mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 10:02:43 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			238 lines
		
	
	
	
		
			7.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			238 lines
		
	
	
	
		
			7.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2020, Liav A. <liavalb@hotmail.co.il>
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright notice, this
 | |
|  *    list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright notice,
 | |
|  *    this list of conditions and the following disclaimer in the documentation
 | |
|  *    and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
|  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 | |
|  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | |
|  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | |
|  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | |
|  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
|  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #include <Kernel/ACPI/Parser.h>
 | |
| #include <Kernel/CommandLine.h>
 | |
| #include <Kernel/Scheduler.h>
 | |
| #include <Kernel/Time/HPET.h>
 | |
| #include <Kernel/Time/HPETComparator.h>
 | |
| #include <Kernel/Time/HardwareTimer.h>
 | |
| #include <Kernel/Time/PIT.h>
 | |
| #include <Kernel/Time/RTC.h>
 | |
| #include <Kernel/Time/TimeManagement.h>
 | |
| #include <Kernel/VM/MemoryManager.h>
 | |
| 
 | |
| //#define TIME_DEBUG
 | |
| 
 | |
| namespace Kernel {
 | |
| 
 | |
| static TimeManagement* s_time_management;
 | |
| 
 | |
| TimeManagement& TimeManagement::the()
 | |
| {
 | |
|     ASSERT(s_time_management);
 | |
|     return *s_time_management;
 | |
| }
 | |
| 
 | |
| bool TimeManagement::is_system_timer(const HardwareTimer& timer) const
 | |
| {
 | |
|     return &timer == m_system_timer.ptr();
 | |
| }
 | |
| 
 | |
| void TimeManagement::set_epoch_time(time_t value)
 | |
| {
 | |
|     InterruptDisabler disabler;
 | |
|     m_epoch_time = value;
 | |
| }
 | |
| 
 | |
| time_t TimeManagement::epoch_time() const
 | |
| {
 | |
|     return m_epoch_time;
 | |
| }
 | |
| 
 | |
| void TimeManagement::initialize()
 | |
| {
 | |
|     ASSERT(!s_time_management);
 | |
|     if (kernel_command_line().lookup("time").value_or("modern") == "legacy")
 | |
|         s_time_management = new TimeManagement(false);
 | |
|     else
 | |
|         s_time_management = new TimeManagement(true);
 | |
| }
 | |
| time_t TimeManagement::seconds_since_boot() const
 | |
| {
 | |
|     return m_seconds_since_boot;
 | |
| }
 | |
| time_t TimeManagement::ticks_per_second() const
 | |
| {
 | |
|     return m_system_timer->ticks_per_second();
 | |
| }
 | |
| 
 | |
| time_t TimeManagement::ticks_this_second() const
 | |
| {
 | |
|     return m_ticks_this_second;
 | |
| }
 | |
| 
 | |
| time_t TimeManagement::boot_time() const
 | |
| {
 | |
|     return RTC::boot_time();
 | |
| }
 | |
| 
 | |
| TimeManagement::TimeManagement(bool probe_non_legacy_hardware_timers)
 | |
| {
 | |
|     if (ACPI::is_enabled()) {
 | |
|         if (!ACPI::Parser::the()->x86_specific_flags().cmos_rtc_not_present) {
 | |
|             RTC::initialize();
 | |
|             m_epoch_time += boot_time();
 | |
|         } else {
 | |
|             klog() << "ACPI: RTC CMOS Not present";
 | |
|         }
 | |
|     } else {
 | |
|         // We just assume that we can access RTC CMOS, if ACPI isn't usable.
 | |
|         RTC::initialize();
 | |
|         m_epoch_time += boot_time();
 | |
|     }
 | |
|     if (probe_non_legacy_hardware_timers) {
 | |
|         if (!probe_and_set_non_legacy_hardware_timers())
 | |
|             if (!probe_and_set_legacy_hardware_timers())
 | |
|                 ASSERT_NOT_REACHED();
 | |
|         return;
 | |
|     }
 | |
|     if (probe_and_set_legacy_hardware_timers())
 | |
|         return;
 | |
|     ASSERT_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| timeval TimeManagement::now_as_timeval()
 | |
| {
 | |
|     return { s_time_management->epoch_time(), (suseconds_t)s_time_management->ticks_this_second() * (suseconds_t)1000 };
 | |
| }
 | |
| 
 | |
| Vector<HardwareTimer*> TimeManagement::scan_and_initialize_periodic_timers()
 | |
| {
 | |
|     bool should_enable = is_hpet_periodic_mode_allowed();
 | |
|     dbg() << "Time: Scanning for periodic timers";
 | |
|     Vector<HardwareTimer*> timers;
 | |
|     for (auto& hardware_timer : m_hardware_timers) {
 | |
|         if (hardware_timer.is_periodic_capable()) {
 | |
|             timers.append(&hardware_timer);
 | |
|             if (should_enable)
 | |
|                 hardware_timer.set_periodic();
 | |
|         }
 | |
|     }
 | |
|     return timers;
 | |
| }
 | |
| 
 | |
| Vector<HardwareTimer*> TimeManagement::scan_for_non_periodic_timers()
 | |
| {
 | |
|     dbg() << "Time: Scanning for non-periodic timers";
 | |
|     Vector<HardwareTimer*> timers;
 | |
|     for (auto& hardware_timer : m_hardware_timers) {
 | |
|         if (!hardware_timer.is_periodic_capable())
 | |
|             timers.append(&hardware_timer);
 | |
|     }
 | |
|     return timers;
 | |
| }
 | |
| 
 | |
| bool TimeManagement::is_hpet_periodic_mode_allowed()
 | |
| {
 | |
|     auto hpet_mode = kernel_command_line().lookup("hpet").value_or("periodic");
 | |
|     if (hpet_mode == "periodic")
 | |
|         return true;
 | |
|     if (hpet_mode == "nonperiodic")
 | |
|         return false;
 | |
|     ASSERT_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| bool TimeManagement::probe_and_set_non_legacy_hardware_timers()
 | |
| {
 | |
|     if (!ACPI::is_enabled())
 | |
|         return false;
 | |
|     if (!HPET::test_and_initialize())
 | |
|         return false;
 | |
|     if (!HPET::the().comparators().size()) {
 | |
|         dbg() << "HPET initialization aborted.";
 | |
|         return false;
 | |
|     }
 | |
|     dbg() << "HPET: Setting appropriate functions to timers.";
 | |
| 
 | |
|     for (auto& hpet_comparator : HPET::the().comparators())
 | |
|         m_hardware_timers.append(hpet_comparator);
 | |
| 
 | |
|     auto periodic_timers = scan_and_initialize_periodic_timers();
 | |
|     auto non_periodic_timers = scan_for_non_periodic_timers();
 | |
| 
 | |
|     if (is_hpet_periodic_mode_allowed())
 | |
|         ASSERT(!periodic_timers.is_empty());
 | |
| 
 | |
|     ASSERT(periodic_timers.size() + non_periodic_timers.size() >= 2);
 | |
| 
 | |
|     if (periodic_timers.size() >= 2) {
 | |
|         m_time_keeper_timer = periodic_timers[1];
 | |
|         m_system_timer = periodic_timers[0];
 | |
|     } else {
 | |
|         if (periodic_timers.size() == 1) {
 | |
|             m_time_keeper_timer = periodic_timers[0];
 | |
|             m_system_timer = non_periodic_timers[0];
 | |
|         } else {
 | |
|             m_time_keeper_timer = non_periodic_timers[1];
 | |
|             m_system_timer = non_periodic_timers[0];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     m_system_timer->set_callback(Scheduler::timer_tick);
 | |
|     dbg() << "Reset timers";
 | |
|     m_system_timer->try_to_set_frequency(m_system_timer->calculate_nearest_possible_frequency(1024));
 | |
|     m_time_keeper_timer->set_callback(TimeManagement::update_time);
 | |
|     m_time_keeper_timer->try_to_set_frequency(OPTIMAL_TICKS_PER_SECOND_RATE);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool TimeManagement::probe_and_set_legacy_hardware_timers()
 | |
| {
 | |
|     if (ACPI::is_enabled()) {
 | |
|         if (ACPI::Parser::the()->x86_specific_flags().cmos_rtc_not_present) {
 | |
|             dbg() << "ACPI: CMOS RTC Not Present";
 | |
|             return false;
 | |
|         } else {
 | |
|             dbg() << "ACPI: CMOS RTC Present";
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     m_hardware_timers.append(PIT::initialize(TimeManagement::update_time));
 | |
|     m_hardware_timers.append(RealTimeClock::create(Scheduler::timer_tick));
 | |
|     m_time_keeper_timer = m_hardware_timers[0];
 | |
|     m_system_timer = m_hardware_timers[1];
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void TimeManagement::update_time(const RegisterState& regs)
 | |
| {
 | |
|     TimeManagement::the().increment_time_since_boot(regs);
 | |
| }
 | |
| 
 | |
| void TimeManagement::increment_time_since_boot(const RegisterState&)
 | |
| {
 | |
|     ASSERT(!m_time_keeper_timer.is_null());
 | |
|     if (++m_ticks_this_second >= m_time_keeper_timer->ticks_per_second()) {
 | |
|         // FIXME: Synchronize with other clock somehow to prevent drifting apart.
 | |
|         ++m_seconds_since_boot;
 | |
|         ++m_epoch_time;
 | |
|         m_ticks_this_second = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| }
 | 
