentioned in the [Brotli] RFC is explicitly specified as parameter alphabet_size
 | |
|                 // when the histogram is being decoded, except in the special case of alphabet_size == 1, where no
 | |
|                 // histogram is read, and all decoded symbols are zero without reading any bits at all.
 | |
|                 if (counts[i] != 1)
 | |
|                     distributions[i] = TRY(BrotliCanonicalCode::read_prefix_code(stream, counts[i]));
 | |
|                 else
 | |
|                     distributions[i] = BrotliCanonicalCode { { 1 }, { 0 } };
 | |
|             }
 | |
|         } else {
 | |
|             entropy_decoder.m_distributions = Vector<ANSHistogram> {};
 | |
|             auto& distributions = entropy_decoder.m_distributions.get<Vector<ANSHistogram>>();
 | |
|             TRY(distributions.try_ensure_capacity(entropy_decoder.m_configs.size()));
 | |
| 
 | |
|             for (u32 i = 0; i < entropy_decoder.m_configs.size(); ++i)
 | |
|                 distributions.empend(TRY(ANSHistogram::read_histogram(stream, entropy_decoder.m_log_alphabet_size)));
 | |
|         }
 | |
| 
 | |
|         return entropy_decoder;
 | |
|     }
 | |
| 
 | |
|     ErrorOr<u32> decode_hybrid_uint(LittleEndianInputBitStream& stream, u32 context)
 | |
|     {
 | |
|         // C.3.3 - Hybrid integer decoding
 | |
| 
 | |
|         static constexpr Array<Array<i8, 2>, 120> kSpecialDistances = {
 | |
|             Array<i8, 2> { 0, 1 }, { 1, 0 }, { 1, 1 }, { -1, 1 }, { 0, 2 }, { 2, 0 }, { 1, 2 }, { -1, 2 }, { 2, 1 }, { -2, 1 }, { 2, 2 },
 | |
|             { -2, 2 }, { 0, 3 }, { 3, 0 }, { 1, 3 }, { -1, 3 }, { 3, 1 }, { -3, 1 }, { 2, 3 }, { -2, 3 }, { 3, 2 },
 | |
|             { -3, 2 }, { 0, 4 }, { 4, 0 }, { 1, 4 }, { -1, 4 }, { 4, 1 }, { -4, 1 }, { 3, 3 }, { -3, 3 }, { 2, 4 },
 | |
|             { -2, 4 }, { 4, 2 }, { -4, 2 }, { 0, 5 }, { 3, 4 }, { -3, 4 }, { 4, 3 }, { -4, 3 }, { 5, 0 }, { 1, 5 },
 | |
|             { -1, 5 }, { 5, 1 }, { -5, 1 }, { 2, 5 }, { -2, 5 }, { 5, 2 }, { -5, 2 }, { 4, 4 }, { -4, 4 }, { 3, 5 },
 | |
|             { -3, 5 }, { 5, 3 }, { -5, 3 }, { 0, 6 }, { 6, 0 }, { 1, 6 }, { -1, 6 }, { 6, 1 }, { -6, 1 }, { 2, 6 },
 | |
|             { -2, 6 }, { 6, 2 }, { -6, 2 }, { 4, 5 }, { -4, 5 }, { 5, 4 }, { -5, 4 }, { 3, 6 }, { -3, 6 }, { 6, 3 },
 | |
|             { -6, 3 }, { 0, 7 }, { 7, 0 }, { 1, 7 }, { -1, 7 }, { 5, 5 }, { -5, 5 }, { 7, 1 }, { -7, 1 }, { 4, 6 },
 | |
|             { -4, 6 }, { 6, 4 }, { -6, 4 }, { 2, 7 }, { -2, 7 }, { 7, 2 }, { -7, 2 }, { 3, 7 }, { -3, 7 }, { 7, 3 },
 | |
|             { -7, 3 }, { 5, 6 }, { -5, 6 }, { 6, 5 }, { -6, 5 }, { 8, 0 }, { 4, 7 }, { -4, 7 }, { 7, 4 }, { -7, 4 },
 | |
|             { 8, 1 }, { 8, 2 }, { 6, 6 }, { -6, 6 }, { 8, 3 }, { 5, 7 }, { -5, 7 }, { 7, 5 }, { -7, 5 }, { 8, 4 }, { 6, 7 },
 | |
|             { -6, 7 }, { 7, 6 }, { -7, 6 }, { 8, 5 }, { 7, 7 }, { -7, 7 }, { 8, 6 }, { 8, 7 }
 | |
|         };
 | |
| 
 | |
|         u32 r {};
 | |
|         if (m_lz77_num_to_copy > 0) {
 | |
|             r = m_lz77_window[(m_lz77_copy_pos++) & 0xFFFFF];
 | |
|             m_lz77_num_to_copy--;
 | |
|         } else {
 | |
|             // Read symbol from entropy coded stream using D[clusters[ctx]]
 | |
|             auto token = TRY(read_symbol(stream, context));
 | |
| 
 | |
|             if (m_lz77.lz77_enabled && token >= m_lz77.min_symbol) {
 | |
|                 m_lz77_num_to_copy = TRY(read_uint(stream, m_lz_len_conf, token - m_lz77.min_symbol)) + m_lz77.min_length;
 | |
|                 // Read symbol using D[clusters[lz_dist_ctx]]
 | |
|                 token = TRY(read_symbol(stream, m_lz_dist_ctx));
 | |
|                 auto distance = TRY(read_uint(stream, m_configs[m_clusters[m_lz_dist_ctx]], token));
 | |
|                 if (m_dist_multiplier == 0) {
 | |
|                     distance++;
 | |
|                 } else if (distance < 120) {
 | |
|                     auto const offset = kSpecialDistances[distance][0];
 | |
|                     distance = offset + m_dist_multiplier * kSpecialDistances[distance][1];
 | |
|                     if (distance < 1)
 | |
|                         distance = 1;
 | |
|                 } else {
 | |
|                     distance -= 119;
 | |
|                 }
 | |
|                 distance = min(distance, min(m_lz77_num_decoded, 1 << 20));
 | |
|                 m_lz77_copy_pos = m_lz77_num_decoded - distance;
 | |
|                 return decode_hybrid_uint(stream, m_clusters[context]);
 | |
|             }
 | |
|             r = TRY(read_uint(stream, m_configs[m_clusters[context]], token));
 | |
|         }
 | |
| 
 | |
|         if (m_lz77.lz77_enabled)
 | |
|             m_lz77_window[(m_lz77_num_decoded++) & 0xFFFFF] = r;
 | |
| 
 | |
|         return r;
 | |
|     }
 | |
| 
 | |
|     void set_dist_multiplier(u32 dist_multiplier)
 | |
|     {
 | |
|         m_dist_multiplier = dist_multiplier;
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     using BrotliCanonicalCode = Compress::Brotli::CanonicalCode;
 | |
| 
 | |
|     struct HybridUint {
 | |
|         u32 split_exponent {};
 | |
|         u32 split {};
 | |
|         u32 msb_in_token {};
 | |
|         u32 lsb_in_token {};
 | |
|     };
 | |
| 
 | |
|     static ErrorOr<u32> read_uint(LittleEndianInputBitStream& stream, HybridUint const& config, u32 token)
 | |
|     {
 | |
|         if (token < config.split)
 | |
|             return token;
 | |
| 
 | |
|         auto const n = config.split_exponent
 | |
|             - config.msb_in_token
 | |
|             - config.lsb_in_token
 | |
|             + ((token - config.split) >> (config.msb_in_token + config.lsb_in_token));
 | |
| 
 | |
|         VERIFY(n < 32);
 | |
| 
 | |
|         u32 const low_bits = token & ((1 << config.lsb_in_token) - 1);
 | |
|         token = token >> config.lsb_in_token;
 | |
|         token &= (1 << config.msb_in_token) - 1;
 | |
|         token |= (1 << config.msb_in_token);
 | |
| 
 | |
|         auto const result = ((token << n | TRY(stream.read_bits(n))) << config.lsb_in_token) | low_bits;
 | |
| 
 | |
|         VERIFY(result < (1ul << 32));
 | |
| 
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     static ErrorOr<HybridUint> read_config(LittleEndianInputBitStream& stream, u8 log_alphabet_size)
 | |
|     {
 | |
|         // C.2.3 - Hybrid integer configuration
 | |
|         HybridUint config {};
 | |
|         config.split_exponent = TRY(stream.read_bits(ceil(log2(log_alphabet_size + 1))));
 | |
|         if (config.split_exponent != log_alphabet_size) {
 | |
|             auto nbits = ceil(log2(config.split_exponent + 1));
 | |
|             config.msb_in_token = TRY(stream.read_bits(nbits));
 | |
|             nbits = ceil(log2(config.split_exponent - config.msb_in_token + 1));
 | |
|             config.lsb_in_token = TRY(stream.read_bits(nbits));
 | |
|         } else {
 | |
|             config.msb_in_token = 0;
 | |
|             config.lsb_in_token = 0;
 | |
|         }
 | |
| 
 | |
|         config.split = 1 << config.split_exponent;
 | |
|         return config;
 | |
|     }
 | |
| 
 | |
|     ErrorOr<u32> read_symbol(LittleEndianInputBitStream& stream, u32 context)
 | |
|     {
 | |
|         u32 token {};
 | |
|         TRY(m_distributions.visit(
 | |
|             [&](Vector<BrotliCanonicalCode> const& distributions) -> ErrorOr<void> {
 | |
|                 token = TRY(distributions[m_clusters[context]].read_symbol(stream));
 | |
|                 return {};
 | |
|             },
 | |
|             [&](Vector<ANSHistogram> const& distributions) -> ErrorOr<void> {
 | |
|                 token = TRY(distributions[m_clusters[context]].read_symbol(stream, m_state));
 | |
|                 return {};
 | |
|             }));
 | |
|         return token;
 | |
|     }
 | |
| 
 | |
|     ErrorOr<void> read_pre_clustered_distributions(LittleEndianInputBitStream& stream, u32 num_distrib)
 | |
|     {
 | |
|         // C.2.2  Distribution clustering
 | |
|         if (num_distrib == 1) {
 | |
|             // If num_dist == 1, then num_clusters = 1 and clusters[0] = 0, and the remainder of this subclause is skipped.
 | |
|             m_clusters = { 0 };
 | |
|             TRY(m_configs.try_resize(1));
 | |
|             return {};
 | |
|         };
 | |
| 
 | |
|         TRY(m_clusters.try_resize(num_distrib));
 | |
| 
 | |
|         bool const is_simple = TRY(stream.read_bit());
 | |
| 
 | |
|         u16 num_clusters = 0;
 | |
| 
 | |
|         auto const read_clusters = [&](auto&& reader) -> ErrorOr<void> {
 | |
|             for (u32 i {}; i < num_distrib; ++i) {
 | |
|                 m_clusters[i] = TRY(reader());
 | |
|                 if (m_clusters[i] >= num_clusters)
 | |
|                     num_clusters = m_clusters[i] + 1;
 | |
|             }
 | |
|             return {};
 | |
|         };
 | |
| 
 | |
|         if (is_simple) {
 | |
|             u8 const nbits = TRY(stream.read_bits(2));
 | |
|             TRY(read_clusters([nbits, &stream]() { return stream.read_bits(nbits); }));
 | |
|         } else {
 | |
|             auto const use_mtf = TRY(stream.read_bit());
 | |
|             if (num_distrib == 2)
 | |
|                 TODO();
 | |
| 
 | |
|             auto decoder = TRY(EntropyDecoder::create(stream, 1));
 | |
| 
 | |
|             TRY(read_clusters([&]() { return decoder.decode_hybrid_uint(stream, 0); }));
 | |
| 
 | |
|             if (use_mtf)
 | |
|                 TODO();
 | |
|         }
 | |
|         TRY(m_configs.try_resize(num_clusters));
 | |
|         return {};
 | |
|     }
 | |
| 
 | |
|     LZ77 m_lz77 {};
 | |
|     u32 m_lz_dist_ctx {};
 | |
|     HybridUint m_lz_len_conf {};
 | |
|     FixedArray<u32> m_lz77_window {};
 | |
|     u32 m_lz77_num_to_copy {};
 | |
|     u32 m_lz77_copy_pos {};
 | |
|     u32 m_lz77_num_decoded {};
 | |
|     u32 m_dist_multiplier {};
 | |
| 
 | |
|     Vector<u32> m_clusters;
 | |
|     Vector<HybridUint> m_configs;
 | |
| 
 | |
|     u8 m_log_alphabet_size { 15 };
 | |
| 
 | |
|     Variant<Vector<BrotliCanonicalCode>, Vector<ANSHistogram>> m_distributions { Vector<BrotliCanonicalCode> {} }; // D in the spec
 | |
|     Optional<u32> m_state {};
 | |
| };
 | |
| ///
 | |
| 
 | |
| /// H.4.2 - MA tree decoding
 | |
| class MATree {
 | |
| public:
 | |
|     struct LeafNode {
 | |
|         u32 ctx {};
 | |
|         u8 predictor {};
 | |
|         i32 offset {};
 | |
|         u32 multiplier {};
 | |
|     };
 | |
| 
 | |
|     static ErrorOr<MATree> decode(LittleEndianInputBitStream& stream, Optional<EntropyDecoder>& decoder)
 | |
|     {
 | |
|         // G.1.3 - GlobalModular
 | |
|         MATree tree;
 | |
| 
 | |
|         // 1 / 2 Read the 6 pre-clustered distributions
 | |
|         auto const num_distrib = 6;
 | |
|         if (!decoder.has_value())
 | |
|             decoder = TRY(EntropyDecoder::create(stream, num_distrib));
 | |
| 
 | |
|         // 2 / 2 Decode the tree
 | |
| 
 | |
|         u64 ctx_id = 0;
 | |
|         u64 nodes_left = 1;
 | |
|         tree.m_tree.clear();
 | |
| 
 | |
|         while (nodes_left > 0) {
 | |
|             nodes_left--;
 | |
| 
 | |
|             i32 const property = TRY(decoder->decode_hybrid_uint(stream, 1)) - 1;
 | |
| 
 | |
|             if (property >= 0) {
 | |
|                 DecisionNode decision_node;
 | |
|                 decision_node.property = property;
 | |
|                 decision_node.value = unpack_signed(TRY(decoder->decode_hybrid_uint(stream, 0)));
 | |
|                 decision_node.left_child = tree.m_tree.size() + nodes_left + 1;
 | |
|                 decision_node.right_child = tree.m_tree.size() + nodes_left + 2;
 | |
|                 tree.m_tree.empend(decision_node);
 | |
|                 nodes_left += 2;
 | |
|             } else {
 | |
|                 LeafNode leaf_node;
 | |
|                 leaf_node.ctx = ctx_id++;
 | |
|                 leaf_node.predictor = TRY(decoder->decode_hybrid_uint(stream, 2));
 | |
|                 leaf_node.offset = unpack_signed(TRY(decoder->decode_hybrid_uint(stream, 3)));
 | |
|                 auto const mul_log = TRY(decoder->decode_hybrid_uint(stream, 4));
 | |
|                 auto const mul_bits = TRY(decoder->decode_hybrid_uint(stream, 5));
 | |
|                 leaf_node.multiplier = (mul_bits + 1) << mul_log;
 | |
|                 tree.m_tree.empend(leaf_node);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Finally, the decoder reads (tree.size() + 1) / 2 pre-clustered distributions D as specified in C.1.
 | |
| 
 | |
|         auto const num_pre_clustered_distributions = (tree.m_tree.size() + 1) / 2;
 | |
|         decoder = TRY(decoder->create(stream, num_pre_clustered_distributions));
 | |
| 
 | |
|         return tree;
 | |
|     }
 | |
| 
 | |
|     LeafNode get_leaf(Vector<i32> const& properties) const
 | |
|     {
 | |
|         // To find the MA leaf node, the MA tree is traversed, starting at the root node tree[0]
 | |
|         // and for each decision node d, testing if property[d.property] > d.value, proceeding to
 | |
|         // the node tree[d.left_child] if the test evaluates to true and to the node tree[d.right_child]
 | |
|         // otherwise, until a leaf node is reached.
 | |
| 
 | |
|         DecisionNode node { m_tree[0].get<DecisionNode>() };
 | |
|         while (true) {
 | |
|             auto const next_node = [this, &properties, &node]() {
 | |
|                 // Note: The behavior when trying to access a non-existing property is taken from jxl-oxide
 | |
|                 if (node.property < properties.size() && properties[node.property] > node.value)
 | |
|                     return m_tree[node.left_child];
 | |
|                 return m_tree[node.right_child];
 | |
|             }();
 | |
| 
 | |
|             if (next_node.has<LeafNode>())
 | |
|                 return next_node.get<LeafNode>();
 | |
|             node = next_node.get<DecisionNode>();
 | |
|         }
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     struct DecisionNode {
 | |
|         u64 property {};
 | |
|         i64 value {};
 | |
|         u64 left_child {};
 | |
|         u64 right_child {};
 | |
|     };
 | |
| 
 | |
|     Vector<Variant<DecisionNode, LeafNode>> m_tree;
 | |
| };
 | |
| ///
 | |
| 
 | |
| /// H.5 - Self-correcting predictor
 | |
| struct WPHeader {
 | |
|     u8 wp_p1 { 16 };
 | |
|     u8 wp_p2 { 10 };
 | |
|     u8 wp_p3a { 7 };
 | |
|     u8 wp_p3b { 7 };
 | |
|     u8 wp_p3c { 7 };
 | |
|     u8 wp_p3d { 0 };
 | |
|     u8 wp_p3e { 0 };
 | |
|     Array<u8, 4> wp_w { 13, 12, 12, 12 };
 | |
| };
 | |
| 
 | |
| static ErrorOr<WPHeader> read_self_correcting_predictor(LittleEndianInputBitStream& stream)
 | |
| {
 | |
|     WPHeader self_correcting_predictor {};
 | |
| 
 | |
|     bool const default_wp = TRY(stream.read_bit());
 | |
| 
 | |
|     if (!default_wp) {
 | |
|         TODO();
 | |
|     }
 | |
| 
 | |
|     return self_correcting_predictor;
 | |
| }
 | |
| ///
 | |
| 
 | |
| ///
 | |
| struct TransformInfo {
 | |
|     enum class TransformId {
 | |
|         kRCT = 0,
 | |
|         kPalette = 1,
 | |
|         kSqueeze = 2,
 | |
|     };
 | |
| 
 | |
|     TransformId tr {};
 | |
|     u32 begin_c {};
 | |
|     u32 rct_type {};
 | |
| };
 | |
| 
 | |
| static ErrorOr<TransformInfo> read_transform_info(LittleEndianInputBitStream& stream)
 | |
| {
 | |
|     TransformInfo transform_info;
 | |
| 
 | |
|     transform_info.tr = static_cast<TransformInfo::TransformId>(TRY(stream.read_bits(2)));
 | |
| 
 | |
|     if (transform_info.tr != TransformInfo::TransformId::kSqueeze) {
 | |
|         transform_info.begin_c = U32(
 | |
|             TRY(stream.read_bits(3)),
 | |
|             8 + TRY(stream.read_bits(3)),
 | |
|             72 + TRY(stream.read_bits(10)),
 | |
|             1096 + TRY(stream.read_bits(13)));
 | |
|     }
 | |
| 
 | |
|     if (transform_info.tr == TransformInfo::TransformId::kRCT) {
 | |
|         transform_info.rct_type = U32(
 | |
|             6,
 | |
|             TRY(stream.read_bits(2)),
 | |
|             2 + TRY(stream.read_bits(4)),
 | |
|             10 + TRY(stream.read_bits(6)));
 | |
|     }
 | |
| 
 | |
|     if (transform_info.tr != TransformInfo::TransformId::kRCT)
 | |
|         TODO();
 | |
| 
 | |
|     return transform_info;
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// Local abstractions to store the decoded image
 | |
| class Channel {
 | |
| public:
 | |
|     static ErrorOr<Channel> create(u32 width, u32 height)
 | |
|     {
 | |
|         Channel channel;
 | |
| 
 | |
|         channel.m_width = width;
 | |
|         channel.m_height = height;
 | |
| 
 | |
|         TRY(channel.m_pixels.try_resize(channel.m_width * channel.m_height));
 | |
| 
 | |
|         return channel;
 | |
|     }
 | |
| 
 | |
|     i32 get(u32 x, u32 y) const
 | |
|     {
 | |
|         return m_pixels[y * m_width + x];
 | |
|     }
 | |
| 
 | |
|     void set(u32 x, u32 y, i32 value)
 | |
|     {
 | |
|         m_pixels[y * m_width + x] = value;
 | |
|     }
 | |
| 
 | |
|     u32 width() const
 | |
|     {
 | |
|         return m_width;
 | |
|     }
 | |
| 
 | |
|     u32 height() const
 | |
|     {
 | |
|         return m_height;
 | |
|     }
 | |
| 
 | |
|     u32 hshift() const
 | |
|     {
 | |
|         return m_hshift;
 | |
|     }
 | |
| 
 | |
|     u32 vshift() const
 | |
|     {
 | |
|         return m_vshift;
 | |
|     }
 | |
| 
 | |
|     bool decoded() const
 | |
|     {
 | |
|         return m_decoded;
 | |
|     }
 | |
| 
 | |
|     void set_decoded(bool decoded)
 | |
|     {
 | |
|         m_decoded = decoded;
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     u32 m_width {};
 | |
|     u32 m_height {};
 | |
| 
 | |
|     u32 m_hshift {};
 | |
|     u32 m_vshift {};
 | |
| 
 | |
|     bool m_decoded { false };
 | |
| 
 | |
|     Vector<i32> m_pixels {};
 | |
| };
 | |
| 
 | |
| class Image {
 | |
| public:
 | |
|     static ErrorOr<Image> create(IntSize size, ImageMetadata const& metadata)
 | |
|     {
 | |
|         Image image {};
 | |
| 
 | |
|         for (u16 i = 0; i < metadata.number_of_channels(); ++i) {
 | |
|             if (i < metadata.number_of_color_channels()) {
 | |
|                 TRY(image.m_channels.try_append(TRY(Channel::create(size.width(), size.height()))));
 | |
|             } else {
 | |
|                 auto const dim_shift = metadata.ec_info[i - metadata.number_of_color_channels()].dim_shift;
 | |
|                 TRY(image.m_channels.try_append(TRY(Channel::create(size.width() >> dim_shift, size.height() >> dim_shift))));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return image;
 | |
|     }
 | |
| 
 | |
|     void blend_into(Image& image, FrameHeader const& frame_header) const
 | |
|     {
 | |
|         // FIXME: We should use ec_blending_info when appropriate
 | |
| 
 | |
|         if (frame_header.blending_info.mode != BlendingInfo::BlendMode::kReplace)
 | |
|             TODO();
 | |
| 
 | |
|         for (u16 i = 0; i < m_channels.size(); ++i) {
 | |
|             auto const& input_channel = m_channels[i];
 | |
|             auto& output_channel = image.channels()[i];
 | |
| 
 | |
|             for (u32 y = 0; y < input_channel.height(); ++y) {
 | |
|                 auto const corrected_y = static_cast<i64>(y) + frame_header.y0;
 | |
|                 if (corrected_y < 0)
 | |
|                     continue;
 | |
|                 if (corrected_y >= output_channel.height())
 | |
|                     break;
 | |
| 
 | |
|                 for (u32 x = 0; x < input_channel.width(); ++x) {
 | |
|                     auto const corrected_x = static_cast<i64>(x) + frame_header.x0;
 | |
|                     if (corrected_x < 0)
 | |
|                         continue;
 | |
|                     if (corrected_x >= output_channel.width())
 | |
|                         break;
 | |
| 
 | |
|                     output_channel.set(corrected_x, corrected_y, input_channel.get(x, y));
 | |
|                 }
 | |
|             }
 | |
|         };
 | |
|     }
 | |
| 
 | |
|     ErrorOr<NonnullRefPtr<Bitmap>> to_bitmap(ImageMetadata& metadata) const
 | |
|     {
 | |
|         // FIXME: which channel size should we use?
 | |
|         auto const width = m_channels[0].width();
 | |
|         auto const height = m_channels[0].height();
 | |
| 
 | |
|         auto const orientation = static_cast<ExifOrientedBitmap::Orientation>(metadata.orientation);
 | |
|         auto oriented_bitmap = TRY(ExifOrientedBitmap::create(BitmapFormat::BGRA8888, { width, height }, orientation));
 | |
| 
 | |
|         auto const alpha_channel = metadata.alpha_channel();
 | |
| 
 | |
|         auto const bits_per_sample = metadata.bit_depth.bits_per_sample;
 | |
|         VERIFY(bits_per_sample >= 8);
 | |
|         for (u32 y {}; y < height; ++y) {
 | |
|             for (u32 x {}; x < width; ++x) {
 | |
|                 auto const to_u8 = [&, bits_per_sample](i32 sample) -> u8 {
 | |
|                     // FIXME: Don't truncate the result to 8 bits
 | |
|                     static constexpr auto maximum_supported_bit_depth = 8;
 | |
|                     if (bits_per_sample > maximum_supported_bit_depth)
 | |
|                         sample >>= (bits_per_sample - maximum_supported_bit_depth);
 | |
| 
 | |
|                     return clamp(sample + .5, 0, (1 << maximum_supported_bit_depth) - 1);
 | |
|                 };
 | |
| 
 | |
|                 auto const color = [&]() -> Color {
 | |
|                     if (!alpha_channel.has_value()) {
 | |
|                         return { to_u8(m_channels[0].get(x, y)),
 | |
|                             to_u8(m_channels[1].get(x, y)),
 | |
|                             to_u8(m_channels[2].get(x, y)) };
 | |
|                     }
 | |
| 
 | |
|                     return {
 | |
|                         to_u8(m_channels[0].get(x, y)),
 | |
|                         to_u8(m_channels[1].get(x, y)),
 | |
|                         to_u8(m_channels[2].get(x, y)),
 | |
|                         to_u8(m_channels[*alpha_channel].get(x, y)),
 | |
|                     };
 | |
|                 }();
 | |
|                 oriented_bitmap.set_pixel(x, y, color);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return oriented_bitmap.bitmap();
 | |
|     }
 | |
| 
 | |
|     Vector<Channel>& channels()
 | |
|     {
 | |
|         return m_channels;
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     Vector<Channel> m_channels;
 | |
| };
 | |
| ///
 | |
| 
 | |
| /// H.5 - Self-correcting predictor
 | |
| struct Neighborhood {
 | |
|     i32 N {};
 | |
|     i32 NW {};
 | |
|     i32 NE {};
 | |
|     i32 W {};
 | |
|     i32 NN {};
 | |
|     i32 WW {};
 | |
|     i32 NEE {};
 | |
| };
 | |
| 
 | |
| class SelfCorrectingData {
 | |
| public:
 | |
|     struct Predictions {
 | |
|         i32 prediction {};
 | |
|         Array<i32, 4> subpred {};
 | |
| 
 | |
|         i32 max_error {};
 | |
|         i32 true_err {};
 | |
|         Array<i32, 4> err {};
 | |
|     };
 | |
| 
 | |
|     static ErrorOr<SelfCorrectingData> create(WPHeader const& wp_params, u32 width)
 | |
|     {
 | |
|         SelfCorrectingData self_correcting_data { wp_params };
 | |
|         self_correcting_data.m_width = width;
 | |
| 
 | |
|         self_correcting_data.m_previous = TRY(FixedArray<Predictions>::create(width));
 | |
|         self_correcting_data.m_current_row = TRY(FixedArray<Predictions>::create(width));
 | |
|         self_correcting_data.m_next_row = TRY(FixedArray<Predictions>::create(width));
 | |
| 
 | |
|         return self_correcting_data;
 | |
|     }
 | |
| 
 | |
|     void register_next_row()
 | |
|     {
 | |
|         auto tmp = move(m_previous);
 | |
|         m_previous = move(m_current_row);
 | |
|         m_current_row = move(m_next_row);
 | |
|         // We reuse m_previous to avoid an allocation, no values are kept
 | |
|         // everything will be overridden.
 | |
|         m_next_row = move(tmp);
 | |
|         m_current_row_index++;
 | |
|     }
 | |
| 
 | |
|     Predictions compute_predictions(Neighborhood const& neighborhood, u32 x)
 | |
|     {
 | |
|         auto& current_predictions = m_next_row[x];
 | |
| 
 | |
|         auto const N3 = neighborhood.N << 3;
 | |
|         auto const NW3 = neighborhood.NW << 3;
 | |
|         auto const NE3 = neighborhood.NE << 3;
 | |
|         auto const W3 = neighborhood.W << 3;
 | |
|         auto const NN3 = neighborhood.NN << 3;
 | |
| 
 | |
|         auto const predictions_W = predictions_for(x, Direction::West);
 | |
|         auto const predictions_N = predictions_for(x, Direction::North);
 | |
|         auto const predictions_NE = predictions_for(x, Direction::NorthEast);
 | |
|         auto const predictions_NW = predictions_for(x, Direction::NorthWest);
 | |
|         auto const predictions_WW = predictions_for(x, Direction::WestWest);
 | |
| 
 | |
|         current_predictions.subpred[0] = W3 + NE3 - N3;
 | |
|         current_predictions.subpred[1] = N3 - (((predictions_W.true_err + predictions_N.true_err + predictions_NE.true_err) * wp_params.wp_p1) >> 5);
 | |
|         current_predictions.subpred[2] = W3 - (((predictions_W.true_err + predictions_N.true_err + predictions_NW.true_err) * wp_params.wp_p2) >> 5);
 | |
|         current_predictions.subpred[3] = N3 - ((predictions_NW.true_err * wp_params.wp_p3a + predictions_N.true_err * wp_params.wp_p3b + predictions_NE.true_err * wp_params.wp_p3c + (NN3 - N3) * wp_params.wp_p3d + (NW3 - W3) * wp_params.wp_p3e) >> 5);
 | |
| 
 | |
|         auto const error2weight = [](i32 err_sum, u8 maxweight) -> i32 {
 | |
|             i32 shift = floor(log2(err_sum + 1)) - 5;
 | |
|             if (shift < 0)
 | |
|                 shift = 0;
 | |
|             return 4 + ((static_cast<u64>(maxweight) * ((1 << 24) / ((err_sum >> shift) + 1))) >> shift);
 | |
|         };
 | |
| 
 | |
|         Array<i32, 4> weight {};
 | |
|         for (u8 i = 0; i < weight.size(); ++i) {
 | |
|             auto err_sum = predictions_N.err[i] + predictions_W.err[i] + predictions_NW.err[i] + predictions_WW.err[i] + predictions_NE.err[i];
 | |
|             if (x == m_width - 1)
 | |
|                 err_sum += predictions_W.err[i];
 | |
|             weight[i] = error2weight(err_sum, wp_params.wp_w[i]);
 | |
|         }
 | |
| 
 | |
|         auto sum_weights = weight[0] + weight[1] + weight[2] + weight[3];
 | |
|         i32 const log_weight = floor(log2(sum_weights)) + 1;
 | |
|         for (u8 i = 0; i < 4; i++)
 | |
|             weight[i] = weight[i] >> (log_weight - 5);
 | |
|         sum_weights = weight[0] + weight[1] + weight[2] + weight[3];
 | |
| 
 | |
|         auto s = (sum_weights >> 1) - 1;
 | |
|         for (u8 i = 0; i < 4; i++)
 | |
|             s += current_predictions.subpred[i] * weight[i];
 | |
| 
 | |
|         current_predictions.prediction = static_cast<u64>(s) * ((1 << 24) / sum_weights) >> 24;
 | |
|         // if true_err_N, true_err_W and true_err_NW don't have the same sign
 | |
|         if (((predictions_N.true_err ^ predictions_W.true_err) | (predictions_N.true_err ^ predictions_NW.true_err)) <= 0) {
 | |
|             current_predictions.prediction = clamp(current_predictions.prediction, min(W3, min(N3, NE3)), max(W3, max(N3, NE3)));
 | |
|         }
 | |
| 
 | |
|         auto& max_error = current_predictions.max_error;
 | |
|         max_error = predictions_W.true_err;
 | |
|         if (abs(predictions_N.true_err) > abs(max_error))
 | |
|             max_error = predictions_N.true_err;
 | |
|         if (abs(predictions_NW.true_err) > abs(max_error))
 | |
|             max_error = predictions_NW.true_err;
 | |
|         if (abs(predictions_NE.true_err) > abs(max_error))
 | |
|             max_error = predictions_NE.true_err;
 | |
| 
 | |
|         return current_predictions;
 | |
|     }
 | |
| 
 | |
|     // H.5.1 - General
 | |
|     void compute_errors(u32 x, i32 true_value)
 | |
|     {
 | |
|         auto& current_predictions = m_next_row[x];
 | |
| 
 | |
|         current_predictions.true_err = current_predictions.prediction - (true_value << 3);
 | |
| 
 | |
|         for (u8 i = 0; i < 4; ++i)
 | |
|             current_predictions.err[i] = (abs(current_predictions.subpred[i] - (true_value << 3)) + 3) >> 3;
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     SelfCorrectingData(WPHeader const& wp)
 | |
|         : wp_params(wp)
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     enum class Direction {
 | |
|         North,
 | |
|         NorthWest,
 | |
|         NorthEast,
 | |
|         West,
 | |
|         NorthNorth,
 | |
|         WestWest
 | |
|     };
 | |
| 
 | |
|     Predictions predictions_for(u32 x, Direction direction) const
 | |
|     {
 | |
|         // H.5.2 - Prediction
 | |
|         auto const north = [&]() {
 | |
|             return m_current_row_index < 1 ? Predictions {} : m_current_row[x];
 | |
|         };
 | |
| 
 | |
|         switch (direction) {
 | |
|         case Direction::North:
 | |
|             return north();
 | |
|         case Direction::NorthWest:
 | |
|             return x < 1 ? north() : m_current_row[x - 1];
 | |
|         case Direction::NorthEast:
 | |
|             return x + 1 >= m_current_row.size() ? north() : m_current_row[x + 1];
 | |
|         case Direction::West:
 | |
|             return x < 1 ? Predictions {} : m_next_row[x - 1];
 | |
|         case Direction::NorthNorth:
 | |
|             return m_current_row_index < 2 ? Predictions {} : m_previous[x];
 | |
|         case Direction::WestWest:
 | |
|             return x < 2 ? Predictions {} : m_next_row[x - 2];
 | |
|         }
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
| 
 | |
|     WPHeader const& wp_params {};
 | |
| 
 | |
|     u32 m_width {};
 | |
|     u32 m_current_row_index {};
 | |
| 
 | |
|     FixedArray<Predictions> m_previous {};
 | |
|     FixedArray<Predictions> m_current_row {};
 | |
| 
 | |
|     FixedArray<Predictions> m_next_row {};
 | |
| };
 | |
| ///
 | |
| 
 | |
| /// H.2 - Image decoding
 | |
| struct ModularHeader {
 | |
|     bool use_global_tree {};
 | |
|     WPHeader wp_params {};
 | |
|     Vector<TransformInfo> transform {};
 | |
| };
 | |
| 
 | |
| static ErrorOr<Vector<i32>> get_properties(Vector<Channel> const& channels, u16 i, u32 x, u32 y, i32 max_error)
 | |
| {
 | |
|     Vector<i32> properties;
 | |
| 
 | |
|     // Table H.4 - Property definitions
 | |
|     TRY(properties.try_append(i));
 | |
|     // FIXME: Handle other cases than GlobalModular
 | |
|     TRY(properties.try_append(0));
 | |
|     TRY(properties.try_append(y));
 | |
|     TRY(properties.try_append(x));
 | |
| 
 | |
|     i32 const W = x > 0 ? channels[i].get(x - 1, y) : (y > 0 ? channels[i].get(x, y - 1) : 0);
 | |
|     i32 const N = y > 0 ? channels[i].get(x, y - 1) : W;
 | |
|     i32 const NW = x > 0 && y > 0 ? channels[i].get(x - 1, y - 1) : W;
 | |
|     i32 const NE = x + 1 < channels[i].width() && y > 0 ? channels[i].get(x + 1, y - 1) : N;
 | |
|     i32 const NN = y > 1 ? channels[i].get(x, y - 2) : N;
 | |
|     i32 const WW = x > 1 ? channels[i].get(x - 2, y) : W;
 | |
| 
 | |
|     TRY(properties.try_append(abs(N)));
 | |
|     TRY(properties.try_append(abs(W)));
 | |
|     TRY(properties.try_append(N));
 | |
|     TRY(properties.try_append(W));
 | |
| 
 | |
|     // x > 0 ? W - /* (the value of property 9 at position (x - 1, y)) */ : W
 | |
|     if (x > 0) {
 | |
|         auto const x_1 = x - 1;
 | |
|         i32 const W_x_1 = x_1 > 0 ? channels[i].get(x_1 - 1, y) : (y > 0 ? channels[i].get(x_1, y - 1) : 0);
 | |
|         i32 const N_x_1 = y > 0 ? channels[i].get(x_1, y - 1) : W_x_1;
 | |
|         i32 const NW_x_1 = x_1 > 0 && y > 0 ? channels[i].get(x_1 - 1, y - 1) : W_x_1;
 | |
|         TRY(properties.try_append(W - (W_x_1 + N_x_1 - NW_x_1)));
 | |
|     } else {
 | |
|         TRY(properties.try_append(W));
 | |
|     }
 | |
| 
 | |
|     TRY(properties.try_append(W + N - NW));
 | |
|     TRY(properties.try_append(W - NW));
 | |
|     TRY(properties.try_append(NW - N));
 | |
|     TRY(properties.try_append(N - NE));
 | |
|     TRY(properties.try_append(N - NN));
 | |
|     TRY(properties.try_append(W - WW));
 | |
| 
 | |
|     TRY(properties.try_append(max_error));
 | |
| 
 | |
|     for (i16 j = i - 1; j >= 0; j--) {
 | |
|         if (channels[j].width() != channels[i].width())
 | |
|             continue;
 | |
|         if (channels[j].height() != channels[i].height())
 | |
|             continue;
 | |
|         if (channels[j].hshift() != channels[i].hshift())
 | |
|             continue;
 | |
|         if (channels[j].vshift() != channels[i].vshift())
 | |
|             continue;
 | |
|         auto rC = channels[j].get(x, y);
 | |
|         auto rW = (x > 0 ? channels[j].get(x - 1, y) : 0);
 | |
|         auto rN = (y > 0 ? channels[j].get(x, y - 1) : rW);
 | |
|         auto rNW = (x > 0 && y > 0 ? channels[j].get(x - 1, y - 1) : rW);
 | |
|         auto rG = clamp(rW + rN - rNW, min(rW, rN), max(rW, rN));
 | |
|         TRY(properties.try_append(abs(rC)));
 | |
|         TRY(properties.try_append(rC));
 | |
|         TRY(properties.try_append(abs(rC - rG)));
 | |
|         TRY(properties.try_append(rC - rG));
 | |
|     }
 | |
|     return properties;
 | |
| }
 | |
| 
 | |
| static i32 prediction(Neighborhood const& neighborhood, i32 self_correcting, u32 predictor)
 | |
| {
 | |
|     switch (predictor) {
 | |
|     case 0:
 | |
|         return 0;
 | |
|     case 1:
 | |
|         return neighborhood.W;
 | |
|     case 2:
 | |
|         return neighborhood.N;
 | |
|     case 3:
 | |
|         return (neighborhood.W + neighborhood.N) / 2;
 | |
|     case 4:
 | |
|         return abs(neighborhood.N - neighborhood.NW) < abs(neighborhood.W - neighborhood.NW) ? neighborhood.W : neighborhood.N;
 | |
|     case 5:
 | |
|         return clamp(neighborhood.W + neighborhood.N - neighborhood.NW, min(neighborhood.W, neighborhood.N), max(neighborhood.W, neighborhood.N));
 | |
|     case 6:
 | |
|         return (self_correcting + 3) >> 3;
 | |
|     case 7:
 | |
|         return neighborhood.NE;
 | |
|     case 8:
 | |
|         return neighborhood.NW;
 | |
|     case 9:
 | |
|         return neighborhood.WW;
 | |
|     case 10:
 | |
|         return (neighborhood.W + neighborhood.NW) / 2;
 | |
|     case 11:
 | |
|         return (neighborhood.N + neighborhood.NW) / 2;
 | |
|     case 12:
 | |
|         return (neighborhood.N + neighborhood.NE) / 2;
 | |
|     case 13:
 | |
|         return (6 * neighborhood.N - 2 * neighborhood.NN + 7 * neighborhood.W + neighborhood.WW + neighborhood.NEE + 3 * neighborhood.NE + 8) / 16;
 | |
|     }
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| static Neighborhood retrieve_neighborhood(Channel const& channel, u32 x, u32 y)
 | |
| {
 | |
|     i32 const W = x > 0 ? channel.get(x - 1, y) : (y > 0 ? channel.get(x, y - 1) : 0);
 | |
|     i32 const N = y > 0 ? channel.get(x, y - 1) : W;
 | |
|     i32 const NW = x > 0 && y > 0 ? channel.get(x - 1, y - 1) : W;
 | |
|     i32 const NE = x + 1 < channel.width() && y > 0 ? channel.get(x + 1, y - 1) : N;
 | |
|     i32 const NN = y > 1 ? channel.get(x, y - 2) : N;
 | |
|     i32 const WW = x > 1 ? channel.get(x - 2, y) : W;
 | |
|     i32 const NEE = x + 2 < channel.width() && y > 0 ? channel.get(x + 2, y - 1) : NE;
 | |
| 
 | |
|     Neighborhood const neighborhood {
 | |
|         .N = N,
 | |
|         .NW = NW,
 | |
|         .NE = NE,
 | |
|         .W = W,
 | |
|         .NN = NN,
 | |
|         .WW = WW,
 | |
|         .NEE = NEE,
 | |
|     };
 | |
| 
 | |
|     return neighborhood;
 | |
| }
 | |
| 
 | |
| static ErrorOr<ModularHeader> read_modular_header(LittleEndianInputBitStream& stream,
 | |
|     Image& image,
 | |
|     ImageMetadata const& metadata,
 | |
|     Optional<EntropyDecoder>& decoder,
 | |
|     MATree const& global_tree,
 | |
|     u16 num_channels)
 | |
| {
 | |
|     ModularHeader modular_header;
 | |
| 
 | |
|     modular_header.use_global_tree = TRY(stream.read_bit());
 | |
|     modular_header.wp_params = TRY(read_self_correcting_predictor(stream));
 | |
|     auto const nb_transforms = U32(0, 1, 2 + TRY(stream.read_bits(4)), 18 + TRY(stream.read_bits(8)));
 | |
| 
 | |
|     TRY(modular_header.transform.try_resize(nb_transforms));
 | |
|     for (u32 i {}; i < nb_transforms; ++i)
 | |
|         modular_header.transform[i] = TRY(read_transform_info(stream));
 | |
| 
 | |
|     Optional<MATree> local_tree;
 | |
|     if (!modular_header.use_global_tree)
 | |
|         TODO();
 | |
| 
 | |
|     // where dist_multiplier is set to the largest channel width amongst all channels
 | |
|     // that are to be decoded, excluding the meta-channels.
 | |
|     auto const dist_multiplier = [&]() {
 | |
|         u32 dist_multiplier {};
 | |
|         // FIXME: This should start at nb_meta_channels not 0
 | |
|         for (u16 i = 0; i < metadata.number_of_channels(); ++i) {
 | |
|             if (image.channels()[i].width() > dist_multiplier)
 | |
|                 dist_multiplier = image.channels()[i].width();
 | |
|         }
 | |
|         return dist_multiplier;
 | |
|     }();
 | |
|     decoder->set_dist_multiplier(dist_multiplier);
 | |
| 
 | |
|     // The decoder then starts an entropy-coded stream (C.1) and decodes the data for each channel
 | |
|     // (in ascending order of index) as specified in H.3, skipping any channels having width or height
 | |
|     // zero. Finally, the inverse transformations are applied (from last to first) as described in H.6.
 | |
| 
 | |
|     auto const& tree = local_tree.has_value() ? *local_tree : global_tree;
 | |
|     for (u16 i {}; i < num_channels; ++i) {
 | |
| 
 | |
|         auto self_correcting_data = TRY(SelfCorrectingData::create(modular_header.wp_params, image.channels()[i].width()));
 | |
| 
 | |
|         for (u32 y {}; y < image.channels()[i].height(); y++) {
 | |
|             for (u32 x {}; x < image.channels()[i].width(); x++) {
 | |
|                 auto const neighborhood = retrieve_neighborhood(image.channels()[i], x, y);
 | |
| 
 | |
|                 auto const self_prediction = self_correcting_data.compute_predictions(neighborhood, x);
 | |
| 
 | |
|                 auto const properties = TRY(get_properties(image.channels(), i, x, y, self_prediction.max_error));
 | |
|                 auto const leaf_node = tree.get_leaf(properties);
 | |
|                 auto diff = unpack_signed(TRY(decoder->decode_hybrid_uint(stream, leaf_node.ctx)));
 | |
|                 diff = (diff * leaf_node.multiplier) + leaf_node.offset;
 | |
|                 auto const total = diff + prediction(neighborhood, self_prediction.prediction, leaf_node.predictor);
 | |
| 
 | |
|                 self_correcting_data.compute_errors(x, total);
 | |
|                 image.channels()[i].set(x, y, total);
 | |
|             }
 | |
| 
 | |
|             self_correcting_data.register_next_row();
 | |
|         }
 | |
| 
 | |
|         image.channels()[i].set_decoded(true);
 | |
|     }
 | |
| 
 | |
|     return modular_header;
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// G.1.2 - LF channel dequantization weights
 | |
| struct GlobalModular {
 | |
|     MATree ma_tree;
 | |
|     ModularHeader modular_header;
 | |
| };
 | |
| 
 | |
| static ErrorOr<GlobalModular> read_global_modular(LittleEndianInputBitStream& stream,
 | |
|     Image& image,
 | |
|     FrameHeader const& frame_header,
 | |
|     ImageMetadata const& metadata,
 | |
|     Optional<EntropyDecoder>& entropy_decoder)
 | |
| {
 | |
|     GlobalModular global_modular;
 | |
| 
 | |
|     auto const decode_ma_tree = TRY(stream.read_bit());
 | |
| 
 | |
|     if (decode_ma_tree)
 | |
|         global_modular.ma_tree = TRY(MATree::decode(stream, entropy_decoder));
 | |
| 
 | |
|     // The decoder then decodes a modular sub-bitstream (Annex H), where
 | |
|     // the number of channels is computed as follows:
 | |
| 
 | |
|     auto num_channels = metadata.num_extra_channels;
 | |
|     if (frame_header.encoding == FrameHeader::Encoding::kModular) {
 | |
|         if (!frame_header.do_YCbCr && !metadata.xyb_encoded
 | |
|             && metadata.colour_encoding.colour_space == ColourEncoding::ColourSpace::kGrey) {
 | |
|             num_channels += 1;
 | |
|         } else {
 | |
|             num_channels += 3;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // FIXME: Ensure this spec comment:
 | |
|     //        However, the decoder only decodes the first nb_meta_channels channels and any further channels
 | |
|     //        that have a width and height that are both at most group_dim. At that point, it stops decoding.
 | |
|     //        No inverse transforms are applied yet.
 | |
|     global_modular.modular_header = TRY(read_modular_header(stream, image, metadata, entropy_decoder, global_modular.ma_tree, num_channels));
 | |
| 
 | |
|     return global_modular;
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// G.1 - LfGlobal
 | |
| struct LfGlobal {
 | |
|     LfChannelDequantization lf_dequant;
 | |
|     GlobalModular gmodular;
 | |
| };
 | |
| 
 | |
| static ErrorOr<LfGlobal> read_lf_global(LittleEndianInputBitStream& stream,
 | |
|     Image& image,
 | |
|     FrameHeader const& frame_header,
 | |
|     ImageMetadata const& metadata,
 | |
|     Optional<EntropyDecoder>& entropy_decoder)
 | |
| {
 | |
|     LfGlobal lf_global;
 | |
| 
 | |
|     if (frame_header.flags != FrameHeader::Flags::None)
 | |
|         TODO();
 | |
| 
 | |
|     lf_global.lf_dequant = TRY(read_lf_channel_dequantization(stream));
 | |
| 
 | |
|     if (frame_header.encoding == FrameHeader::Encoding::kVarDCT)
 | |
|         TODO();
 | |
| 
 | |
|     lf_global.gmodular = TRY(read_global_modular(stream, image, frame_header, metadata, entropy_decoder));
 | |
| 
 | |
|     return lf_global;
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// G.2 - LfGroup
 | |
| static ErrorOr<void> read_lf_group(LittleEndianInputBitStream&,
 | |
|     Image& image,
 | |
|     FrameHeader const& frame_header)
 | |
| {
 | |
|     // LF coefficients
 | |
|     if (frame_header.encoding == FrameHeader::Encoding::kVarDCT) {
 | |
|         TODO();
 | |
|     }
 | |
| 
 | |
|     // ModularLfGroup
 | |
|     for (auto const& channel : image.channels()) {
 | |
|         if (channel.decoded())
 | |
|             continue;
 | |
| 
 | |
|         if (channel.hshift() < 3 || channel.vshift() < 3)
 | |
|             continue;
 | |
| 
 | |
|         // This code actually only detect that we need to read a null image
 | |
|         // so a no-op. It should be fully rewritten when we add proper support
 | |
|         // for LfGroup.
 | |
|         TODO();
 | |
|     }
 | |
| 
 | |
|     // HF metadata
 | |
|     if (frame_header.encoding == FrameHeader::Encoding::kVarDCT) {
 | |
|         TODO();
 | |
|     }
 | |
| 
 | |
|     return {};
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// H.6 - Transformations
 | |
| static void apply_rct(Image& image, TransformInfo const& transformation)
 | |
| {
 | |
|     auto& channels = image.channels();
 | |
|     for (u32 y {}; y < channels[transformation.begin_c].height(); y++) {
 | |
|         for (u32 x {}; x < channels[transformation.begin_c].width(); x++) {
 | |
| 
 | |
|             auto a = channels[transformation.begin_c + 0].get(x, y);
 | |
|             auto b = channels[transformation.begin_c + 1].get(x, y);
 | |
|             auto c = channels[transformation.begin_c + 2].get(x, y);
 | |
| 
 | |
|             i32 d {};
 | |
|             i32 e {};
 | |
|             i32 f {};
 | |
| 
 | |
|             auto const permutation = transformation.rct_type / 7;
 | |
|             auto const type = transformation.rct_type % 7;
 | |
|             if (type == 6) { // YCgCo
 | |
|                 auto const tmp = a - (c >> 1);
 | |
|                 e = c + tmp;
 | |
|                 f = tmp - (b >> 1);
 | |
|                 d = f + b;
 | |
|             } else {
 | |
|                 if (type & 1)
 | |
|                     c = c + a;
 | |
|                 if ((type >> 1) == 1)
 | |
|                     b = b + a;
 | |
|                 if ((type >> 1) == 2)
 | |
|                     b = b + ((a + c) >> 1);
 | |
|                 d = a;
 | |
|                 e = b;
 | |
|                 f = c;
 | |
|             }
 | |
| 
 | |
|             Array<i32, 3> v {};
 | |
|             v[permutation % 3] = d;
 | |
|             v[(permutation + 1 + (permutation / 3)) % 3] = e;
 | |
|             v[(permutation + 2 - (permutation / 3)) % 3] = f;
 | |
| 
 | |
|             channels[transformation.begin_c + 0].set(x, y, v[0]);
 | |
|             channels[transformation.begin_c + 1].set(x, y, v[1]);
 | |
|             channels[transformation.begin_c + 2].set(x, y, v[2]);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void apply_transformation(Image& image, TransformInfo const& transformation)
 | |
| {
 | |
|     switch (transformation.tr) {
 | |
|     case TransformInfo::TransformId::kRCT:
 | |
|         apply_rct(image, transformation);
 | |
|         break;
 | |
|     case TransformInfo::TransformId::kPalette:
 | |
|     case TransformInfo::TransformId::kSqueeze:
 | |
|         TODO();
 | |
|     default:
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// G.3.2 - PassGroup
 | |
| static ErrorOr<void> read_pass_group(LittleEndianInputBitStream& stream,
 | |
|     Image& image,
 | |
|     FrameHeader const& frame_header,
 | |
|     u32 group_dim)
 | |
| {
 | |
|     if (frame_header.encoding == FrameHeader::Encoding::kVarDCT) {
 | |
|         (void)stream;
 | |
|         TODO();
 | |
|     }
 | |
| 
 | |
|     auto& channels = image.channels();
 | |
|     for (u16 i {}; i < channels.size(); ++i) {
 | |
|         // Skip meta-channels
 | |
|         // FIXME: Also test if the channel has already been decoded
 | |
|         //        See: nb_meta_channels in the spec
 | |
|         bool const is_meta_channel = channels[i].width() <= group_dim
 | |
|             || channels[i].height() <= group_dim
 | |
|             || channels[i].hshift() >= 3
 | |
|             || channels[i].vshift() >= 3;
 | |
| 
 | |
|         if (!is_meta_channel)
 | |
|             TODO();
 | |
|     }
 | |
| 
 | |
|     return {};
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// Table F.1 — Frame bundle
 | |
| struct Frame {
 | |
|     FrameHeader frame_header;
 | |
|     TOC toc;
 | |
|     LfGlobal lf_global;
 | |
| 
 | |
|     u64 width {};
 | |
|     u64 height {};
 | |
| 
 | |
|     u64 num_groups {};
 | |
|     u64 num_lf_groups {};
 | |
| 
 | |
|     Image image {};
 | |
| };
 | |
| 
 | |
| static ErrorOr<Frame> read_frame(LittleEndianInputBitStream& stream,
 | |
|     SizeHeader const& size_header,
 | |
|     ImageMetadata const& metadata,
 | |
|     Optional<EntropyDecoder>& entropy_decoder)
 | |
| {
 | |
|     // F.1 - General
 | |
|     // Each Frame is byte-aligned by invoking ZeroPadToByte() (B.2.7)
 | |
|     stream.align_to_byte_boundary();
 | |
| 
 | |
|     Frame frame;
 | |
| 
 | |
|     frame.frame_header = TRY(read_frame_header(stream, size_header, metadata));
 | |
| 
 | |
|     if (!frame.frame_header.have_crop) {
 | |
|         frame.width = size_header.width;
 | |
|         frame.height = size_header.height;
 | |
|     } else {
 | |
|         frame.width = frame.frame_header.width;
 | |
|         frame.height = frame.frame_header.height;
 | |
|     }
 | |
| 
 | |
|     if (frame.frame_header.upsampling > 1) {
 | |
|         frame.width = ceil(static_cast<double>(frame.width) / frame.frame_header.upsampling);
 | |
|         frame.height = ceil(static_cast<double>(frame.height) / frame.frame_header.upsampling);
 | |
|     }
 | |
| 
 | |
|     if (frame.frame_header.lf_level > 0)
 | |
|         TODO();
 | |
| 
 | |
|     // F.2 - FrameHeader
 | |
|     auto const group_dim = 128 << frame.frame_header.group_size_shift;
 | |
| 
 | |
|     auto const frame_width = static_cast<double>(frame.width);
 | |
|     auto const frame_height = static_cast<double>(frame.height);
 | |
|     frame.num_groups = ceil(frame_width / group_dim) * ceil(frame_height / group_dim);
 | |
|     frame.num_lf_groups = ceil(frame_width / (group_dim * 8)) * ceil(frame_height / (group_dim * 8));
 | |
| 
 | |
|     frame.toc = TRY(read_toc(stream, frame.frame_header, frame.num_groups, frame.num_lf_groups));
 | |
| 
 | |
|     frame.image = TRY(Image::create({ frame.width, frame.height }, metadata));
 | |
| 
 | |
|     frame.lf_global = TRY(read_lf_global(stream, frame.image, frame.frame_header, metadata, entropy_decoder));
 | |
| 
 | |
|     for (u32 i {}; i < frame.num_lf_groups; ++i)
 | |
|         TRY(read_lf_group(stream, frame.image, frame.frame_header));
 | |
| 
 | |
|     if (frame.frame_header.encoding == FrameHeader::Encoding::kVarDCT) {
 | |
|         TODO();
 | |
|     }
 | |
| 
 | |
|     auto const num_pass_group = frame.num_groups * frame.frame_header.passes.num_passes;
 | |
|     auto const& transform_infos = frame.lf_global.gmodular.modular_header.transform;
 | |
|     for (u64 i {}; i < num_pass_group; ++i)
 | |
|         TRY(read_pass_group(stream, frame.image, frame.frame_header, group_dim));
 | |
| 
 | |
|     // G.4.2 - Modular group data
 | |
|     // When all modular groups are decoded, the inverse transforms are applied to
 | |
|     // the at that point fully decoded GlobalModular image, as specified in H.6.
 | |
|     for (auto const& transformation : transform_infos.in_reverse())
 | |
|         apply_transformation(frame.image, transformation);
 | |
| 
 | |
|     return frame;
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// 5.2 - Mirroring
 | |
| static u32 mirror_1d(i32 coord, u32 size)
 | |
| {
 | |
|     if (coord < 0)
 | |
|         return mirror_1d(-coord - 1, size);
 | |
|     else if (static_cast<u32>(coord) >= size)
 | |
|         return mirror_1d(2 * size - 1 - coord, size);
 | |
|     else
 | |
|         return coord;
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// K - Image features
 | |
| static ErrorOr<void> apply_upsampling(Frame& frame, ImageMetadata const& metadata)
 | |
| {
 | |
|     Optional<u32> ec_max;
 | |
|     for (auto upsampling : frame.frame_header.ec_upsampling) {
 | |
|         if (!ec_max.has_value() || upsampling > *ec_max)
 | |
|             ec_max = upsampling;
 | |
|     }
 | |
| 
 | |
|     if (frame.frame_header.upsampling > 1 || ec_max.value_or(0) > 1) {
 | |
|         if (ec_max.value_or(0) > 2)
 | |
|             TODO();
 | |
| 
 | |
|         auto const k = frame.frame_header.upsampling;
 | |
| 
 | |
|         auto weight = [k, &metadata](u8 index) -> double {
 | |
|             if (k == 2)
 | |
|                 return metadata.up2_weight[index];
 | |
|             if (k == 4)
 | |
|                 return metadata.up4_weight[index];
 | |
|             return metadata.up8_weight[index];
 | |
|         };
 | |
| 
 | |
|         // FIXME: Use ec_upsampling for extra-channels
 | |
|         for (auto& channel : frame.image.channels()) {
 | |
|             auto upsampled = TRY(Channel::create(k * channel.width(), k * channel.height()));
 | |
| 
 | |
|             // Loop over the original image
 | |
|             for (u32 y {}; y < channel.height(); y++) {
 | |
|                 for (u32 x {}; x < channel.width(); x++) {
 | |
| 
 | |
|                     // Loop over the upsampling factor
 | |
|                     for (u8 kx {}; kx < k; ++kx) {
 | |
|                         for (u8 ky {}; ky < k; ++ky) {
 | |
|                             double sum {};
 | |
|                             // Loop over the W window
 | |
|                             double W_min = NumericLimits<double>::max();
 | |
|                             double W_max = -NumericLimits<double>::max();
 | |
|                             for (u8 ix {}; ix < 5; ++ix) {
 | |
|                                 for (u8 iy {}; iy < 5; ++iy) {
 | |
|                                     auto const j = (ky < k / 2) ? (iy + 5 * ky) : ((4 - iy) + 5 * (k - 1 - ky));
 | |
|                                     auto const i = (kx < k / 2) ? (ix + 5 * kx) : ((4 - ix) + 5 * (k - 1 - kx));
 | |
|                                     auto const minimum = min(i, j);
 | |
|                                     auto const maximum = max(i, j);
 | |
|                                     auto const index = 5 * k * minimum / 2 - minimum * (minimum - 1) / 2 + maximum - minimum;
 | |
| 
 | |
|                                     auto const origin_sample_x = mirror_1d(x + ix - 2, channel.width());
 | |
|                                     auto const origin_sample_y = mirror_1d(y + iy - 2, channel.height());
 | |
| 
 | |
|                                     auto const origin_sample = channel.get(origin_sample_x, origin_sample_y);
 | |
| 
 | |
|                                     W_min = min(W_min, origin_sample);
 | |
|                                     W_max = max(W_max, origin_sample);
 | |
| 
 | |
|                                     sum += origin_sample * weight(index);
 | |
|                                 }
 | |
|                             }
 | |
| 
 | |
|                             // The resulting sample is clamped to the range [a, b] where a and b are
 | |
|                             // the minimum and maximum of the samples in W.
 | |
|                             sum = clamp(sum, W_min, W_max);
 | |
| 
 | |
|                             upsampled.set(x * k + kx, y * k + ky, sum);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             channel = move(upsampled);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return {};
 | |
| }
 | |
| 
 | |
| static ErrorOr<void> apply_image_features(Frame& frame, ImageMetadata const& metadata)
 | |
| {
 | |
|     TRY(apply_upsampling(frame, metadata));
 | |
| 
 | |
|     if (frame.frame_header.flags != FrameHeader::Flags::None)
 | |
|         TODO();
 | |
|     return {};
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// L.2 - XYB + L.3 - YCbCr
 | |
| static void ycbcr_to_rgb(Image& image, u8 bits_per_sample)
 | |
| {
 | |
|     auto& channels = image.channels();
 | |
|     VERIFY(channels.size() >= 3);
 | |
| 
 | |
|     VERIFY(channels[0].width() == channels[1].width() && channels[1].width() == channels[2].width());
 | |
|     VERIFY(channels[0].height() == channels[1].height() && channels[1].height() == channels[2].height());
 | |
| 
 | |
|     auto const half_range_offset = (1 << bits_per_sample) / 2;
 | |
|     for (u32 y = 0; y < channels[0].height(); ++y) {
 | |
|         for (u32 x = 0; x < channels[0].width(); ++x) {
 | |
|             auto const cb = channels[0].get(x, y);
 | |
|             auto const luma = channels[1].get(x, y);
 | |
|             auto const cr = channels[2].get(x, y);
 | |
| 
 | |
|             channels[0].set(x, y, luma + half_range_offset + 1.402 * cr);
 | |
|             channels[1].set(x, y, luma + half_range_offset - 0.344136 * cb - 0.714136 * cr);
 | |
|             channels[2].set(x, y, luma + half_range_offset + 1.772 * cb);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void apply_colour_transformation(Frame& frame, ImageMetadata const& metadata)
 | |
| {
 | |
|     if (frame.frame_header.do_YCbCr)
 | |
|         ycbcr_to_rgb(frame.image, metadata.bit_depth.bits_per_sample);
 | |
| 
 | |
|     if (metadata.xyb_encoded) {
 | |
|         TODO();
 | |
|     } else {
 | |
|         // FIXME: Do a proper color transformation with metadata.colour_encoding
 | |
|     }
 | |
| }
 | |
| ///
 | |
| 
 | |
| /// L.4 - Extra channel rendering
 | |
| static ErrorOr<void> render_extra_channels(Image&, ImageMetadata const& metadata)
 | |
| {
 | |
|     for (u16 i = metadata.number_of_color_channels(); i < metadata.number_of_channels(); ++i) {
 | |
|         auto const ec_index = i - metadata.number_of_color_channels();
 | |
|         if (metadata.ec_info[ec_index].dim_shift != 0)
 | |
|             TODO();
 | |
|     }
 | |
| 
 | |
|     return {};
 | |
| }
 | |
| ///
 | |
| 
 | |
| class JPEGXLLoadingContext {
 | |
| public:
 | |
|     JPEGXLLoadingContext(NonnullOwnPtr<Stream> stream)
 | |
|         : m_stream(move(stream))
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     ErrorOr<void> decode_image_header()
 | |
|     {
 | |
|         constexpr auto JPEGXL_SIGNATURE = 0xFF0A;
 | |
| 
 | |
|         auto const signature = TRY(m_stream.read_value<BigEndian<u16>>());
 | |
|         if (signature != JPEGXL_SIGNATURE)
 | |
|             return Error::from_string_literal("Unrecognized signature");
 | |
| 
 | |
|         m_header = TRY(read_size_header(m_stream));
 | |
|         m_metadata = TRY(read_metadata_header(m_stream));
 | |
| 
 | |
|         m_state = State::HeaderDecoded;
 | |
| 
 | |
|         return {};
 | |
|     }
 | |
| 
 | |
|     ErrorOr<void> decode_frame()
 | |
|     {
 | |
|         auto frame = TRY(read_frame(m_stream, m_header, m_metadata, m_entropy_decoder));
 | |
| 
 | |
|         if (frame.frame_header.restoration_filter.gab || frame.frame_header.restoration_filter.epf_iters != 0)
 | |
|             TODO();
 | |
| 
 | |
|         TRY(apply_image_features(frame, m_metadata));
 | |
| 
 | |
|         apply_colour_transformation(frame, m_metadata);
 | |
| 
 | |
|         TRY(render_extra_channels(frame.image, m_metadata));
 | |
| 
 | |
|         if (!m_image.has_value())
 | |
|             m_image = TRY(Image::create({ m_header.width, m_header.height }, m_metadata));
 | |
| 
 | |
|         frame.image.blend_into(*m_image, frame.frame_header);
 | |
| 
 | |
|         return {};
 | |
|     }
 | |
| 
 | |
|     ErrorOr<void> decode()
 | |
|     {
 | |
|         auto result = [this]() -> ErrorOr<void> {
 | |
|             // A.1 - Codestream structure
 | |
| 
 | |
|             // The header is already decoded in JPEGXLImageDecoderPlugin::create()
 | |
| 
 | |
|             if (m_metadata.colour_encoding.want_icc)
 | |
|                 TODO();
 | |
| 
 | |
|             if (m_metadata.preview.has_value())
 | |
|                 TODO();
 | |
| 
 | |
|             TRY(decode_frame());
 | |
| 
 | |
|             m_bitmap = TRY(m_image->to_bitmap(m_metadata));
 | |
|             m_image.clear();
 | |
| 
 | |
|             return {};
 | |
|         }();
 | |
| 
 | |
|         m_state = result.is_error() ? State::Error : State::FrameDecoded;
 | |
| 
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     enum class State {
 | |
|         NotDecoded = 0,
 | |
|         Error,
 | |
|         HeaderDecoded,
 | |
|         FrameDecoded,
 | |
|     };
 | |
| 
 | |
|     State state() const
 | |
|     {
 | |
|         return m_state;
 | |
|     }
 | |
| 
 | |
|     IntSize size() const
 | |
|     {
 | |
|         return { m_header.width, m_header.height };
 | |
|     }
 | |
| 
 | |
|     RefPtr<Bitmap> bitmap() const
 | |
|     {
 | |
|         return m_bitmap;
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     State m_state { State::NotDecoded };
 | |
| 
 | |
|     LittleEndianInputBitStream m_stream;
 | |
|     RefPtr<Gfx::Bitmap> m_bitmap;
 | |
| 
 | |
|     // JPEG XL images can be composed of multiples sub-images, this variable is an internal
 | |
|     // representation of this blending before the final rendering (in m_bitmap)
 | |
|     Optional<Image> m_image;
 | |
| 
 | |
|     Optional<EntropyDecoder> m_entropy_decoder {};
 | |
| 
 | |
|     SizeHeader m_header;
 | |
|     ImageMetadata m_metadata;
 | |
| };
 | |
| 
 | |
| JPEGXLImageDecoderPlugin::JPEGXLImageDecoderPlugin(NonnullOwnPtr<FixedMemoryStream> stream)
 | |
| {
 | |
|     m_context = make<JPEGXLLoadingContext>(move(stream));
 | |
| }
 | |
| 
 | |
| JPEGXLImageDecoderPlugin::~JPEGXLImageDecoderPlugin() = default;
 | |
| 
 | |
| IntSize JPEGXLImageDecoderPlugin::size()
 | |
| {
 | |
|     return m_context->size();
 | |
| }
 | |
| 
 | |
| bool JPEGXLImageDecoderPlugin::sniff(ReadonlyBytes data)
 | |
| {
 | |
|     return data.size() > 2
 | |
|         && data.data()[0] == 0xFF
 | |
|         && data.data()[1] == 0x0A;
 | |
| }
 | |
| 
 | |
| ErrorOr<NonnullOwnPtr<ImageDecoderPlugin>> JPEGXLImageDecoderPlugin::create(ReadonlyBytes data)
 | |
| {
 | |
|     auto stream = TRY(try_make<FixedMemoryStream>(data));
 | |
|     auto plugin = TRY(adopt_nonnull_own_or_enomem(new (nothrow) JPEGXLImageDecoderPlugin(move(stream))));
 | |
|     TRY(plugin->m_context->decode_image_header());
 | |
|     return plugin;
 | |
| }
 | |
| 
 | |
| bool JPEGXLImageDecoderPlugin::is_animated()
 | |
| {
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| size_t JPEGXLImageDecoderPlugin::loop_count()
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| size_t JPEGXLImageDecoderPlugin::frame_count()
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| size_t JPEGXLImageDecoderPlugin::first_animated_frame_index()
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| ErrorOr<ImageFrameDescriptor> JPEGXLImageDecoderPlugin::frame(size_t index, Optional<IntSize>)
 | |
| {
 | |
|     if (index > 0)
 | |
|         return Error::from_string_literal("JPEGXLImageDecoderPlugin: Invalid frame index");
 | |
| 
 | |
|     if (m_context->state() == JPEGXLLoadingContext::State::Error)
 | |
|         return Error::from_string_literal("JPEGXLImageDecoderPlugin: Decoding failed");
 | |
| 
 | |
|     if (m_context->state() < JPEGXLLoadingContext::State::FrameDecoded)
 | |
|         TRY(m_context->decode());
 | |
| 
 | |
|     return ImageFrameDescriptor { m_context->bitmap(), 0 };
 | |
| }
 | |
| 
 | |
| ErrorOr<Optional<ReadonlyBytes>> JPEGXLImageDecoderPlugin::icc_data()
 | |
| {
 | |
|     return OptionalNone {};
 | |
| }
 | |
| }
 |