1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-16 18:55:07 +00:00
serenity/Kernel/Devices/USB/UHCIController.cpp
2021-04-07 22:47:22 +02:00

459 lines
19 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2020, Jesse Buhagiar <jooster669@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Platform.h>
#include <Kernel/Debug.h>
#include <Kernel/Devices/USB/UHCIController.h>
#include <Kernel/Process.h>
#include <Kernel/StdLib.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/VM/AnonymousVMObject.h>
#include <Kernel/VM/MemoryManager.h>
static constexpr u8 MAXIMUM_NUMBER_OF_TDS = 128; // Upper pool limit. This consumes the second page we have allocated
static constexpr u8 MAXIMUM_NUMBER_OF_QHS = 64;
namespace Kernel::USB {
static UHCIController* s_the;
static constexpr u16 UHCI_USBCMD_RUN = 0x0001;
static constexpr u16 UHCI_USBCMD_HOST_CONTROLLER_RESET = 0x0002;
static constexpr u16 UHCI_USBCMD_GLOBAL_RESET = 0x0004;
static constexpr u16 UHCI_USBCMD_ENTER_GLOBAL_SUSPEND_MODE = 0x0008;
static constexpr u16 UHCI_USBCMD_FORCE_GLOBAL_RESUME = 0x0010;
static constexpr u16 UHCI_USBCMD_SOFTWARE_DEBUG = 0x0020;
static constexpr u16 UHCI_USBCMD_CONFIGURE_FLAG = 0x0040;
static constexpr u16 UHCI_USBCMD_MAX_PACKET = 0x0080;
static constexpr u16 UHCI_USBSTS_HOST_CONTROLLER_HALTED = 0x0020;
static constexpr u16 UHCI_USBSTS_HOST_CONTROLLER_PROCESS_ERROR = 0x0010;
static constexpr u16 UHCI_USBSTS_PCI_BUS_ERROR = 0x0008;
static constexpr u16 UHCI_USBSTS_RESUME_RECEIVED = 0x0004;
static constexpr u16 UHCI_USBSTS_USB_ERROR_INTERRUPT = 0x0002;
static constexpr u16 UHCI_USBSTS_USB_INTERRUPT = 0x0001;
static constexpr u8 UHCI_USBINTR_TIMEOUT_CRC_ENABLE = 0x01;
static constexpr u8 UHCI_USBINTR_RESUME_INTR_ENABLE = 0x02;
static constexpr u8 UHCI_USBINTR_IOC_ENABLE = 0x04;
static constexpr u8 UHCI_USBINTR_SHORT_PACKET_INTR_ENABLE = 0x08;
static constexpr u16 UHCI_FRAMELIST_FRAME_COUNT = 1024; // Each entry is 4 bytes in our allocated page
static constexpr u16 UHCI_FRAMELIST_FRAME_INVALID = 0x0001;
// Port stuff
static constexpr u8 UHCI_ROOT_PORT_COUNT = 2;
static constexpr u16 UHCI_PORTSC_CURRRENT_CONNECT_STATUS = 0x0001;
static constexpr u16 UHCI_PORTSC_CONNECT_STATUS_CHANGED = 0x0002;
static constexpr u16 UHCI_PORTSC_PORT_ENABLED = 0x0004;
static constexpr u16 UHCI_PORTSC_PORT_ENABLE_CHANGED = 0x0008;
static constexpr u16 UHCI_PORTSC_LINE_STATUS = 0x0030;
static constexpr u16 UHCI_PORTSC_RESUME_DETECT = 0x40;
static constexpr u16 UHCI_PORTSC_LOW_SPEED_DEVICE = 0x0100;
static constexpr u16 UHCI_PORTSC_PORT_RESET = 0x0200;
static constexpr u16 UHCI_PORTSC_SUSPEND = 0x1000;
// *BSD and a few other drivers seem to use this number
static constexpr u8 UHCI_NUMBER_OF_ISOCHRONOUS_TDS = 128;
static constexpr u16 UHCI_NUMBER_OF_FRAMES = 1024;
UHCIController& UHCIController::the()
{
return *s_the;
}
UNMAP_AFTER_INIT void UHCIController::detect()
{
PCI::enumerate([&](const PCI::Address& address, PCI::ID id) {
if (address.is_null())
return;
if (PCI::get_class(address) == 0xc && PCI::get_subclass(address) == 0x03 && PCI::get_programming_interface(address) == 0) {
if (!s_the)
s_the = new UHCIController(address, id);
}
});
}
UNMAP_AFTER_INIT UHCIController::UHCIController(PCI::Address address, PCI::ID id)
: PCI::Device(address)
, m_io_base(PCI::get_BAR4(pci_address()) & ~1)
{
dmesgln("UHCI: Controller found {} @ {}", id, address);
dmesgln("UHCI: I/O base {}", m_io_base);
dmesgln("UHCI: Interrupt line: {}", PCI::get_interrupt_line(pci_address()));
reset();
start();
spawn_port_proc();
}
UNMAP_AFTER_INIT UHCIController::~UHCIController()
{
}
void UHCIController::reset()
{
stop();
write_usbcmd(UHCI_USBCMD_HOST_CONTROLLER_RESET);
// FIXME: Timeout
for (;;) {
if (read_usbcmd() & UHCI_USBCMD_HOST_CONTROLLER_RESET)
continue;
break;
}
// Let's allocate the physical page for the Frame List (which is 4KiB aligned)
auto framelist_vmobj = ContiguousVMObject::create_with_size(PAGE_SIZE);
m_framelist = MemoryManager::the().allocate_kernel_region_with_vmobject(*framelist_vmobj, PAGE_SIZE, "UHCI Framelist", Region::Access::Write);
dbgln("UHCI: Allocated framelist at physical address {}", m_framelist->physical_page(0)->paddr());
dbgln("UHCI: Framelist is at virtual address {}", m_framelist->vaddr());
write_sofmod(64); // 1mS frame time
create_structures();
setup_schedule();
write_flbaseadd(m_framelist->physical_page(0)->paddr().get()); // Frame list (physical) address
write_frnum(0); // Set the initial frame number
// Enable all interrupt types
write_frnum(UHCI_USBINTR_TIMEOUT_CRC_ENABLE | UHCI_USBINTR_RESUME_INTR_ENABLE | UHCI_USBINTR_IOC_ENABLE | UHCI_USBINTR_SHORT_PACKET_INTR_ENABLE);
dbgln("UHCI: Reset completed");
}
UNMAP_AFTER_INIT void UHCIController::create_structures()
{
// Let's allocate memory for botht the QH and TD pools
// First the QH pool and all of the Interrupt QH's
auto qh_pool_vmobject = ContiguousVMObject::create_with_size(2 * PAGE_SIZE);
m_qh_pool = MemoryManager::the().allocate_kernel_region_with_vmobject(*qh_pool_vmobject, 2 * PAGE_SIZE, "UHCI Queue Head Pool", Region::Access::Write);
memset(m_qh_pool->vaddr().as_ptr(), 0, 2 * PAGE_SIZE); // Zero out both pages
// Let's populate our free qh list (so we have some we can allocate later on)
m_free_qh_pool.resize(MAXIMUM_NUMBER_OF_TDS);
for (size_t i = 0; i < m_free_qh_pool.size(); i++) {
auto placement_addr = reinterpret_cast<void*>(m_qh_pool->vaddr().get() + (i * sizeof(QueueHead)));
auto paddr = static_cast<u32>(m_qh_pool->physical_page(0)->paddr().get() + (i * sizeof(QueueHead)));
m_free_qh_pool.at(i) = new (placement_addr) QueueHead(paddr);
}
// Create the Full Speed, Low Speed Control and Bulk Queue Heads
m_interrupt_transfer_queue = allocate_queue_head();
m_lowspeed_control_qh = allocate_queue_head();
m_fullspeed_control_qh = allocate_queue_head();
m_bulk_qh = allocate_queue_head();
m_dummy_qh = allocate_queue_head();
// Now the Transfer Descriptor pool
auto td_pool_vmobject = ContiguousVMObject::create_with_size(2 * PAGE_SIZE);
m_td_pool = MemoryManager::the().allocate_kernel_region_with_vmobject(*td_pool_vmobject, 2 * PAGE_SIZE, "UHCI Transfer Descriptor Pool", Region::Access::Write);
memset(m_td_pool->vaddr().as_ptr(), 0, 2 * PAGE_SIZE);
// Set up the Isochronous Transfer Descriptor list
m_iso_td_list.resize(UHCI_NUMBER_OF_ISOCHRONOUS_TDS);
for (size_t i = 0; i < m_iso_td_list.size(); i++) {
auto placement_addr = reinterpret_cast<void*>(m_td_pool->vaddr().get() + (i * sizeof(Kernel::USB::TransferDescriptor)));
auto paddr = static_cast<u32>(m_td_pool->physical_page(0)->paddr().get() + (i * sizeof(Kernel::USB::TransferDescriptor)));
// Place a new Transfer Descriptor with a 1:1 in our region
// The pointer returned by `new()` lines up exactly with the value
// that we store in `paddr`, meaning our member functions directly
// access the raw descriptor (that we later send to the controller)
m_iso_td_list.at(i) = new (placement_addr) Kernel::USB::TransferDescriptor(paddr);
auto transfer_descriptor = m_iso_td_list.at(i);
transfer_descriptor->set_in_use(true); // Isochronous transfers are ALWAYS marked as in use (in case we somehow get allocated one...)
transfer_descriptor->set_isochronous();
transfer_descriptor->link_queue_head(m_interrupt_transfer_queue->paddr());
#if UHCI_VERBOSE_DEBUG
transfer_descriptor->print();
#endif
}
m_free_td_pool.resize(MAXIMUM_NUMBER_OF_TDS);
for (size_t i = 0; i < m_free_td_pool.size(); i++) {
auto placement_addr = reinterpret_cast<void*>(m_td_pool->vaddr().offset(PAGE_SIZE).get() + (i * sizeof(Kernel::USB::TransferDescriptor)));
auto paddr = static_cast<u32>(m_td_pool->physical_page(1)->paddr().get() + (i * sizeof(Kernel::USB::TransferDescriptor)));
// Place a new Transfer Descriptor with a 1:1 in our region
// The pointer returned by `new()` lines up exactly with the value
// that we store in `paddr`, meaning our member functions directly
// access the raw descriptor (that we later send to the controller)
m_free_td_pool.at(i) = new (placement_addr) Kernel::USB::TransferDescriptor(paddr);
#if UHCI_VERBOSE_DEBUG
auto transfer_descriptor = m_free_td_pool.at(i);
transfer_descriptor->print();
#endif
}
if constexpr (UHCI_DEBUG) {
dbgln("UHCI: Pool information:");
dbgln(" qh_pool: {}, length: {}", PhysicalAddress(m_qh_pool->physical_page(0)->paddr()), m_qh_pool->range().size());
dbgln(" td_pool: {}, length: {}", PhysicalAddress(m_td_pool->physical_page(0)->paddr()), m_td_pool->range().size());
}
}
UNMAP_AFTER_INIT void UHCIController::setup_schedule()
{
//
// https://github.com/alkber/minix3-usbsubsystem/blob/master/usb/uhci-hcd.c
//
// This lad probably has the best explanation as to how this is actually done. I'll try and
// explain it here to so that there's no need for anyone to go hunting for this shit again, because
// the USB spec and Intel explain next to nothing.
// According to the USB spec (and the UHCI datasheet), 90% of the bandwidth should be used for
// Isochronous and """Interrupt""" related transfers, with the rest being used for control and bulk
// transfers.
// That is, most of the time, the schedule is going to be executing either an Isochronous transfer
// in our framelist, or an Interrupt transfer. The allocation in `create_structures` reflects this.
//
// Each frame has it's own Isochronous transfer Transfer Descriptor(s) that point to each other
// horizontally in the list. The end of these transfers then point to the Interrupt Queue Headers,
// in which we can attach Transfer Descriptors (related to Interrupt Transfers). These are attached
// to the Queue Head _vertically_. We need to ensure that these are executed every 8ms, so they are inserted
// at different points in the schedule (TODO: How do we do this?!?!). After the Interrupt Transfer Queue Heads,
// we attach the Control Queue Heads. We need two in total, one for Low Speed devices, and one for Full Speed
// USB devices. Finally, we attach the Bulk Transfer Queue Head.
// Not specified in the datasheet, however, is another Queue Head with an "inactive" Transfer Descriptor. This
// is to circumvent a bug in the silicon of the PIIX4's UHCI controller.
// https://github.com/openbsd/src/blob/master/sys/dev/usb/uhci.c#L390
//
m_interrupt_transfer_queue->link_next_queue_head(m_lowspeed_control_qh);
m_interrupt_transfer_queue->terminate_element_link_ptr();
m_lowspeed_control_qh->link_next_queue_head(m_fullspeed_control_qh);
m_lowspeed_control_qh->terminate_element_link_ptr();
m_fullspeed_control_qh->link_next_queue_head(m_bulk_qh);
m_fullspeed_control_qh->terminate_element_link_ptr();
m_bulk_qh->link_next_queue_head(m_dummy_qh);
m_bulk_qh->terminate_element_link_ptr();
auto piix4_td_hack = allocate_transfer_descriptor();
piix4_td_hack->terminate();
piix4_td_hack->set_max_len(0x7ff); // Null data packet
piix4_td_hack->set_device_address(0x7f);
piix4_td_hack->set_packet_id(PacketID::IN);
m_dummy_qh->terminate_with_stray_descriptor(piix4_td_hack);
m_dummy_qh->terminate_element_link_ptr();
u32* framelist = reinterpret_cast<u32*>(m_framelist->vaddr().as_ptr());
for (int frame = 0; frame < UHCI_NUMBER_OF_FRAMES; frame++) {
// Each frame pointer points to iso_td % NUM_ISO_TDS
framelist[frame] = m_iso_td_list.at(frame % UHCI_NUMBER_OF_ISOCHRONOUS_TDS)->paddr();
}
m_interrupt_transfer_queue->print();
m_lowspeed_control_qh->print();
m_fullspeed_control_qh->print();
m_bulk_qh->print();
m_dummy_qh->print();
}
QueueHead* UHCIController::allocate_queue_head() const
{
for (QueueHead* queue_head : m_free_qh_pool) {
if (!queue_head->in_use()) {
queue_head->set_in_use(true);
dbgln_if(UHCI_DEBUG, "UHCI: Allocated a new Queue Head! Located @ {} ({})", VirtualAddress(queue_head), PhysicalAddress(queue_head->paddr()));
return queue_head;
}
}
VERIFY_NOT_REACHED(); // Let's just assert for now, this should never happen
return nullptr; // Huh!? We're outta queue heads!
}
TransferDescriptor* UHCIController::allocate_transfer_descriptor() const
{
for (TransferDescriptor* transfer_descriptor : m_free_td_pool) {
if (!transfer_descriptor->in_use()) {
transfer_descriptor->set_in_use(true);
dbgln_if(UHCI_DEBUG, "UHCI: Allocated a new Transfer Descriptor! Located @ {} ({})", VirtualAddress(transfer_descriptor), PhysicalAddress(transfer_descriptor->paddr()));
return transfer_descriptor;
}
}
VERIFY_NOT_REACHED(); // Let's just assert for now, this should never happen
return nullptr; // Huh?! We're outta TDs!!
}
void UHCIController::stop()
{
write_usbcmd(read_usbcmd() & ~UHCI_USBCMD_RUN);
// FIXME: Timeout
for (;;) {
if (read_usbsts() & UHCI_USBSTS_HOST_CONTROLLER_HALTED)
break;
}
}
void UHCIController::start()
{
write_usbcmd(read_usbcmd() | UHCI_USBCMD_RUN);
// FIXME: Timeout
for (;;) {
if (!(read_usbsts() & UHCI_USBSTS_HOST_CONTROLLER_HALTED))
break;
}
dbgln("UHCI: Started");
}
struct setup_packet {
u8 bmRequestType;
u8 bRequest;
u16 wValue;
u16 wIndex;
u16 wLength;
};
void UHCIController::do_debug_transfer()
{
dbgln("UHCI: Attempting a dummy transfer...");
// Okay, let's set up the buffer so we can write some data
auto vmobj = ContiguousVMObject::create_with_size(PAGE_SIZE);
m_td_buffer_region = MemoryManager::the().allocate_kernel_region_with_vmobject(*vmobj, PAGE_SIZE, "UHCI Debug Data Region", Region::Access::Write);
// We need to set up THREE Transfer descriptors here
// 1. The SETUP packet TD
// 2. The DATA packet
// 3. The ACK TD that will be filled by the device
// We can use the buffer pool provided above to do this, using nasty pointer offsets!
auto setup_td = allocate_transfer_descriptor();
auto data_td = allocate_transfer_descriptor();
auto response_td = allocate_transfer_descriptor();
dbgln("BUFFER PHYSICAL ADDRESS = {}", m_td_buffer_region->physical_page(0)->paddr());
setup_packet* packet = reinterpret_cast<setup_packet*>(m_td_buffer_region->vaddr().as_ptr());
packet->bmRequestType = 0x81;
packet->bRequest = 0x06;
packet->wValue = 0x2200;
packet->wIndex = 0x0;
packet->wLength = 8;
// Let's begin....
setup_td->set_status(0x18800000);
setup_td->set_token(0x00E0002D);
setup_td->set_buffer_address(m_td_buffer_region->physical_page(0)->paddr().get());
data_td->set_status(0x18800000);
data_td->set_token(0x00E80069);
data_td->set_buffer_address(m_td_buffer_region->physical_page(0)->paddr().get() + 16);
response_td->set_status(0x19800000);
response_td->set_token(0xFFE800E1);
setup_td->insert_next_transfer_descriptor(data_td);
data_td->insert_next_transfer_descriptor(response_td);
response_td->terminate();
setup_td->print();
data_td->print();
response_td->print();
// Now let's (attempt) to attach to one of the queue heads
m_lowspeed_control_qh->attach_transfer_descriptor_chain(setup_td);
}
void UHCIController::spawn_port_proc()
{
RefPtr<Thread> usb_hotplug_thread;
Process::create_kernel_process(usb_hotplug_thread, "UHCIHotplug", [&] {
for (;;) {
for (int port = 0; port < UHCI_ROOT_PORT_COUNT; port++) {
u16 port_data = 0;
if (port == 1) {
// Let's see what's happening on port 1
// Current status
port_data = read_portsc1();
if (port_data & UHCI_PORTSC_CONNECT_STATUS_CHANGED) {
if (port_data & UHCI_PORTSC_CURRRENT_CONNECT_STATUS) {
dmesgln("UHCI: Device attach detected on Root Port 1!");
// Reset the port
port_data = read_portsc1();
write_portsc1(port_data | UHCI_PORTSC_PORT_RESET);
for (size_t i = 0; i < 50000; ++i)
IO::in8(0x80);
write_portsc1(port_data & ~UHCI_PORTSC_PORT_RESET);
for (size_t i = 0; i < 100000; ++i)
IO::in8(0x80);
write_portsc1(port_data & (~UHCI_PORTSC_PORT_ENABLE_CHANGED | ~UHCI_PORTSC_CONNECT_STATUS_CHANGED));
} else {
dmesgln("UHCI: Device detach detected on Root Port 1!");
}
port_data = read_portsc1();
write_portsc1(port_data | UHCI_PORTSC_PORT_ENABLED);
dbgln("port should be enabled now: {:#04x}\n", read_portsc1());
do_debug_transfer();
}
} else {
port_data = UHCIController::the().read_portsc2();
if (port_data & UHCI_PORTSC_CONNECT_STATUS_CHANGED) {
if (port_data & UHCI_PORTSC_CURRRENT_CONNECT_STATUS) {
dmesgln("UHCI: Device attach detected on Root Port 2!");
} else {
dmesgln("UHCI: Device detach detected on Root Port 2!");
}
UHCIController::the().write_portsc2(
UHCI_PORTSC_CONNECT_STATUS_CHANGED);
}
}
}
(void)Thread::current()->sleep(Time::from_seconds(1));
}
});
}
void UHCIController::handle_irq(const RegisterState&)
{
// Shared IRQ. Not ours!
if (!read_usbsts())
return;
if constexpr (UHCI_DEBUG) {
dbgln("UHCI: Interrupt happened!");
dbgln("Value of USBSTS: {:#04x}", read_usbsts());
}
}
}