mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 14:22:43 +00:00 
			
		
		
		
	 d8c8820ee9
			
		
	
	
		d8c8820ee9
		
	
	
	
	
		
			
			Because Thread::sleep is an internal interface, it's easy to check that there are only few callers: Process::sys$sleep, usleep, and nanosleep are happy with this increased size, because now they support the entire range of their arguments (assuming small-ish values for ticks_per_second()). SyncTask doesn't care. Note that the old behavior wasn't "cap out at 388 days", which would have been reasonable. Instead, the code resulted in unsigned overflow, meaning that a very long sleep would "on average" end after about 194 days, sometimes much quicker.
		
			
				
	
	
		
			1013 lines
		
	
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1013 lines
		
	
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright notice, this
 | |
|  *    list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright notice,
 | |
|  *    this list of conditions and the following disclaimer in the documentation
 | |
|  *    and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
|  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 | |
|  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | |
|  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | |
|  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | |
|  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
|  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #include <AK/Demangle.h>
 | |
| #include <AK/StringBuilder.h>
 | |
| #include <Kernel/Arch/i386/CPU.h>
 | |
| #include <Kernel/FileSystem/FileDescription.h>
 | |
| #include <Kernel/KSyms.h>
 | |
| #include <Kernel/Process.h>
 | |
| #include <Kernel/Profiling.h>
 | |
| #include <Kernel/Scheduler.h>
 | |
| #include <Kernel/Thread.h>
 | |
| #include <Kernel/ThreadTracer.h>
 | |
| #include <Kernel/TimerQueue.h>
 | |
| #include <Kernel/VM/MemoryManager.h>
 | |
| #include <Kernel/VM/PageDirectory.h>
 | |
| #include <Kernel/VM/ProcessPagingScope.h>
 | |
| #include <LibC/signal_numbers.h>
 | |
| #include <LibELF/Loader.h>
 | |
| 
 | |
| //#define SIGNAL_DEBUG
 | |
| //#define THREAD_DEBUG
 | |
| 
 | |
| namespace Kernel {
 | |
| 
 | |
| HashTable<Thread*>& thread_table()
 | |
| {
 | |
|     ASSERT_INTERRUPTS_DISABLED();
 | |
|     static HashTable<Thread*>* table;
 | |
|     if (!table)
 | |
|         table = new HashTable<Thread*>;
 | |
|     return *table;
 | |
| }
 | |
| 
 | |
| Thread::Thread(Process& process)
 | |
|     : m_process(process)
 | |
|     , m_name(process.name())
 | |
| {
 | |
|     if (m_process.m_thread_count.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel) == 0) {
 | |
|         // First thread gets TID == PID
 | |
|         m_tid = process.pid();
 | |
|     } else {
 | |
|         m_tid = Process::allocate_pid();
 | |
|     }
 | |
| #ifdef THREAD_DEBUG
 | |
|     dbg() << "Created new thread " << process.name() << "(" << process.pid() << ":" << m_tid << ")";
 | |
| #endif
 | |
|     set_default_signal_dispositions();
 | |
|     m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
 | |
|     reset_fpu_state();
 | |
|     memset(&m_tss, 0, sizeof(m_tss));
 | |
|     m_tss.iomapbase = sizeof(TSS32);
 | |
| 
 | |
|     // Only IF is set when a process boots.
 | |
|     m_tss.eflags = 0x0202;
 | |
| 
 | |
|     if (m_process.is_ring0()) {
 | |
|         m_tss.cs = GDT_SELECTOR_CODE0;
 | |
|         m_tss.ds = GDT_SELECTOR_DATA0;
 | |
|         m_tss.es = GDT_SELECTOR_DATA0;
 | |
|         m_tss.fs = GDT_SELECTOR_PROC;
 | |
|         m_tss.ss = GDT_SELECTOR_DATA0;
 | |
|         m_tss.gs = 0;
 | |
|     } else {
 | |
|         m_tss.cs = GDT_SELECTOR_CODE3 | 3;
 | |
|         m_tss.ds = GDT_SELECTOR_DATA3 | 3;
 | |
|         m_tss.es = GDT_SELECTOR_DATA3 | 3;
 | |
|         m_tss.fs = GDT_SELECTOR_DATA3 | 3;
 | |
|         m_tss.ss = GDT_SELECTOR_DATA3 | 3;
 | |
|         m_tss.gs = GDT_SELECTOR_TLS | 3;
 | |
|     }
 | |
| 
 | |
|     m_tss.cr3 = m_process.page_directory().cr3();
 | |
| 
 | |
|     m_kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Stack (Thread %d)", m_tid), Region::Access::Read | Region::Access::Write, false, true);
 | |
|     m_kernel_stack_region->set_stack(true);
 | |
|     m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
 | |
|     m_kernel_stack_top = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & 0xfffffff8u;
 | |
| 
 | |
|     if (m_process.is_ring0()) {
 | |
|         m_tss.esp = m_tss.esp0 = m_kernel_stack_top;
 | |
|     } else {
 | |
|         // Ring 3 processes get a separate stack for ring 0.
 | |
|         // The ring 3 stack will be assigned by exec().
 | |
|         m_tss.ss0 = GDT_SELECTOR_DATA0;
 | |
|         m_tss.esp0 = m_kernel_stack_top;
 | |
|     }
 | |
| 
 | |
|     if (m_process.pid() != 0) {
 | |
|         InterruptDisabler disabler;
 | |
|         thread_table().set(this);
 | |
|         Scheduler::init_thread(*this);
 | |
|     }
 | |
| }
 | |
| 
 | |
| Thread::~Thread()
 | |
| {
 | |
|     kfree_aligned(m_fpu_state);
 | |
|     {
 | |
|         InterruptDisabler disabler;
 | |
|         thread_table().remove(this);
 | |
|     }
 | |
| 
 | |
|     auto thread_cnt_before = m_process.m_thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
 | |
|     ASSERT(thread_cnt_before != 0);
 | |
| }
 | |
| 
 | |
| void Thread::unblock()
 | |
| {
 | |
|     m_blocker = nullptr;
 | |
|     if (Thread::current() == this) {
 | |
|         if (m_should_die)
 | |
|             set_state(Thread::Dying);
 | |
|         else
 | |
|             set_state(Thread::Running);
 | |
|         return;
 | |
|     }
 | |
|     ASSERT(m_state != Thread::Runnable && m_state != Thread::Running);
 | |
|     if (m_should_die)
 | |
|         set_state(Thread::Dying);
 | |
|     else
 | |
|         set_state(Thread::Runnable);
 | |
| }
 | |
| 
 | |
| void Thread::set_should_die()
 | |
| {
 | |
|     if (m_should_die) {
 | |
| #ifdef THREAD_DEBUG
 | |
|         dbg() << *this << " Should already die";
 | |
| #endif
 | |
|         return;
 | |
|     }
 | |
|     ScopedCritical critical;
 | |
| 
 | |
|     // Remember that we should die instead of returning to
 | |
|     // the userspace.
 | |
|     m_should_die = true;
 | |
| 
 | |
|     if (is_blocked()) {
 | |
|         ASSERT(in_kernel());
 | |
|         ASSERT(m_blocker != nullptr);
 | |
|         // We're blocked in the kernel.
 | |
|         m_blocker->set_interrupted_by_death();
 | |
|         unblock();
 | |
|     } else if (!in_kernel()) {
 | |
|         // We're executing in userspace (and we're clearly
 | |
|         // not the current thread). No need to unwind, so
 | |
|         // set the state to dying right away. This also
 | |
|         // makes sure we won't be scheduled anymore.
 | |
|         set_state(Thread::State::Dying);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Thread::die_if_needed()
 | |
| {
 | |
|     ASSERT(Thread::current() == this);
 | |
| 
 | |
|     if (!m_should_die)
 | |
|         return;
 | |
| 
 | |
|     unlock_process_if_locked();
 | |
| 
 | |
|     ScopedCritical critical;
 | |
|     set_state(Thread::State::Dying);
 | |
| 
 | |
|     // Flag a context switch. Because we're in a critical section,
 | |
|     // Scheduler::yield will actually only mark a pending scontext switch
 | |
|     // Simply leaving the critical section would not necessarily trigger
 | |
|     // a switch.
 | |
|     Scheduler::yield();
 | |
| 
 | |
|     // Now leave the critical section so that we can also trigger the
 | |
|     // actual context switch
 | |
|     u32 prev_flags;
 | |
|     Processor::current().clear_critical(prev_flags, false);
 | |
|     dbg() << "die_if_needed returned form clear_critical!!! in irq: " << Processor::current().in_irq();
 | |
|     // We should never get here, but the scoped scheduler lock
 | |
|     // will be released by Scheduler::context_switch again
 | |
|     ASSERT_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| void Thread::yield_without_holding_big_lock()
 | |
| {
 | |
|     bool did_unlock = unlock_process_if_locked();
 | |
|     Scheduler::yield();
 | |
|     relock_process(did_unlock);
 | |
| }
 | |
| 
 | |
| bool Thread::unlock_process_if_locked()
 | |
| {
 | |
|     return process().big_lock().force_unlock_if_locked();
 | |
| }
 | |
| 
 | |
| void Thread::relock_process(bool did_unlock)
 | |
| {
 | |
|     if (did_unlock)
 | |
|         process().big_lock().lock();
 | |
| }
 | |
| 
 | |
| u64 Thread::sleep(u64 ticks)
 | |
| {
 | |
|     ASSERT(state() == Thread::Running);
 | |
|     u64 wakeup_time = g_uptime + ticks;
 | |
|     auto ret = Thread::current()->block<Thread::SleepBlocker>(wakeup_time);
 | |
|     if (wakeup_time > g_uptime) {
 | |
|         ASSERT(ret.was_interrupted());
 | |
|     }
 | |
|     return wakeup_time;
 | |
| }
 | |
| 
 | |
| u64 Thread::sleep_until(u64 wakeup_time)
 | |
| {
 | |
|     ASSERT(state() == Thread::Running);
 | |
|     auto ret = Thread::current()->block<Thread::SleepBlocker>(wakeup_time);
 | |
|     if (wakeup_time > g_uptime)
 | |
|         ASSERT(ret.was_interrupted());
 | |
|     return wakeup_time;
 | |
| }
 | |
| 
 | |
| const char* Thread::state_string() const
 | |
| {
 | |
|     switch (state()) {
 | |
|     case Thread::Invalid:
 | |
|         return "Invalid";
 | |
|     case Thread::Runnable:
 | |
|         return "Runnable";
 | |
|     case Thread::Running:
 | |
|         return "Running";
 | |
|     case Thread::Dying:
 | |
|         return "Dying";
 | |
|     case Thread::Dead:
 | |
|         return "Dead";
 | |
|     case Thread::Stopped:
 | |
|         return "Stopped";
 | |
|     case Thread::Skip1SchedulerPass:
 | |
|         return "Skip1";
 | |
|     case Thread::Skip0SchedulerPasses:
 | |
|         return "Skip0";
 | |
|     case Thread::Queued:
 | |
|         return "Queued";
 | |
|     case Thread::Blocked:
 | |
|         ASSERT(m_blocker != nullptr);
 | |
|         return m_blocker->state_string();
 | |
|     }
 | |
|     klog() << "Thread::state_string(): Invalid state: " << state();
 | |
|     ASSERT_NOT_REACHED();
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| void Thread::finalize()
 | |
| {
 | |
|     ASSERT(Thread::current() == g_finalizer);
 | |
|     ASSERT(Thread::current() != this);
 | |
| 
 | |
| #ifdef THREAD_DEBUG
 | |
|     dbg() << "Finalizing thread " << *this;
 | |
| #endif
 | |
|     set_state(Thread::State::Dead);
 | |
| 
 | |
|     if (m_joiner) {
 | |
|         ASSERT(m_joiner->m_joinee == this);
 | |
|         static_cast<JoinBlocker*>(m_joiner->m_blocker)->set_joinee_exit_value(m_exit_value);
 | |
|         static_cast<JoinBlocker*>(m_joiner->m_blocker)->set_interrupted_by_death();
 | |
|         m_joiner->m_joinee = nullptr;
 | |
|         // NOTE: We clear the joiner pointer here as well, to be tidy.
 | |
|         m_joiner = nullptr;
 | |
|     }
 | |
| 
 | |
|     if (m_dump_backtrace_on_finalization)
 | |
|         dbg() << backtrace_impl();
 | |
| }
 | |
| 
 | |
| void Thread::finalize_dying_threads()
 | |
| {
 | |
|     ASSERT(Thread::current() == g_finalizer);
 | |
|     Vector<Thread*, 32> dying_threads;
 | |
|     {
 | |
|         ScopedSpinLock lock(g_scheduler_lock);
 | |
|         for_each_in_state(Thread::State::Dying, [&](Thread& thread) {
 | |
|             if (thread.is_finalizable())
 | |
|                 dying_threads.append(&thread);
 | |
|             return IterationDecision::Continue;
 | |
|         });
 | |
|     }
 | |
|     for (auto* thread : dying_threads) {
 | |
|         auto& process = thread->process();
 | |
|         thread->finalize();
 | |
|         delete thread;
 | |
|         if (process.m_thread_count.load(AK::MemoryOrder::memory_order_consume) == 0)
 | |
|             process.finalize();
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool Thread::tick()
 | |
| {
 | |
|     ++m_ticks;
 | |
|     if (tss().cs & 3)
 | |
|         ++m_process.m_ticks_in_user;
 | |
|     else
 | |
|         ++m_process.m_ticks_in_kernel;
 | |
|     return --m_ticks_left;
 | |
| }
 | |
| 
 | |
| void Thread::send_signal(u8 signal, [[maybe_unused]] Process* sender)
 | |
| {
 | |
|     ASSERT(signal < 32);
 | |
|     InterruptDisabler disabler;
 | |
| 
 | |
|     // FIXME: Figure out what to do for masked signals. Should we also ignore them here?
 | |
|     if (should_ignore_signal(signal)) {
 | |
| #ifdef SIGNAL_DEBUG
 | |
|         dbg() << "Signal " << signal << " was ignored by " << process();
 | |
| #endif
 | |
|         return;
 | |
|     }
 | |
| 
 | |
| #ifdef SIGNAL_DEBUG
 | |
|     if (sender)
 | |
|         dbg() << "Signal: " << *sender << " sent " << signal << " to " << process();
 | |
|     else
 | |
|         dbg() << "Signal: Kernel sent " << signal << " to " << process();
 | |
| #endif
 | |
| 
 | |
|     ScopedSpinLock lock(g_scheduler_lock);
 | |
|     m_pending_signals |= 1 << (signal - 1);
 | |
| }
 | |
| 
 | |
| // Certain exceptions, such as SIGSEGV and SIGILL, put a
 | |
| // thread into a state where the signal handler must be
 | |
| // invoked immediately, otherwise it will continue to fault.
 | |
| // This function should be used in an exception handler to
 | |
| // ensure that when the thread resumes, it's executing in
 | |
| // the appropriate signal handler.
 | |
| void Thread::send_urgent_signal_to_self(u8 signal)
 | |
| {
 | |
|     ASSERT(Thread::current() == this);
 | |
|     ScopedSpinLock lock(g_scheduler_lock);
 | |
|     if (dispatch_signal(signal) == ShouldUnblockThread::No)
 | |
|         Scheduler::yield();
 | |
| }
 | |
| 
 | |
| ShouldUnblockThread Thread::dispatch_one_pending_signal()
 | |
| {
 | |
|     ASSERT_INTERRUPTS_DISABLED();
 | |
|     u32 signal_candidates = m_pending_signals & ~m_signal_mask;
 | |
|     ASSERT(signal_candidates);
 | |
| 
 | |
|     u8 signal = 1;
 | |
|     for (; signal < 32; ++signal) {
 | |
|         if (signal_candidates & (1 << (signal - 1))) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return dispatch_signal(signal);
 | |
| }
 | |
| 
 | |
| enum class DefaultSignalAction {
 | |
|     Terminate,
 | |
|     Ignore,
 | |
|     DumpCore,
 | |
|     Stop,
 | |
|     Continue,
 | |
| };
 | |
| 
 | |
| DefaultSignalAction default_signal_action(u8 signal)
 | |
| {
 | |
|     ASSERT(signal && signal < NSIG);
 | |
| 
 | |
|     switch (signal) {
 | |
|     case SIGHUP:
 | |
|     case SIGINT:
 | |
|     case SIGKILL:
 | |
|     case SIGPIPE:
 | |
|     case SIGALRM:
 | |
|     case SIGUSR1:
 | |
|     case SIGUSR2:
 | |
|     case SIGVTALRM:
 | |
|     case SIGSTKFLT:
 | |
|     case SIGIO:
 | |
|     case SIGPROF:
 | |
|     case SIGTERM:
 | |
|     case SIGPWR:
 | |
|         return DefaultSignalAction::Terminate;
 | |
|     case SIGCHLD:
 | |
|     case SIGURG:
 | |
|     case SIGWINCH:
 | |
|         return DefaultSignalAction::Ignore;
 | |
|     case SIGQUIT:
 | |
|     case SIGILL:
 | |
|     case SIGTRAP:
 | |
|     case SIGABRT:
 | |
|     case SIGBUS:
 | |
|     case SIGFPE:
 | |
|     case SIGSEGV:
 | |
|     case SIGXCPU:
 | |
|     case SIGXFSZ:
 | |
|     case SIGSYS:
 | |
|         return DefaultSignalAction::DumpCore;
 | |
|     case SIGCONT:
 | |
|         return DefaultSignalAction::Continue;
 | |
|     case SIGSTOP:
 | |
|     case SIGTSTP:
 | |
|     case SIGTTIN:
 | |
|     case SIGTTOU:
 | |
|         return DefaultSignalAction::Stop;
 | |
|     }
 | |
|     ASSERT_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| bool Thread::should_ignore_signal(u8 signal) const
 | |
| {
 | |
|     ASSERT(signal < 32);
 | |
|     auto& action = m_signal_action_data[signal];
 | |
|     if (action.handler_or_sigaction.is_null())
 | |
|         return default_signal_action(signal) == DefaultSignalAction::Ignore;
 | |
|     if (action.handler_or_sigaction.as_ptr() == SIG_IGN)
 | |
|         return true;
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool Thread::has_signal_handler(u8 signal) const
 | |
| {
 | |
|     ASSERT(signal < 32);
 | |
|     auto& action = m_signal_action_data[signal];
 | |
|     return !action.handler_or_sigaction.is_null();
 | |
| }
 | |
| 
 | |
| static void push_value_on_user_stack(u32* stack, u32 data)
 | |
| {
 | |
|     *stack -= 4;
 | |
|     copy_to_user((u32*)*stack, &data);
 | |
| }
 | |
| 
 | |
| ShouldUnblockThread Thread::dispatch_signal(u8 signal)
 | |
| {
 | |
|     ASSERT_INTERRUPTS_DISABLED();
 | |
|     ASSERT(g_scheduler_lock.is_locked());
 | |
|     ASSERT(signal > 0 && signal <= 32);
 | |
|     ASSERT(!process().is_ring0());
 | |
| 
 | |
| #ifdef SIGNAL_DEBUG
 | |
|     klog() << "dispatch_signal <- " << signal;
 | |
| #endif
 | |
| 
 | |
|     auto& action = m_signal_action_data[signal];
 | |
|     // FIXME: Implement SA_SIGINFO signal handlers.
 | |
|     ASSERT(!(action.flags & SA_SIGINFO));
 | |
| 
 | |
|     // Mark this signal as handled.
 | |
|     m_pending_signals &= ~(1 << (signal - 1));
 | |
| 
 | |
|     if (signal == SIGSTOP) {
 | |
|         if (!is_stopped()) {
 | |
|             m_stop_signal = SIGSTOP;
 | |
|             set_state(State::Stopped);
 | |
|         }
 | |
|         return ShouldUnblockThread::No;
 | |
|     }
 | |
| 
 | |
|     if (signal == SIGCONT && is_stopped()) {
 | |
|         ASSERT(m_stop_state != State::Invalid);
 | |
|         set_state(m_stop_state);
 | |
|         m_stop_state = State::Invalid;
 | |
|         // make sure SemiPermanentBlocker is unblocked
 | |
|         if (m_state != Thread::Runnable && m_state != Thread::Running
 | |
|             && m_blocker && m_blocker->is_reason_signal())
 | |
|             unblock();
 | |
|     }
 | |
| 
 | |
|     else {
 | |
|         auto* thread_tracer = tracer();
 | |
|         if (thread_tracer != nullptr) {
 | |
|             // when a thread is traced, it should be stopped whenever it receives a signal
 | |
|             // the tracer is notified of this by using waitpid()
 | |
|             // only "pending signals" from the tracer are sent to the tracee
 | |
|             if (!thread_tracer->has_pending_signal(signal)) {
 | |
|                 m_stop_signal = signal;
 | |
|                 // make sure SemiPermanentBlocker is unblocked
 | |
|                 if (m_blocker && m_blocker->is_reason_signal())
 | |
|                     unblock();
 | |
|                 set_state(Stopped);
 | |
|                 return ShouldUnblockThread::No;
 | |
|             }
 | |
|             thread_tracer->unset_signal(signal);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     auto handler_vaddr = action.handler_or_sigaction;
 | |
|     if (handler_vaddr.is_null()) {
 | |
|         switch (default_signal_action(signal)) {
 | |
|         case DefaultSignalAction::Stop:
 | |
|             m_stop_signal = signal;
 | |
|             set_state(Stopped);
 | |
|             return ShouldUnblockThread::No;
 | |
|         case DefaultSignalAction::DumpCore:
 | |
|             process().for_each_thread([](auto& thread) {
 | |
|                 thread.set_dump_backtrace_on_finalization();
 | |
|                 return IterationDecision::Continue;
 | |
|             });
 | |
|             [[fallthrough]];
 | |
|         case DefaultSignalAction::Terminate:
 | |
|             m_process.terminate_due_to_signal(signal);
 | |
|             return ShouldUnblockThread::No;
 | |
|         case DefaultSignalAction::Ignore:
 | |
|             ASSERT_NOT_REACHED();
 | |
|         case DefaultSignalAction::Continue:
 | |
|             return ShouldUnblockThread::Yes;
 | |
|         }
 | |
|         ASSERT_NOT_REACHED();
 | |
|     }
 | |
| 
 | |
|     if (handler_vaddr.as_ptr() == SIG_IGN) {
 | |
| #ifdef SIGNAL_DEBUG
 | |
|         klog() << "ignored signal " << signal;
 | |
| #endif
 | |
|         return ShouldUnblockThread::Yes;
 | |
|     }
 | |
| 
 | |
|     ProcessPagingScope paging_scope(m_process);
 | |
| 
 | |
|     u32 old_signal_mask = m_signal_mask;
 | |
|     u32 new_signal_mask = action.mask;
 | |
|     if (action.flags & SA_NODEFER)
 | |
|         new_signal_mask &= ~(1 << (signal - 1));
 | |
|     else
 | |
|         new_signal_mask |= 1 << (signal - 1);
 | |
| 
 | |
|     m_signal_mask |= new_signal_mask;
 | |
| 
 | |
|     auto setup_stack = [&]<typename ThreadState>(ThreadState state, u32* stack) {
 | |
|         u32 old_esp = *stack;
 | |
|         u32 ret_eip = state.eip;
 | |
|         u32 ret_eflags = state.eflags;
 | |
| 
 | |
| #ifdef SIGNAL_DEBUG
 | |
|         klog() << "signal: setting up user stack to return to eip: " << String::format("%p", ret_eip) << " esp: " << String::format("%p", old_esp);
 | |
| #endif
 | |
| 
 | |
|         // Align the stack to 16 bytes.
 | |
|         // Note that we push 56 bytes (4 * 14) on to the stack,
 | |
|         // so we need to account for this here.
 | |
|         u32 stack_alignment = (*stack - 56) % 16;
 | |
|         *stack -= stack_alignment;
 | |
| 
 | |
|         push_value_on_user_stack(stack, ret_eflags);
 | |
| 
 | |
|         push_value_on_user_stack(stack, ret_eip);
 | |
|         push_value_on_user_stack(stack, state.eax);
 | |
|         push_value_on_user_stack(stack, state.ecx);
 | |
|         push_value_on_user_stack(stack, state.edx);
 | |
|         push_value_on_user_stack(stack, state.ebx);
 | |
|         push_value_on_user_stack(stack, old_esp);
 | |
|         push_value_on_user_stack(stack, state.ebp);
 | |
|         push_value_on_user_stack(stack, state.esi);
 | |
|         push_value_on_user_stack(stack, state.edi);
 | |
| 
 | |
|         // PUSH old_signal_mask
 | |
|         push_value_on_user_stack(stack, old_signal_mask);
 | |
| 
 | |
|         push_value_on_user_stack(stack, signal);
 | |
|         push_value_on_user_stack(stack, handler_vaddr.get());
 | |
|         push_value_on_user_stack(stack, 0); //push fake return address
 | |
| 
 | |
|         ASSERT((*stack % 16) == 0);
 | |
|     };
 | |
| 
 | |
|     // We now place the thread state on the userspace stack.
 | |
|     // Note that when we are in the kernel (ie. blocking) we cannot use the
 | |
|     // tss, as that will contain kernel state; instead, we use a RegisterState.
 | |
|     // Conversely, when the thread isn't blocking the RegisterState may not be
 | |
|     // valid (fork, exec etc) but the tss will, so we use that instead.
 | |
|     if (!in_kernel()) {
 | |
|         u32* stack = &m_tss.esp;
 | |
|         setup_stack(m_tss, stack);
 | |
| 
 | |
|         m_tss.cs = GDT_SELECTOR_CODE3 | 3;
 | |
|         m_tss.ds = GDT_SELECTOR_DATA3 | 3;
 | |
|         m_tss.es = GDT_SELECTOR_DATA3 | 3;
 | |
|         m_tss.fs = GDT_SELECTOR_DATA3 | 3;
 | |
|         m_tss.gs = GDT_SELECTOR_TLS | 3;
 | |
|         m_tss.eip = g_return_to_ring3_from_signal_trampoline.get();
 | |
|         // FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
 | |
|         set_state(Skip1SchedulerPass);
 | |
|     } else {
 | |
|         auto& regs = get_register_dump_from_stack();
 | |
|         u32* stack = ®s.userspace_esp;
 | |
|         setup_stack(regs, stack);
 | |
|         regs.eip = g_return_to_ring3_from_signal_trampoline.get();
 | |
|     }
 | |
| 
 | |
| #ifdef SIGNAL_DEBUG
 | |
|     klog() << "signal: Okay, {" << state_string() << "} has been primed with signal handler " << String::format("%w", m_tss.cs) << ":" << String::format("%x", m_tss.eip);
 | |
| #endif
 | |
|     return ShouldUnblockThread::Yes;
 | |
| }
 | |
| 
 | |
| void Thread::set_default_signal_dispositions()
 | |
| {
 | |
|     // FIXME: Set up all the right default actions. See signal(7).
 | |
|     memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
 | |
|     m_signal_action_data[SIGCHLD].handler_or_sigaction = VirtualAddress(SIG_IGN);
 | |
|     m_signal_action_data[SIGWINCH].handler_or_sigaction = VirtualAddress(SIG_IGN);
 | |
| }
 | |
| 
 | |
| void Thread::push_value_on_stack(FlatPtr value)
 | |
| {
 | |
|     m_tss.esp -= 4;
 | |
|     FlatPtr* stack_ptr = (FlatPtr*)m_tss.esp;
 | |
|     copy_to_user(stack_ptr, &value);
 | |
| }
 | |
| 
 | |
| RegisterState& Thread::get_register_dump_from_stack()
 | |
| {
 | |
|     // The userspace registers should be stored at the top of the stack
 | |
|     // We have to subtract 2 because the processor decrements the kernel
 | |
|     // stack before pushing the args.
 | |
|     return *(RegisterState*)(kernel_stack_top() - sizeof(RegisterState));
 | |
| }
 | |
| 
 | |
| u32 Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment, Vector<AuxiliaryValue> auxv)
 | |
| {
 | |
|     auto* region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, "Stack (Main thread)", PROT_READ | PROT_WRITE, false);
 | |
|     ASSERT(region);
 | |
|     region->set_stack(true);
 | |
| 
 | |
|     u32 new_esp = region->vaddr().offset(default_userspace_stack_size).get();
 | |
| 
 | |
|     // FIXME: This is weird, we put the argument contents at the base of the stack,
 | |
|     //        and the argument pointers at the top? Why?
 | |
|     char* stack_base = (char*)region->vaddr().get();
 | |
|     int argc = arguments.size();
 | |
|     char** argv = (char**)stack_base;
 | |
|     char** env = argv + arguments.size() + 1;
 | |
|     auxv_t* auxvp = (auxv_t*)((char*)(env + environment.size() + 1));
 | |
|     char* bufptr = stack_base + (sizeof(char*) * (arguments.size() + 1)) + (sizeof(char*) * (environment.size() + 1) + (sizeof(auxv_t) * auxv.size()));
 | |
| 
 | |
|     SmapDisabler disabler;
 | |
| 
 | |
|     for (size_t i = 0; i < arguments.size(); ++i) {
 | |
|         argv[i] = bufptr;
 | |
|         memcpy(bufptr, arguments[i].characters(), arguments[i].length());
 | |
|         bufptr += arguments[i].length();
 | |
|         *(bufptr++) = '\0';
 | |
|     }
 | |
|     argv[arguments.size()] = nullptr;
 | |
| 
 | |
|     for (size_t i = 0; i < environment.size(); ++i) {
 | |
|         env[i] = bufptr;
 | |
|         memcpy(bufptr, environment[i].characters(), environment[i].length());
 | |
|         bufptr += environment[i].length();
 | |
|         *(bufptr++) = '\0';
 | |
|     }
 | |
|     env[environment.size()] = nullptr;
 | |
| 
 | |
|     for (size_t i = 0; i < auxv.size(); ++i) {
 | |
|         *auxvp = auxv[i].auxv;
 | |
|         if (!auxv[i].optional_string.is_empty()) {
 | |
|             auxvp->a_un.a_ptr = bufptr;
 | |
|             memcpy(bufptr, auxv[i].optional_string.characters(), auxv[i].optional_string.length());
 | |
|             bufptr += auxv[i].optional_string.length();
 | |
|             *(bufptr++) = '\0';
 | |
|         }
 | |
|         ++auxvp;
 | |
|     }
 | |
| 
 | |
|     auto push_on_new_stack = [&new_esp](u32 value) {
 | |
|         new_esp -= 4;
 | |
|         u32* stack_ptr = (u32*)new_esp;
 | |
|         *stack_ptr = value;
 | |
|     };
 | |
| 
 | |
|     // NOTE: The stack needs to be 16-byte aligned.
 | |
|     push_on_new_stack((FlatPtr)env);
 | |
|     push_on_new_stack((FlatPtr)argv);
 | |
|     push_on_new_stack((FlatPtr)argc);
 | |
|     push_on_new_stack(0);
 | |
| 
 | |
|     ASSERT((FlatPtr)new_esp % 16 == 0);
 | |
| 
 | |
|     return new_esp;
 | |
| }
 | |
| 
 | |
| Thread* Thread::clone(Process& process)
 | |
| {
 | |
|     auto* clone = new Thread(process);
 | |
|     memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
 | |
|     clone->m_signal_mask = m_signal_mask;
 | |
|     memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState));
 | |
|     clone->m_thread_specific_data = m_thread_specific_data;
 | |
|     clone->m_thread_specific_region_size = m_thread_specific_region_size;
 | |
|     return clone;
 | |
| }
 | |
| 
 | |
| Vector<Thread*> Thread::all_threads()
 | |
| {
 | |
|     Vector<Thread*> threads;
 | |
|     InterruptDisabler disabler;
 | |
|     threads.ensure_capacity(thread_table().size());
 | |
|     for (auto* thread : thread_table())
 | |
|         threads.unchecked_append(thread);
 | |
|     return threads;
 | |
| }
 | |
| 
 | |
| bool Thread::is_thread(void* ptr)
 | |
| {
 | |
|     ASSERT_INTERRUPTS_DISABLED();
 | |
|     return thread_table().contains((Thread*)ptr);
 | |
| }
 | |
| 
 | |
| void Thread::set_state(State new_state)
 | |
| {
 | |
|     ScopedSpinLock lock(g_scheduler_lock);
 | |
|     if (new_state == m_state)
 | |
|         return;
 | |
| 
 | |
|     if (new_state == Blocked) {
 | |
|         // we should always have a Blocker while blocked
 | |
|         ASSERT(m_blocker != nullptr);
 | |
|     }
 | |
| 
 | |
|     if (new_state == Stopped) {
 | |
|         m_stop_state = m_state;
 | |
|     }
 | |
| 
 | |
|     m_state = new_state;
 | |
| #ifdef THREAD_DEBUG
 | |
|     dbg() << "Set Thread " << *this << " state to " << state_string();
 | |
| #endif
 | |
| 
 | |
|     if (m_process.pid() != 0) {
 | |
|         Scheduler::update_state_for_thread(*this);
 | |
|     }
 | |
| 
 | |
|     if (m_state == Dying && this != Thread::current() && is_finalizable()) {
 | |
|         // Some other thread set this thread to Dying, notify the
 | |
|         // finalizer right away as it can be cleaned up now
 | |
|         Scheduler::notify_finalizer();
 | |
|     }
 | |
| }
 | |
| 
 | |
| String Thread::backtrace(ProcessInspectionHandle&)
 | |
| {
 | |
|     return backtrace_impl();
 | |
| }
 | |
| 
 | |
| struct RecognizedSymbol {
 | |
|     u32 address;
 | |
|     const KernelSymbol* symbol { nullptr };
 | |
| };
 | |
| 
 | |
| static bool symbolicate(const RecognizedSymbol& symbol, const Process& process, StringBuilder& builder, Process::ELFBundle* elf_bundle)
 | |
| {
 | |
|     if (!symbol.address)
 | |
|         return false;
 | |
| 
 | |
|     bool mask_kernel_addresses = !process.is_superuser();
 | |
|     if (!symbol.symbol) {
 | |
|         if (!is_user_address(VirtualAddress(symbol.address))) {
 | |
|             builder.append("0xdeadc0de\n");
 | |
|         } else {
 | |
|             if (elf_bundle && elf_bundle->elf_loader->has_symbols())
 | |
|                 builder.appendf("%p  %s\n", symbol.address, elf_bundle->elf_loader->symbolicate(symbol.address).characters());
 | |
|             else
 | |
|                 builder.appendf("%p\n", symbol.address);
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
|     unsigned offset = symbol.address - symbol.symbol->address;
 | |
|     if (symbol.symbol->address == g_highest_kernel_symbol_address && offset > 4096) {
 | |
|         builder.appendf("%p\n", mask_kernel_addresses ? 0xdeadc0de : symbol.address);
 | |
|     } else {
 | |
|         builder.appendf("%p  %s +%u\n", mask_kernel_addresses ? 0xdeadc0de : symbol.address, demangle(symbol.symbol->name).characters(), offset);
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| String Thread::backtrace_impl()
 | |
| {
 | |
|     Vector<RecognizedSymbol, 128> recognized_symbols;
 | |
| 
 | |
|     auto& process = const_cast<Process&>(this->process());
 | |
|     auto elf_bundle = process.elf_bundle();
 | |
|     ProcessPagingScope paging_scope(process);
 | |
| 
 | |
|     // To prevent a context switch involving this thread, which may happen
 | |
|     // on another processor, we need to acquire the scheduler lock while
 | |
|     // walking the stack
 | |
|     {
 | |
|         ScopedSpinLock lock(g_scheduler_lock);
 | |
|         FlatPtr stack_ptr, eip;
 | |
|         if (Processor::get_context_frame_ptr(*this, stack_ptr, eip)) {
 | |
|             recognized_symbols.append({ eip, symbolicate_kernel_address(eip) });
 | |
|             for (;;) {
 | |
|                 if (!process.validate_read_from_kernel(VirtualAddress(stack_ptr), sizeof(void*) * 2))
 | |
|                     break;
 | |
|                 FlatPtr retaddr;
 | |
| 
 | |
|                 if (is_user_range(VirtualAddress(stack_ptr), sizeof(FlatPtr) * 2)) {
 | |
|                     copy_from_user(&retaddr, &((FlatPtr*)stack_ptr)[1]);
 | |
|                     recognized_symbols.append({ retaddr, symbolicate_kernel_address(retaddr) });
 | |
|                     copy_from_user(&stack_ptr, (FlatPtr*)stack_ptr);
 | |
|                 } else {
 | |
|                     memcpy(&retaddr, &((FlatPtr*)stack_ptr)[1], sizeof(FlatPtr));
 | |
|                     recognized_symbols.append({ retaddr, symbolicate_kernel_address(retaddr) });
 | |
|                     memcpy(&stack_ptr, (FlatPtr*)stack_ptr, sizeof(FlatPtr));
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     StringBuilder builder;
 | |
|     for (auto& symbol : recognized_symbols) {
 | |
|         if (!symbolicate(symbol, process, builder, elf_bundle.ptr()))
 | |
|             break;
 | |
|     }
 | |
|     return builder.to_string();
 | |
| }
 | |
| 
 | |
| Vector<FlatPtr> Thread::raw_backtrace(FlatPtr ebp, FlatPtr eip) const
 | |
| {
 | |
|     InterruptDisabler disabler;
 | |
|     auto& process = const_cast<Process&>(this->process());
 | |
|     ProcessPagingScope paging_scope(process);
 | |
|     Vector<FlatPtr, Profiling::max_stack_frame_count> backtrace;
 | |
|     backtrace.append(eip);
 | |
|     for (FlatPtr* stack_ptr = (FlatPtr*)ebp; process.validate_read_from_kernel(VirtualAddress(stack_ptr), sizeof(FlatPtr) * 2) && MM.can_read_without_faulting(process, VirtualAddress(stack_ptr), sizeof(FlatPtr) * 2); stack_ptr = (FlatPtr*)*stack_ptr) {
 | |
|         FlatPtr retaddr = stack_ptr[1];
 | |
|         backtrace.append(retaddr);
 | |
|         if (backtrace.size() == Profiling::max_stack_frame_count)
 | |
|             break;
 | |
|     }
 | |
|     return backtrace;
 | |
| }
 | |
| 
 | |
| void Thread::make_thread_specific_region(Badge<Process>)
 | |
| {
 | |
|     size_t thread_specific_region_alignment = max(process().m_master_tls_alignment, alignof(ThreadSpecificData));
 | |
|     m_thread_specific_region_size = align_up_to(process().m_master_tls_size, thread_specific_region_alignment) + sizeof(ThreadSpecificData);
 | |
|     auto* region = process().allocate_region({}, m_thread_specific_region_size, "Thread-specific", PROT_READ | PROT_WRITE, true);
 | |
|     SmapDisabler disabler;
 | |
|     auto* thread_specific_data = (ThreadSpecificData*)region->vaddr().offset(align_up_to(process().m_master_tls_size, thread_specific_region_alignment)).as_ptr();
 | |
|     auto* thread_local_storage = (u8*)((u8*)thread_specific_data) - align_up_to(process().m_master_tls_size, process().m_master_tls_alignment);
 | |
|     m_thread_specific_data = VirtualAddress(thread_specific_data);
 | |
|     thread_specific_data->self = thread_specific_data;
 | |
|     if (process().m_master_tls_size)
 | |
|         memcpy(thread_local_storage, process().m_master_tls_region->vaddr().as_ptr(), process().m_master_tls_size);
 | |
| }
 | |
| 
 | |
| const LogStream& operator<<(const LogStream& stream, const Thread& value)
 | |
| {
 | |
|     return stream << value.process().name() << "(" << value.pid() << ":" << value.tid() << ")";
 | |
| }
 | |
| 
 | |
| Thread::BlockResult Thread::wait_on(WaitQueue& queue, const char* reason, timeval* timeout, Atomic<bool>* lock, Thread* beneficiary)
 | |
| {
 | |
|     TimerId timer_id {};
 | |
|     bool did_unlock;
 | |
| 
 | |
|     {
 | |
|         ScopedCritical critical;
 | |
|         // We need to be in a critical section *and* then also acquire the
 | |
|         // scheduler lock. The only way acquiring the scheduler lock could
 | |
|         // block us is if another core were to be holding it, in which case
 | |
|         // we need to wait until the scheduler lock is released again
 | |
|         {
 | |
|             ScopedSpinLock sched_lock(g_scheduler_lock);
 | |
|             if (!queue.enqueue(*Thread::current())) {
 | |
|                 // The WaitQueue was already requested to wake someone when
 | |
|                 // nobody was waiting. So return right away as we shouldn't
 | |
|                 // be waiting
 | |
| 
 | |
|                 // The API contract guarantees we return with interrupts enabled,
 | |
|                 // regardless of how we got called
 | |
|                 critical.set_interrupt_flag_on_destruction(true);
 | |
| 
 | |
|                 return BlockResult::NotBlocked;
 | |
|             }
 | |
| 
 | |
|             did_unlock = unlock_process_if_locked();
 | |
|             if (lock)
 | |
|                 *lock = false;
 | |
|             set_state(State::Queued);
 | |
|             m_wait_reason = reason;
 | |
| 
 | |
|             if (timeout) {
 | |
|                 timer_id = TimerQueue::the().add_timer(*timeout, [&]() {
 | |
|                     ScopedSpinLock sched_lock(g_scheduler_lock);
 | |
|                     wake_from_queue();
 | |
|                 });
 | |
|             }
 | |
| 
 | |
|             // Yield and wait for the queue to wake us up again.
 | |
|             if (beneficiary)
 | |
|                 Scheduler::donate_to(beneficiary, reason);
 | |
|             else
 | |
|                 Scheduler::yield();
 | |
|         }
 | |
| 
 | |
|         // Clearing the critical section may trigger the context switch
 | |
|         // flagged by calling Scheduler::donate_to or Scheduler::yield
 | |
|         // above. We have to do it this way because we intentionally
 | |
|         // leave the critical section here to be able to switch contexts.
 | |
|         u32 prev_flags;
 | |
|         u32 prev_crit = Processor::current().clear_critical(prev_flags, true);
 | |
| 
 | |
|         // We've unblocked, relock the process if needed and carry on.
 | |
|         relock_process(did_unlock);
 | |
| 
 | |
|         // NOTE: We may be on a differenct CPU now!
 | |
|         Processor::current().restore_critical(prev_crit, prev_flags);
 | |
| 
 | |
|         // This looks counter productive, but we may not actually leave
 | |
|         // the critical section we just restored. It depends on whether
 | |
|         // we were in one while being called.
 | |
|     }
 | |
| 
 | |
|     BlockResult result(BlockResult::WokeNormally);
 | |
|     {
 | |
|         // To be able to look at m_wait_queue_node we once again need the
 | |
|         // scheduler lock, which is held when we insert into the queue
 | |
|         ScopedSpinLock sched_lock(g_scheduler_lock);
 | |
| 
 | |
|         if (m_wait_queue_node.is_in_list())
 | |
|             result = BlockResult::InterruptedByTimeout;
 | |
| 
 | |
|         // Make sure we cancel the timer if woke normally.
 | |
|         if (timeout && !result.was_interrupted())
 | |
|             TimerQueue::the().cancel_timer(timer_id);
 | |
|     }
 | |
| 
 | |
|     // The API contract guarantees we return with interrupts enabled,
 | |
|     // regardless of how we got called
 | |
|     sti();
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| void Thread::wake_from_queue()
 | |
| {
 | |
|     ScopedSpinLock lock(g_scheduler_lock);
 | |
|     ASSERT(state() == State::Queued);
 | |
|     m_wait_reason = nullptr;
 | |
|     if (this != Thread::current())
 | |
|         set_state(State::Runnable);
 | |
|     else
 | |
|         set_state(State::Running);
 | |
| }
 | |
| 
 | |
| Thread* Thread::from_tid(int tid)
 | |
| {
 | |
|     InterruptDisabler disabler;
 | |
|     Thread* found_thread = nullptr;
 | |
|     Thread::for_each([&](auto& thread) {
 | |
|         if (thread.tid() == tid) {
 | |
|             found_thread = &thread;
 | |
|             return IterationDecision::Break;
 | |
|         }
 | |
|         return IterationDecision::Continue;
 | |
|     });
 | |
|     return found_thread;
 | |
| }
 | |
| 
 | |
| void Thread::reset_fpu_state()
 | |
| {
 | |
|     memcpy(m_fpu_state, &Processor::current().clean_fpu_state(), sizeof(FPUState));
 | |
| }
 | |
| 
 | |
| void Thread::start_tracing_from(pid_t tracer)
 | |
| {
 | |
|     m_tracer = ThreadTracer::create(tracer);
 | |
| }
 | |
| 
 | |
| void Thread::stop_tracing()
 | |
| {
 | |
|     m_tracer = nullptr;
 | |
| }
 | |
| 
 | |
| void Thread::tracer_trap(const RegisterState& regs)
 | |
| {
 | |
|     ASSERT(m_tracer.ptr());
 | |
|     m_tracer->set_regs(regs);
 | |
|     send_urgent_signal_to_self(SIGTRAP);
 | |
| }
 | |
| 
 | |
| const Thread::Blocker& Thread::blocker() const
 | |
| {
 | |
|     ASSERT(m_blocker);
 | |
|     return *m_blocker;
 | |
| }
 | |
| 
 | |
| }
 |