mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 11:12:45 +00:00 
			
		
		
		
	 ee342f5ec3
			
		
	
	
		ee342f5ec3
		
	
	
	
	
		
			
			This replaces all uses of LexicalPath in the Kernel with the functions from KLexicalPath. This also allows the Kernel to stop including AK::LexicalPath.
		
			
				
	
	
		
			976 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			976 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/ScopeGuard.h>
 | |
| #include <AK/TemporaryChange.h>
 | |
| #include <AK/WeakPtr.h>
 | |
| #include <Kernel/Debug.h>
 | |
| #include <Kernel/FileSystem/Custody.h>
 | |
| #include <Kernel/FileSystem/FileDescription.h>
 | |
| #include <Kernel/Panic.h>
 | |
| #include <Kernel/PerformanceManager.h>
 | |
| #include <Kernel/Process.h>
 | |
| #include <Kernel/Random.h>
 | |
| #include <Kernel/Time/TimeManagement.h>
 | |
| #include <Kernel/VM/AllocationStrategy.h>
 | |
| #include <Kernel/VM/MemoryManager.h>
 | |
| #include <Kernel/VM/PageDirectory.h>
 | |
| #include <Kernel/VM/Region.h>
 | |
| #include <Kernel/VM/SharedInodeVMObject.h>
 | |
| #include <LibC/limits.h>
 | |
| #include <LibELF/AuxiliaryVector.h>
 | |
| #include <LibELF/Image.h>
 | |
| #include <LibELF/Validation.h>
 | |
| 
 | |
| namespace Kernel {
 | |
| 
 | |
| extern Region* g_signal_trampoline_region;
 | |
| 
 | |
| struct LoadResult {
 | |
|     OwnPtr<Space> space;
 | |
|     FlatPtr load_base { 0 };
 | |
|     FlatPtr entry_eip { 0 };
 | |
|     size_t size { 0 };
 | |
|     WeakPtr<Region> tls_region;
 | |
|     size_t tls_size { 0 };
 | |
|     size_t tls_alignment { 0 };
 | |
|     WeakPtr<Region> stack_region;
 | |
| };
 | |
| 
 | |
| static Vector<ELF::AuxiliaryValue> generate_auxiliary_vector(FlatPtr load_base, FlatPtr entry_eip, uid_t uid, uid_t euid, gid_t gid, gid_t egid, String executable_path, int main_program_fd);
 | |
| 
 | |
| static bool validate_stack_size(const Vector<String>& arguments, const Vector<String>& environment)
 | |
| {
 | |
|     size_t total_arguments_size = 0;
 | |
|     size_t total_environment_size = 0;
 | |
| 
 | |
|     for (auto& a : arguments)
 | |
|         total_arguments_size += a.length() + 1;
 | |
|     for (auto& e : environment)
 | |
|         total_environment_size += e.length() + 1;
 | |
| 
 | |
|     total_arguments_size += sizeof(char*) * (arguments.size() + 1);
 | |
|     total_environment_size += sizeof(char*) * (environment.size() + 1);
 | |
| 
 | |
|     static constexpr size_t max_arguments_size = Thread::default_userspace_stack_size / 8;
 | |
|     static constexpr size_t max_environment_size = Thread::default_userspace_stack_size / 8;
 | |
| 
 | |
|     if (total_arguments_size > max_arguments_size)
 | |
|         return false;
 | |
| 
 | |
|     if (total_environment_size > max_environment_size)
 | |
|         return false;
 | |
| 
 | |
|     // FIXME: This doesn't account for the size of the auxiliary vector
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static KResultOr<FlatPtr> make_userspace_context_for_main_thread([[maybe_unused]] ThreadRegisters& regs, Region& region, Vector<String> arguments,
 | |
|     Vector<String> environment, Vector<ELF::AuxiliaryValue> auxiliary_values)
 | |
| {
 | |
|     FlatPtr new_sp = region.range().end().get();
 | |
| 
 | |
|     // Add some bits of randomness to the user stack pointer.
 | |
|     new_sp -= round_up_to_power_of_two(get_fast_random<u32>() % 4096, 16);
 | |
| 
 | |
|     auto push_on_new_stack = [&new_sp](FlatPtr value) {
 | |
|         new_sp -= sizeof(FlatPtr);
 | |
|         Userspace<FlatPtr*> stack_ptr = new_sp;
 | |
|         return copy_to_user(stack_ptr, &value);
 | |
|     };
 | |
| 
 | |
|     auto push_aux_value_on_new_stack = [&new_sp](auxv_t value) {
 | |
|         new_sp -= sizeof(auxv_t);
 | |
|         Userspace<auxv_t*> stack_ptr = new_sp;
 | |
|         return copy_to_user(stack_ptr, &value);
 | |
|     };
 | |
| 
 | |
|     auto push_string_on_new_stack = [&new_sp](const String& string) {
 | |
|         new_sp -= round_up_to_power_of_two(string.length() + 1, sizeof(FlatPtr));
 | |
|         Userspace<FlatPtr*> stack_ptr = new_sp;
 | |
|         return copy_to_user(stack_ptr, string.characters(), string.length() + 1);
 | |
|     };
 | |
| 
 | |
|     Vector<FlatPtr> argv_entries;
 | |
|     for (auto& argument : arguments) {
 | |
|         push_string_on_new_stack(argument);
 | |
|         if (!argv_entries.try_append(new_sp))
 | |
|             return ENOMEM;
 | |
|     }
 | |
| 
 | |
|     Vector<FlatPtr> env_entries;
 | |
|     for (auto& variable : environment) {
 | |
|         push_string_on_new_stack(variable);
 | |
|         if (!env_entries.try_append(new_sp))
 | |
|             return ENOMEM;
 | |
|     }
 | |
| 
 | |
|     for (auto& value : auxiliary_values) {
 | |
|         if (!value.optional_string.is_empty()) {
 | |
|             push_string_on_new_stack(value.optional_string);
 | |
|             value.auxv.a_un.a_ptr = (void*)new_sp;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (ssize_t i = auxiliary_values.size() - 1; i >= 0; --i) {
 | |
|         auto& value = auxiliary_values[i];
 | |
|         push_aux_value_on_new_stack(value.auxv);
 | |
|     }
 | |
| 
 | |
|     push_on_new_stack(0);
 | |
|     for (ssize_t i = env_entries.size() - 1; i >= 0; --i)
 | |
|         push_on_new_stack(env_entries[i]);
 | |
|     FlatPtr envp = new_sp;
 | |
| 
 | |
|     push_on_new_stack(0);
 | |
|     for (ssize_t i = argv_entries.size() - 1; i >= 0; --i)
 | |
|         push_on_new_stack(argv_entries[i]);
 | |
|     FlatPtr argv = new_sp;
 | |
| 
 | |
|     // NOTE: The stack needs to be 16-byte aligned.
 | |
|     new_sp -= new_sp % 16;
 | |
| 
 | |
| #if ARCH(I386)
 | |
|     // GCC assumes that the return address has been pushed to the stack when it enters the function,
 | |
|     // so we need to reserve an extra pointer's worth of bytes below this to make GCC's stack alignment
 | |
|     // calculations work
 | |
|     new_sp -= sizeof(void*);
 | |
| 
 | |
|     push_on_new_stack(envp);
 | |
|     push_on_new_stack(argv);
 | |
|     push_on_new_stack(argv_entries.size());
 | |
| #else
 | |
|     regs.rdi = argv_entries.size();
 | |
|     regs.rsi = argv;
 | |
|     regs.rdx = envp;
 | |
| #endif
 | |
|     push_on_new_stack(0); // return address
 | |
| 
 | |
|     VERIFY((new_sp + sizeof(void*)) % 16 == 0);
 | |
| 
 | |
|     return new_sp;
 | |
| }
 | |
| 
 | |
| struct RequiredLoadRange {
 | |
|     FlatPtr start { 0 };
 | |
|     FlatPtr end { 0 };
 | |
| };
 | |
| 
 | |
| static KResultOr<RequiredLoadRange> get_required_load_range(FileDescription& program_description)
 | |
| {
 | |
|     auto& inode = *(program_description.inode());
 | |
|     auto vmobject = SharedInodeVMObject::create_with_inode(inode);
 | |
| 
 | |
|     size_t executable_size = inode.size();
 | |
| 
 | |
|     auto region = MM.allocate_kernel_region_with_vmobject(*vmobject, page_round_up(executable_size), "ELF memory range calculation", Region::Access::Read);
 | |
|     if (!region) {
 | |
|         dbgln("Could not allocate memory for ELF");
 | |
|         return ENOMEM;
 | |
|     }
 | |
| 
 | |
|     auto elf_image = ELF::Image(region->vaddr().as_ptr(), executable_size);
 | |
|     if (!elf_image.is_valid()) {
 | |
|         return EINVAL;
 | |
|     }
 | |
| 
 | |
|     RequiredLoadRange range {};
 | |
|     elf_image.for_each_program_header([&range](const auto& pheader) {
 | |
|         if (pheader.type() != PT_LOAD)
 | |
|             return;
 | |
| 
 | |
|         auto region_start = (FlatPtr)pheader.vaddr().as_ptr();
 | |
|         auto region_end = region_start + pheader.size_in_memory();
 | |
|         if (range.start == 0 || region_start < range.start)
 | |
|             range.start = region_start;
 | |
|         if (range.end == 0 || region_end > range.end)
 | |
|             range.end = region_end;
 | |
|     });
 | |
| 
 | |
|     VERIFY(range.end > range.start);
 | |
|     return range;
 | |
| };
 | |
| 
 | |
| static KResultOr<FlatPtr> get_load_offset(const ElfW(Ehdr) & main_program_header, FileDescription& main_program_description, FileDescription* interpreter_description)
 | |
| {
 | |
|     constexpr FlatPtr load_range_start = 0x08000000;
 | |
|     constexpr FlatPtr load_range_size = 65536 * PAGE_SIZE; // 2**16 * PAGE_SIZE = 256MB
 | |
|     constexpr FlatPtr minimum_load_offset_randomization_size = 10 * MiB;
 | |
| 
 | |
|     auto random_load_offset_in_range([](auto start, auto size) {
 | |
|         return page_round_down(start + get_good_random<FlatPtr>() % size);
 | |
|     });
 | |
| 
 | |
|     if (main_program_header.e_type == ET_DYN) {
 | |
|         return random_load_offset_in_range(load_range_start, load_range_size);
 | |
|     }
 | |
| 
 | |
|     if (main_program_header.e_type != ET_EXEC)
 | |
|         return EINVAL;
 | |
| 
 | |
|     auto main_program_load_range_result = get_required_load_range(main_program_description);
 | |
|     if (main_program_load_range_result.is_error())
 | |
|         return main_program_load_range_result.error();
 | |
| 
 | |
|     auto main_program_load_range = main_program_load_range_result.value();
 | |
| 
 | |
|     RequiredLoadRange selected_range {};
 | |
| 
 | |
|     if (interpreter_description) {
 | |
|         auto interpreter_load_range_result = get_required_load_range(*interpreter_description);
 | |
|         if (interpreter_load_range_result.is_error())
 | |
|             return interpreter_load_range_result.error();
 | |
| 
 | |
|         auto interpreter_size_in_memory = interpreter_load_range_result.value().end - interpreter_load_range_result.value().start;
 | |
|         auto interpreter_load_range_end = load_range_start + load_range_size - interpreter_size_in_memory;
 | |
| 
 | |
|         // No intersection
 | |
|         if (main_program_load_range.end < load_range_start || main_program_load_range.start > interpreter_load_range_end)
 | |
|             return random_load_offset_in_range(load_range_start, load_range_size);
 | |
| 
 | |
|         RequiredLoadRange first_available_part = { load_range_start, main_program_load_range.start };
 | |
|         RequiredLoadRange second_available_part = { main_program_load_range.end, interpreter_load_range_end };
 | |
| 
 | |
|         // Select larger part
 | |
|         if (first_available_part.end - first_available_part.start > second_available_part.end - second_available_part.start)
 | |
|             selected_range = first_available_part;
 | |
|         else
 | |
|             selected_range = second_available_part;
 | |
|     } else
 | |
|         selected_range = main_program_load_range;
 | |
| 
 | |
|     // If main program is too big and leaves us without enough space for adequate loader randomization
 | |
|     if (selected_range.end - selected_range.start < minimum_load_offset_randomization_size)
 | |
|         return E2BIG;
 | |
| 
 | |
|     return random_load_offset_in_range(selected_range.start, selected_range.end - selected_range.start);
 | |
| }
 | |
| 
 | |
| enum class ShouldAllocateTls {
 | |
|     No,
 | |
|     Yes,
 | |
| };
 | |
| 
 | |
| enum class ShouldAllowSyscalls {
 | |
|     No,
 | |
|     Yes,
 | |
| };
 | |
| 
 | |
| static KResultOr<LoadResult> load_elf_object(NonnullOwnPtr<Space> new_space, FileDescription& object_description,
 | |
|     FlatPtr load_offset, ShouldAllocateTls should_allocate_tls, ShouldAllowSyscalls should_allow_syscalls)
 | |
| {
 | |
|     auto& inode = *(object_description.inode());
 | |
|     auto vmobject = SharedInodeVMObject::create_with_inode(inode);
 | |
|     if (vmobject->writable_mappings()) {
 | |
|         dbgln("Refusing to execute a write-mapped program");
 | |
|         return ETXTBSY;
 | |
|     }
 | |
| 
 | |
|     size_t executable_size = inode.size();
 | |
| 
 | |
|     auto executable_region = MM.allocate_kernel_region_with_vmobject(*vmobject, page_round_up(executable_size), "ELF loading", Region::Access::Read);
 | |
|     if (!executable_region) {
 | |
|         dbgln("Could not allocate memory for ELF loading");
 | |
|         return ENOMEM;
 | |
|     }
 | |
| 
 | |
|     auto elf_image = ELF::Image(executable_region->vaddr().as_ptr(), executable_size);
 | |
| 
 | |
|     if (!elf_image.is_valid())
 | |
|         return ENOEXEC;
 | |
| 
 | |
|     Region* master_tls_region { nullptr };
 | |
|     size_t master_tls_size = 0;
 | |
|     size_t master_tls_alignment = 0;
 | |
|     FlatPtr load_base_address = 0;
 | |
| 
 | |
|     String elf_name = object_description.absolute_path();
 | |
|     VERIFY(!Processor::current().in_critical());
 | |
| 
 | |
|     MemoryManager::enter_space(*new_space);
 | |
| 
 | |
|     KResult ph_load_result = KSuccess;
 | |
|     elf_image.for_each_program_header([&](const ELF::Image::ProgramHeader& program_header) {
 | |
|         if (program_header.type() == PT_TLS) {
 | |
|             VERIFY(should_allocate_tls == ShouldAllocateTls::Yes);
 | |
|             VERIFY(program_header.size_in_memory());
 | |
| 
 | |
|             if (!elf_image.is_within_image(program_header.raw_data(), program_header.size_in_image())) {
 | |
|                 dbgln("Shenanigans! ELF PT_TLS header sneaks outside of executable.");
 | |
|                 ph_load_result = ENOEXEC;
 | |
|                 return IterationDecision::Break;
 | |
|             }
 | |
| 
 | |
|             auto range = new_space->allocate_range({}, program_header.size_in_memory());
 | |
|             if (!range.has_value()) {
 | |
|                 ph_load_result = ENOMEM;
 | |
|                 return IterationDecision::Break;
 | |
|             }
 | |
| 
 | |
|             auto region_or_error = new_space->allocate_region(range.value(), String::formatted("{} (master-tls)", elf_name), PROT_READ | PROT_WRITE, AllocationStrategy::Reserve);
 | |
|             if (region_or_error.is_error()) {
 | |
|                 ph_load_result = region_or_error.error();
 | |
|                 return IterationDecision::Break;
 | |
|             }
 | |
| 
 | |
|             master_tls_region = region_or_error.value();
 | |
|             master_tls_size = program_header.size_in_memory();
 | |
|             master_tls_alignment = program_header.alignment();
 | |
| 
 | |
|             if (!copy_to_user(master_tls_region->vaddr().as_ptr(), program_header.raw_data(), program_header.size_in_image())) {
 | |
|                 ph_load_result = EFAULT;
 | |
|                 return IterationDecision::Break;
 | |
|             }
 | |
|             return IterationDecision::Continue;
 | |
|         }
 | |
|         if (program_header.type() != PT_LOAD)
 | |
|             return IterationDecision::Continue;
 | |
| 
 | |
|         if (program_header.is_writable()) {
 | |
|             // Writable section: create a copy in memory.
 | |
|             VERIFY(program_header.size_in_memory());
 | |
|             VERIFY(program_header.alignment() == PAGE_SIZE);
 | |
| 
 | |
|             if (!elf_image.is_within_image(program_header.raw_data(), program_header.size_in_image())) {
 | |
|                 dbgln("Shenanigans! Writable ELF PT_LOAD header sneaks outside of executable.");
 | |
|                 ph_load_result = ENOEXEC;
 | |
|                 return IterationDecision::Break;
 | |
|             }
 | |
| 
 | |
|             int prot = 0;
 | |
|             if (program_header.is_readable())
 | |
|                 prot |= PROT_READ;
 | |
|             if (program_header.is_writable())
 | |
|                 prot |= PROT_WRITE;
 | |
|             auto region_name = String::formatted("{} (data-{}{})", elf_name, program_header.is_readable() ? "r" : "", program_header.is_writable() ? "w" : "");
 | |
| 
 | |
|             auto range_base = VirtualAddress { page_round_down(program_header.vaddr().offset(load_offset).get()) };
 | |
|             auto range_end = VirtualAddress { page_round_up(program_header.vaddr().offset(load_offset).offset(program_header.size_in_memory()).get()) };
 | |
| 
 | |
|             auto range = new_space->allocate_range(range_base, range_end.get() - range_base.get());
 | |
|             if (!range.has_value()) {
 | |
|                 ph_load_result = ENOMEM;
 | |
|                 return IterationDecision::Break;
 | |
|             }
 | |
|             auto region_or_error = new_space->allocate_region(range.value(), region_name, prot, AllocationStrategy::Reserve);
 | |
|             if (region_or_error.is_error()) {
 | |
|                 ph_load_result = region_or_error.error();
 | |
|                 return IterationDecision::Break;
 | |
|             }
 | |
| 
 | |
|             // It's not always the case with PIE executables (and very well shouldn't be) that the
 | |
|             // virtual address in the program header matches the one we end up giving the process.
 | |
|             // In order to copy the data image correctly into memory, we need to copy the data starting at
 | |
|             // the right initial page offset into the pages allocated for the elf_alloc-XX section.
 | |
|             // FIXME: There's an opportunity to munmap, or at least mprotect, the padding space between
 | |
|             //     the .text and .data PT_LOAD sections of the executable.
 | |
|             //     Accessing it would definitely be a bug.
 | |
|             auto page_offset = program_header.vaddr();
 | |
|             page_offset.mask(~PAGE_MASK);
 | |
|             if (!copy_to_user((u8*)region_or_error.value()->vaddr().as_ptr() + page_offset.get(), program_header.raw_data(), program_header.size_in_image())) {
 | |
|                 ph_load_result = EFAULT;
 | |
|                 return IterationDecision::Break;
 | |
|             }
 | |
|             return IterationDecision::Continue;
 | |
|         }
 | |
| 
 | |
|         // Non-writable section: map the executable itself in memory.
 | |
|         VERIFY(program_header.size_in_memory());
 | |
|         VERIFY(program_header.alignment() == PAGE_SIZE);
 | |
|         int prot = 0;
 | |
|         if (program_header.is_readable())
 | |
|             prot |= PROT_READ;
 | |
|         if (program_header.is_writable())
 | |
|             prot |= PROT_WRITE;
 | |
|         if (program_header.is_executable())
 | |
|             prot |= PROT_EXEC;
 | |
|         auto range = new_space->allocate_range(program_header.vaddr().offset(load_offset), program_header.size_in_memory());
 | |
|         if (!range.has_value()) {
 | |
|             ph_load_result = ENOMEM;
 | |
|             return IterationDecision::Break;
 | |
|         }
 | |
|         auto region_or_error = new_space->allocate_region_with_vmobject(range.value(), *vmobject, program_header.offset(), elf_name, prot, true);
 | |
|         if (region_or_error.is_error()) {
 | |
|             ph_load_result = region_or_error.error();
 | |
|             return IterationDecision::Break;
 | |
|         }
 | |
|         if (should_allow_syscalls == ShouldAllowSyscalls::Yes)
 | |
|             region_or_error.value()->set_syscall_region(true);
 | |
|         if (program_header.offset() == 0)
 | |
|             load_base_address = (FlatPtr)region_or_error.value()->vaddr().as_ptr();
 | |
|         return IterationDecision::Continue;
 | |
|     });
 | |
| 
 | |
|     if (ph_load_result.is_error()) {
 | |
|         dbgln("do_exec: Failure loading program ({})", ph_load_result.error());
 | |
|         return ph_load_result;
 | |
|     }
 | |
| 
 | |
|     if (!elf_image.entry().offset(load_offset).get()) {
 | |
|         dbgln("do_exec: Failure loading program, entry pointer is invalid! {})", elf_image.entry().offset(load_offset));
 | |
|         return ENOEXEC;
 | |
|     }
 | |
| 
 | |
|     auto stack_range = new_space->allocate_range({}, Thread::default_userspace_stack_size);
 | |
|     if (!stack_range.has_value()) {
 | |
|         dbgln("do_exec: Failed to allocate VM range for stack");
 | |
|         return ENOMEM;
 | |
|     }
 | |
| 
 | |
|     auto stack_region_or_error = new_space->allocate_region(stack_range.value(), "Stack (Main thread)", PROT_READ | PROT_WRITE, AllocationStrategy::Reserve);
 | |
|     if (stack_region_or_error.is_error())
 | |
|         return stack_region_or_error.error();
 | |
|     auto& stack_region = *stack_region_or_error.value();
 | |
|     stack_region.set_stack(true);
 | |
| 
 | |
|     return LoadResult {
 | |
|         move(new_space),
 | |
|         load_base_address,
 | |
|         elf_image.entry().offset(load_offset).get(),
 | |
|         executable_size,
 | |
|         AK::try_make_weak_ptr(master_tls_region),
 | |
|         master_tls_size,
 | |
|         master_tls_alignment,
 | |
|         stack_region.make_weak_ptr()
 | |
|     };
 | |
| }
 | |
| 
 | |
| KResultOr<LoadResult> Process::load(NonnullRefPtr<FileDescription> main_program_description,
 | |
|     RefPtr<FileDescription> interpreter_description, const ElfW(Ehdr) & main_program_header)
 | |
| {
 | |
|     auto new_space = Space::create(*this, nullptr);
 | |
|     if (!new_space)
 | |
|         return ENOMEM;
 | |
| 
 | |
|     ScopeGuard space_guard([&]() {
 | |
|         MemoryManager::enter_process_paging_scope(*this);
 | |
|     });
 | |
| 
 | |
|     auto load_offset = get_load_offset(main_program_header, main_program_description, interpreter_description);
 | |
|     if (load_offset.is_error()) {
 | |
|         return load_offset.error();
 | |
|     }
 | |
| 
 | |
|     if (interpreter_description.is_null()) {
 | |
|         auto result = load_elf_object(new_space.release_nonnull(), main_program_description, load_offset.value(), ShouldAllocateTls::Yes, ShouldAllowSyscalls::No);
 | |
|         if (result.is_error())
 | |
|             return result.error();
 | |
| 
 | |
|         m_master_tls_region = result.value().tls_region;
 | |
|         m_master_tls_size = result.value().tls_size;
 | |
|         m_master_tls_alignment = result.value().tls_alignment;
 | |
| 
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     auto interpreter_load_result = load_elf_object(new_space.release_nonnull(), *interpreter_description, load_offset.value(), ShouldAllocateTls::No, ShouldAllowSyscalls::Yes);
 | |
| 
 | |
|     if (interpreter_load_result.is_error())
 | |
|         return interpreter_load_result.error();
 | |
| 
 | |
|     // TLS allocation will be done in userspace by the loader
 | |
|     VERIFY(!interpreter_load_result.value().tls_region);
 | |
|     VERIFY(!interpreter_load_result.value().tls_alignment);
 | |
|     VERIFY(!interpreter_load_result.value().tls_size);
 | |
| 
 | |
|     return interpreter_load_result;
 | |
| }
 | |
| 
 | |
| KResult Process::do_exec(NonnullRefPtr<FileDescription> main_program_description, Vector<String> arguments, Vector<String> environment,
 | |
|     RefPtr<FileDescription> interpreter_description, Thread*& new_main_thread, u32& prev_flags, const ElfW(Ehdr) & main_program_header)
 | |
| {
 | |
|     VERIFY(is_user_process());
 | |
|     VERIFY(!Processor::current().in_critical());
 | |
|     auto path = main_program_description->absolute_path();
 | |
| 
 | |
|     dbgln_if(EXEC_DEBUG, "do_exec: {}", path);
 | |
| 
 | |
|     // FIXME: How much stack space does process startup need?
 | |
|     if (!validate_stack_size(arguments, environment))
 | |
|         return E2BIG;
 | |
| 
 | |
|     auto parts = path.split('/');
 | |
|     if (parts.is_empty())
 | |
|         return ENOENT;
 | |
| 
 | |
|     auto main_program_metadata = main_program_description->metadata();
 | |
| 
 | |
|     auto load_result_or_error = load(main_program_description, interpreter_description, main_program_header);
 | |
|     if (load_result_or_error.is_error()) {
 | |
|         dbgln("do_exec: Failed to load main program or interpreter for {}", path);
 | |
|         return load_result_or_error.error();
 | |
|     }
 | |
| 
 | |
|     auto signal_trampoline_range = load_result_or_error.value().space->allocate_range({}, PAGE_SIZE);
 | |
|     if (!signal_trampoline_range.has_value()) {
 | |
|         dbgln("do_exec: Failed to allocate VM for signal trampoline");
 | |
|         return ENOMEM;
 | |
|     }
 | |
| 
 | |
|     // We commit to the new executable at this point. There is no turning back!
 | |
| 
 | |
|     // Prevent other processes from attaching to us with ptrace while we're doing this.
 | |
|     Locker ptrace_locker(ptrace_lock());
 | |
| 
 | |
|     // Disable profiling temporarily in case it's running on this process.
 | |
|     auto was_profiling = m_profiling;
 | |
|     TemporaryChange profiling_disabler(m_profiling, false);
 | |
| 
 | |
|     kill_threads_except_self();
 | |
| 
 | |
|     auto& load_result = load_result_or_error.value();
 | |
|     bool executable_is_setid = false;
 | |
| 
 | |
|     if (!(main_program_description->custody()->mount_flags() & MS_NOSUID)) {
 | |
|         if (main_program_metadata.is_setuid()) {
 | |
|             executable_is_setid = true;
 | |
|             ProtectedDataMutationScope scope { *this };
 | |
|             m_euid = main_program_metadata.uid;
 | |
|             m_suid = main_program_metadata.uid;
 | |
|         }
 | |
|         if (main_program_metadata.is_setgid()) {
 | |
|             executable_is_setid = true;
 | |
|             ProtectedDataMutationScope scope { *this };
 | |
|             m_egid = main_program_metadata.gid;
 | |
|             m_sgid = main_program_metadata.gid;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     set_dumpable(!executable_is_setid);
 | |
| 
 | |
|     {
 | |
|         // We must disable global profiling (especially kfree tracing) here because
 | |
|         // we might otherwise end up walking the stack into the process' space that
 | |
|         // is about to be destroyed.
 | |
|         TemporaryChange global_profiling_disabler(g_profiling_all_threads, false);
 | |
|         m_space = load_result.space.release_nonnull();
 | |
|     }
 | |
|     MemoryManager::enter_space(*m_space);
 | |
| 
 | |
|     auto signal_trampoline_region = m_space->allocate_region_with_vmobject(signal_trampoline_range.value(), g_signal_trampoline_region->vmobject(), 0, "Signal trampoline", PROT_READ | PROT_EXEC, true);
 | |
|     if (signal_trampoline_region.is_error()) {
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
| 
 | |
|     signal_trampoline_region.value()->set_syscall_region(true);
 | |
| 
 | |
|     m_executable = main_program_description->custody();
 | |
|     m_arguments = arguments;
 | |
|     m_environment = environment;
 | |
| 
 | |
|     m_veil_state = VeilState::None;
 | |
|     m_unveiled_paths.clear();
 | |
|     m_unveiled_paths.set_metadata({ "/", UnveilAccess::None, false });
 | |
| 
 | |
|     m_coredump_metadata.clear();
 | |
| 
 | |
|     auto current_thread = Thread::current();
 | |
|     current_thread->clear_signals();
 | |
| 
 | |
|     clear_futex_queues_on_exec();
 | |
| 
 | |
|     fds().change_each([&](auto& file_description_metadata) {
 | |
|         if (file_description_metadata.is_valid() && file_description_metadata.flags() & FD_CLOEXEC)
 | |
|             file_description_metadata = {};
 | |
|     });
 | |
| 
 | |
|     int main_program_fd = -1;
 | |
|     if (interpreter_description) {
 | |
|         main_program_fd = m_fds.allocate();
 | |
|         VERIFY(main_program_fd >= 0);
 | |
|         auto seek_result = main_program_description->seek(0, SEEK_SET);
 | |
|         VERIFY(!seek_result.is_error());
 | |
|         main_program_description->set_readable(true);
 | |
|         m_fds[main_program_fd].set(move(main_program_description), FD_CLOEXEC);
 | |
|     }
 | |
| 
 | |
|     new_main_thread = nullptr;
 | |
|     if (¤t_thread->process() == this) {
 | |
|         new_main_thread = current_thread;
 | |
|     } else {
 | |
|         for_each_thread([&](auto& thread) {
 | |
|             new_main_thread = &thread;
 | |
|             return IterationDecision::Break;
 | |
|         });
 | |
|     }
 | |
|     VERIFY(new_main_thread);
 | |
| 
 | |
|     auto auxv = generate_auxiliary_vector(load_result.load_base, load_result.entry_eip, uid(), euid(), gid(), egid(), path, main_program_fd);
 | |
| 
 | |
|     // NOTE: We create the new stack before disabling interrupts since it will zero-fault
 | |
|     //       and we don't want to deal with faults after this point.
 | |
|     auto make_stack_result = make_userspace_context_for_main_thread(new_main_thread->regs(), *load_result.stack_region.unsafe_ptr(), move(arguments), move(environment), move(auxv));
 | |
|     if (make_stack_result.is_error())
 | |
|         return make_stack_result.error();
 | |
|     FlatPtr new_userspace_sp = make_stack_result.value();
 | |
| 
 | |
|     if (wait_for_tracer_at_next_execve()) {
 | |
|         // Make sure we release the ptrace lock here or the tracer will block forever.
 | |
|         ptrace_locker.unlock();
 | |
|         Thread::current()->send_urgent_signal_to_self(SIGSTOP);
 | |
|     }
 | |
| 
 | |
|     // We enter a critical section here because we don't want to get interrupted between do_exec()
 | |
|     // and Processor::assume_context() or the next context switch.
 | |
|     // If we used an InterruptDisabler that sti()'d on exit, we might timer tick'd too soon in exec().
 | |
|     Processor::current().enter_critical(prev_flags);
 | |
| 
 | |
|     // NOTE: Be careful to not trigger any page faults below!
 | |
| 
 | |
|     m_name = parts.take_last();
 | |
|     new_main_thread->set_name(m_name);
 | |
| 
 | |
|     {
 | |
|         ProtectedDataMutationScope scope { *this };
 | |
|         m_promises = m_execpromises;
 | |
|         m_has_promises = m_has_execpromises;
 | |
| 
 | |
|         m_execpromises = 0;
 | |
|         m_has_execpromises = false;
 | |
| 
 | |
|         m_signal_trampoline = signal_trampoline_region.value()->vaddr();
 | |
| 
 | |
|         // FIXME: PID/TID ISSUE
 | |
|         m_pid = new_main_thread->tid().value();
 | |
|     }
 | |
| 
 | |
|     auto tsr_result = new_main_thread->make_thread_specific_region({});
 | |
|     if (tsr_result.is_error()) {
 | |
|         // FIXME: We cannot fail this late. Refactor this so the allocation happens before we commit to the new executable.
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
|     new_main_thread->reset_fpu_state();
 | |
| 
 | |
|     auto& regs = new_main_thread->m_regs;
 | |
| #if ARCH(I386)
 | |
|     regs.cs = GDT_SELECTOR_CODE3 | 3;
 | |
|     regs.ds = GDT_SELECTOR_DATA3 | 3;
 | |
|     regs.es = GDT_SELECTOR_DATA3 | 3;
 | |
|     regs.ss = GDT_SELECTOR_DATA3 | 3;
 | |
|     regs.fs = GDT_SELECTOR_DATA3 | 3;
 | |
|     regs.gs = GDT_SELECTOR_TLS | 3;
 | |
|     regs.eip = load_result.entry_eip;
 | |
|     regs.esp = new_userspace_sp;
 | |
| #else
 | |
|     regs.rip = load_result.entry_eip;
 | |
|     regs.rsp = new_userspace_sp;
 | |
| #endif
 | |
|     regs.cr3 = space().page_directory().cr3();
 | |
| 
 | |
|     {
 | |
|         TemporaryChange profiling_disabler(m_profiling, was_profiling);
 | |
|         PerformanceManager::add_process_exec_event(*this);
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         ScopedSpinLock lock(g_scheduler_lock);
 | |
|         new_main_thread->set_state(Thread::State::Runnable);
 | |
|     }
 | |
|     u32 lock_count_to_restore;
 | |
|     [[maybe_unused]] auto rc = big_lock().force_unlock_if_locked(lock_count_to_restore);
 | |
|     VERIFY_INTERRUPTS_DISABLED();
 | |
|     VERIFY(Processor::current().in_critical());
 | |
|     return KSuccess;
 | |
| }
 | |
| 
 | |
| static Vector<ELF::AuxiliaryValue> generate_auxiliary_vector(FlatPtr load_base, FlatPtr entry_eip, uid_t uid, uid_t euid, gid_t gid, gid_t egid, String executable_path, int main_program_fd)
 | |
| {
 | |
|     Vector<ELF::AuxiliaryValue> auxv;
 | |
|     // PHDR/EXECFD
 | |
|     // PH*
 | |
|     auxv.append({ ELF::AuxiliaryValue::PageSize, PAGE_SIZE });
 | |
|     auxv.append({ ELF::AuxiliaryValue::BaseAddress, (void*)load_base });
 | |
| 
 | |
|     auxv.append({ ELF::AuxiliaryValue::Entry, (void*)entry_eip });
 | |
|     // NOTELF
 | |
|     auxv.append({ ELF::AuxiliaryValue::Uid, (long)uid });
 | |
|     auxv.append({ ELF::AuxiliaryValue::EUid, (long)euid });
 | |
|     auxv.append({ ELF::AuxiliaryValue::Gid, (long)gid });
 | |
|     auxv.append({ ELF::AuxiliaryValue::EGid, (long)egid });
 | |
| 
 | |
|     auxv.append({ ELF::AuxiliaryValue::Platform, Processor::current().platform_string() });
 | |
|     // FIXME: This is platform specific
 | |
|     auxv.append({ ELF::AuxiliaryValue::HwCap, (long)CPUID(1).edx() });
 | |
| 
 | |
|     auxv.append({ ELF::AuxiliaryValue::ClockTick, (long)TimeManagement::the().ticks_per_second() });
 | |
| 
 | |
|     // FIXME: Also take into account things like extended filesystem permissions? That's what linux does...
 | |
|     auxv.append({ ELF::AuxiliaryValue::Secure, ((uid != euid) || (gid != egid)) ? 1 : 0 });
 | |
| 
 | |
|     char random_bytes[16] {};
 | |
|     get_fast_random_bytes((u8*)random_bytes, sizeof(random_bytes));
 | |
| 
 | |
|     auxv.append({ ELF::AuxiliaryValue::Random, String(random_bytes, sizeof(random_bytes)) });
 | |
| 
 | |
|     auxv.append({ ELF::AuxiliaryValue::ExecFilename, executable_path });
 | |
| 
 | |
|     auxv.append({ ELF::AuxiliaryValue::ExecFileDescriptor, main_program_fd });
 | |
| 
 | |
|     auxv.append({ ELF::AuxiliaryValue::Null, 0L });
 | |
|     return auxv;
 | |
| }
 | |
| 
 | |
| static KResultOr<Vector<String>> find_shebang_interpreter_for_executable(const char first_page[], int nread)
 | |
| {
 | |
|     int word_start = 2;
 | |
|     int word_length = 0;
 | |
|     if (nread > 2 && first_page[0] == '#' && first_page[1] == '!') {
 | |
|         Vector<String> interpreter_words;
 | |
| 
 | |
|         for (int i = 2; i < nread; ++i) {
 | |
|             if (first_page[i] == '\n') {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             if (first_page[i] != ' ') {
 | |
|                 ++word_length;
 | |
|             }
 | |
| 
 | |
|             if (first_page[i] == ' ') {
 | |
|                 if (word_length > 0) {
 | |
|                     interpreter_words.append(String(&first_page[word_start], word_length));
 | |
|                 }
 | |
|                 word_length = 0;
 | |
|                 word_start = i + 1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (word_length > 0)
 | |
|             interpreter_words.append(String(&first_page[word_start], word_length));
 | |
| 
 | |
|         if (!interpreter_words.is_empty())
 | |
|             return interpreter_words;
 | |
|     }
 | |
| 
 | |
|     return ENOEXEC;
 | |
| }
 | |
| 
 | |
| KResultOr<RefPtr<FileDescription>> Process::find_elf_interpreter_for_executable(const String& path, const ElfW(Ehdr) & main_program_header, int nread, size_t file_size)
 | |
| {
 | |
|     // Not using KResultOr here because we'll want to do the same thing in userspace in the RTLD
 | |
|     String interpreter_path;
 | |
|     if (!ELF::validate_program_headers(main_program_header, file_size, (const u8*)&main_program_header, nread, &interpreter_path)) {
 | |
|         dbgln("exec({}): File has invalid ELF Program headers", path);
 | |
|         return ENOEXEC;
 | |
|     }
 | |
| 
 | |
|     if (!interpreter_path.is_empty()) {
 | |
|         dbgln_if(EXEC_DEBUG, "exec({}): Using program interpreter {}", path, interpreter_path);
 | |
|         auto interp_result = VFS::the().open(interpreter_path, O_EXEC, 0, current_directory());
 | |
|         if (interp_result.is_error()) {
 | |
|             dbgln("exec({}): Unable to open program interpreter {}", path, interpreter_path);
 | |
|             return interp_result.error();
 | |
|         }
 | |
|         auto interpreter_description = interp_result.value();
 | |
|         auto interp_metadata = interpreter_description->metadata();
 | |
| 
 | |
|         VERIFY(interpreter_description->inode());
 | |
| 
 | |
|         // Validate the program interpreter as a valid elf binary.
 | |
|         // If your program interpreter is a #! file or something, it's time to stop playing games :)
 | |
|         if (interp_metadata.size < (int)sizeof(ElfW(Ehdr)))
 | |
|             return ENOEXEC;
 | |
| 
 | |
|         char first_page[PAGE_SIZE] = {};
 | |
|         auto first_page_buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&first_page);
 | |
|         auto nread_or_error = interpreter_description->read(first_page_buffer, sizeof(first_page));
 | |
|         if (nread_or_error.is_error())
 | |
|             return ENOEXEC;
 | |
|         nread = nread_or_error.value();
 | |
| 
 | |
|         if (nread < (int)sizeof(ElfW(Ehdr)))
 | |
|             return ENOEXEC;
 | |
| 
 | |
|         auto elf_header = (ElfW(Ehdr)*)first_page;
 | |
|         if (!ELF::validate_elf_header(*elf_header, interp_metadata.size)) {
 | |
|             dbgln("exec({}): Interpreter ({}) has invalid ELF header", path, interpreter_description->absolute_path());
 | |
|             return ENOEXEC;
 | |
|         }
 | |
| 
 | |
|         // Not using KResultOr here because we'll want to do the same thing in userspace in the RTLD
 | |
|         String interpreter_interpreter_path;
 | |
|         if (!ELF::validate_program_headers(*elf_header, interp_metadata.size, (u8*)first_page, nread, &interpreter_interpreter_path)) {
 | |
|             dbgln("exec({}): Interpreter ({}) has invalid ELF Program headers", path, interpreter_description->absolute_path());
 | |
|             return ENOEXEC;
 | |
|         }
 | |
| 
 | |
|         if (!interpreter_interpreter_path.is_empty()) {
 | |
|             dbgln("exec({}): Interpreter ({}) has its own interpreter ({})! No thank you!", path, interpreter_description->absolute_path(), interpreter_interpreter_path);
 | |
|             return ELOOP;
 | |
|         }
 | |
| 
 | |
|         return interpreter_description;
 | |
|     }
 | |
| 
 | |
|     if (main_program_header.e_type == ET_REL) {
 | |
|         // We can't exec an ET_REL, that's just an object file from the compiler
 | |
|         return ENOEXEC;
 | |
|     }
 | |
|     if (main_program_header.e_type == ET_DYN) {
 | |
|         // If it's ET_DYN with no PT_INTERP, then it's a dynamic executable responsible
 | |
|         // for its own relocation (i.e. it's /usr/lib/Loader.so)
 | |
|         if (path != "/usr/lib/Loader.so")
 | |
|             dbgln("exec({}): WARNING - Dynamic ELF executable without a PT_INTERP header, and isn't /usr/lib/Loader.so", path);
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // No interpreter, but, path refers to a valid elf image
 | |
|     return KResult(KSuccess);
 | |
| }
 | |
| 
 | |
| KResult Process::exec(String path, Vector<String> arguments, Vector<String> environment, int recursion_depth)
 | |
| {
 | |
|     if (recursion_depth > 2) {
 | |
|         dbgln("exec({}): SHENANIGANS! recursed too far trying to find #! interpreter", path);
 | |
|         return ELOOP;
 | |
|     }
 | |
| 
 | |
|     // Open the file to check what kind of binary format it is
 | |
|     // Currently supported formats:
 | |
|     //    - #! interpreted file
 | |
|     //    - ELF32
 | |
|     //        * ET_EXEC binary that just gets loaded
 | |
|     //        * ET_DYN binary that requires a program interpreter
 | |
|     //
 | |
|     auto file_or_error = VFS::the().open(path, O_EXEC, 0, current_directory());
 | |
|     if (file_or_error.is_error())
 | |
|         return file_or_error.error();
 | |
|     auto description = file_or_error.release_value();
 | |
|     auto metadata = description->metadata();
 | |
| 
 | |
|     if (!metadata.is_regular_file())
 | |
|         return EACCES;
 | |
| 
 | |
|     // Always gonna need at least 3 bytes. these are for #!X
 | |
|     if (metadata.size < 3)
 | |
|         return ENOEXEC;
 | |
| 
 | |
|     VERIFY(description->inode());
 | |
| 
 | |
|     // Read the first page of the program into memory so we can validate the binfmt of it
 | |
|     char first_page[PAGE_SIZE];
 | |
|     auto first_page_buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&first_page);
 | |
|     auto nread_or_error = description->read(first_page_buffer, sizeof(first_page));
 | |
|     if (nread_or_error.is_error())
 | |
|         return ENOEXEC;
 | |
| 
 | |
|     // 1) #! interpreted file
 | |
|     auto shebang_result = find_shebang_interpreter_for_executable(first_page, nread_or_error.value());
 | |
|     if (!shebang_result.is_error()) {
 | |
|         auto shebang_words = shebang_result.release_value();
 | |
|         auto shebang_path = shebang_words.first();
 | |
|         arguments[0] = move(path);
 | |
|         if (!arguments.try_prepend(move(shebang_words)))
 | |
|             return ENOMEM;
 | |
|         return exec(move(shebang_path), move(arguments), move(environment), ++recursion_depth);
 | |
|     }
 | |
| 
 | |
|     // #2) ELF32 for i386
 | |
| 
 | |
|     if (nread_or_error.value() < (int)sizeof(ElfW(Ehdr)))
 | |
|         return ENOEXEC;
 | |
|     auto main_program_header = (ElfW(Ehdr)*)first_page;
 | |
| 
 | |
|     if (!ELF::validate_elf_header(*main_program_header, metadata.size)) {
 | |
|         dbgln("exec({}): File has invalid ELF header", path);
 | |
|         return ENOEXEC;
 | |
|     }
 | |
| 
 | |
|     auto elf_result = find_elf_interpreter_for_executable(path, *main_program_header, nread_or_error.value(), metadata.size);
 | |
|     // Assume a static ELF executable by default
 | |
|     RefPtr<FileDescription> interpreter_description;
 | |
|     // We're getting either an interpreter, an error, or KSuccess (i.e. no interpreter but file checks out)
 | |
|     if (!elf_result.is_error()) {
 | |
|         // It's a dynamic ELF executable, with or without an interpreter. Do not allocate TLS
 | |
|         interpreter_description = elf_result.value();
 | |
|     } else if (elf_result.error().is_error())
 | |
|         return elf_result.error();
 | |
| 
 | |
|     // The bulk of exec() is done by do_exec(), which ensures that all locals
 | |
|     // are cleaned up by the time we yield-teleport below.
 | |
|     Thread* new_main_thread = nullptr;
 | |
|     u32 prev_flags = 0;
 | |
|     auto result = do_exec(move(description), move(arguments), move(environment), move(interpreter_description), new_main_thread, prev_flags, *main_program_header);
 | |
|     if (result.is_error())
 | |
|         return result;
 | |
| 
 | |
|     VERIFY_INTERRUPTS_DISABLED();
 | |
|     VERIFY(Processor::current().in_critical());
 | |
| 
 | |
|     auto current_thread = Thread::current();
 | |
|     if (current_thread == new_main_thread) {
 | |
|         // We need to enter the scheduler lock before changing the state
 | |
|         // and it will be released after the context switch into that
 | |
|         // thread. We should also still be in our critical section
 | |
|         VERIFY(!g_scheduler_lock.own_lock());
 | |
|         VERIFY(Processor::current().in_critical() == 1);
 | |
|         g_scheduler_lock.lock();
 | |
|         current_thread->set_state(Thread::State::Running);
 | |
|         Processor::assume_context(*current_thread, prev_flags);
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
| 
 | |
|     Processor::current().leave_critical(prev_flags);
 | |
|     return KSuccess;
 | |
| }
 | |
| 
 | |
| KResultOr<FlatPtr> Process::sys$execve(Userspace<const Syscall::SC_execve_params*> user_params)
 | |
| {
 | |
|     REQUIRE_PROMISE(exec);
 | |
| 
 | |
|     // NOTE: Be extremely careful with allocating any kernel memory in exec().
 | |
|     //       On success, the kernel stack will be lost.
 | |
|     Syscall::SC_execve_params params;
 | |
|     if (!copy_from_user(¶ms, user_params))
 | |
|         return EFAULT;
 | |
| 
 | |
|     if (params.arguments.length > ARG_MAX || params.environment.length > ARG_MAX)
 | |
|         return E2BIG;
 | |
| 
 | |
|     String path;
 | |
|     {
 | |
|         auto path_arg = get_syscall_path_argument(params.path);
 | |
|         if (path_arg.is_error())
 | |
|             return path_arg.error();
 | |
|         path = path_arg.value()->view();
 | |
|     }
 | |
| 
 | |
|     auto copy_user_strings = [](const auto& list, auto& output) {
 | |
|         if (!list.length)
 | |
|             return true;
 | |
|         Checked<size_t> size = sizeof(*list.strings);
 | |
|         size *= list.length;
 | |
|         if (size.has_overflow())
 | |
|             return false;
 | |
|         Vector<Syscall::StringArgument, 32> strings;
 | |
|         if (!strings.try_resize(list.length))
 | |
|             return false;
 | |
|         if (!copy_from_user(strings.data(), list.strings, size.value()))
 | |
|             return false;
 | |
|         for (size_t i = 0; i < list.length; ++i) {
 | |
|             auto string = copy_string_from_user(strings[i]);
 | |
|             if (string.is_null())
 | |
|                 return false;
 | |
|             if (!output.try_append(move(string)))
 | |
|                 return false;
 | |
|         }
 | |
|         return true;
 | |
|     };
 | |
| 
 | |
|     Vector<String> arguments;
 | |
|     if (!copy_user_strings(params.arguments, arguments))
 | |
|         return EFAULT;
 | |
| 
 | |
|     Vector<String> environment;
 | |
|     if (!copy_user_strings(params.environment, environment))
 | |
|         return EFAULT;
 | |
| 
 | |
|     auto result = exec(move(path), move(arguments), move(environment));
 | |
|     VERIFY(result.is_error()); // We should never continue after a successful exec!
 | |
|     return result.error();
 | |
| }
 | |
| 
 | |
| }
 |