1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-31 11:18:11 +00:00
serenity/Userland/Libraries/LibJS/Runtime/VM.h
Andreas Kling aabd82d508 LibJS: Bring function environment records closer to the spec
This patch adds FunctionEnvironmentRecord as a subclass of the existing
DeclarativeEnvironmentRecord. Things that are specific to function
environment records move into there, simplifying the base.

Most of the abstract operations related to function environment records
are rewritten to match the spec exactly. I also had to implement
GetThisEnvironment() and GetSuperConstructor() to keep tests working
after the changes, so that's nice as well. :^)
2021-06-22 18:44:53 +02:00

313 lines
10 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2020-2021, Linus Groh <linusg@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/FlyString.h>
#include <AK/Function.h>
#include <AK/HashMap.h>
#include <AK/RefCounted.h>
#include <AK/StackInfo.h>
#include <AK/Variant.h>
#include <LibJS/Heap/Heap.h>
#include <LibJS/Runtime/CommonPropertyNames.h>
#include <LibJS/Runtime/Error.h>
#include <LibJS/Runtime/ErrorTypes.h>
#include <LibJS/Runtime/Exception.h>
#include <LibJS/Runtime/MarkedValueList.h>
#include <LibJS/Runtime/Promise.h>
#include <LibJS/Runtime/Value.h>
namespace JS {
class Identifier;
struct BindingPattern;
enum class ScopeType {
None,
Function,
Block,
Try,
Breakable,
Continuable,
};
struct ScopeFrame {
ScopeType type;
NonnullRefPtr<ScopeNode> scope_node;
bool pushed_environment { false };
};
struct CallFrame {
const ASTNode* current_node { nullptr };
FlyString function_name;
Value callee;
Value this_value;
Vector<Value> arguments;
Array* arguments_object { nullptr };
EnvironmentRecord* environment_record { nullptr };
bool is_strict_mode { false };
};
class VM : public RefCounted<VM> {
public:
static NonnullRefPtr<VM> create();
~VM();
Heap& heap() { return m_heap; }
const Heap& heap() const { return m_heap; }
Interpreter& interpreter();
Interpreter* interpreter_if_exists();
void push_interpreter(Interpreter&);
void pop_interpreter(Interpreter&);
Exception* exception() { return m_exception; }
void set_exception(Exception& exception) { m_exception = &exception; }
void clear_exception() { m_exception = nullptr; }
void dump_backtrace() const;
void dump_environment_record_chain() const;
class InterpreterExecutionScope {
public:
InterpreterExecutionScope(Interpreter&);
~InterpreterExecutionScope();
private:
Interpreter& m_interpreter;
};
void gather_roots(HashTable<Cell*>&);
#define __JS_ENUMERATE(SymbolName, snake_name) \
Symbol* well_known_symbol_##snake_name() const { return m_well_known_symbol_##snake_name; }
JS_ENUMERATE_WELL_KNOWN_SYMBOLS
#undef __JS_ENUMERATE
Symbol* get_global_symbol(const String& description);
PrimitiveString& empty_string() { return *m_empty_string; }
PrimitiveString& single_ascii_character_string(u8 character)
{
VERIFY(character < 0x80);
return *m_single_ascii_character_strings[character];
}
void push_call_frame(CallFrame& call_frame, GlobalObject& global_object)
{
VERIFY(!exception());
// Ensure we got some stack space left, so the next function call doesn't kill us.
// Note: the 32 kiB used to be 16 kiB, but that turned out to not be enough with ASAN enabled.
if (m_stack_info.size_free() < 32 * KiB)
throw_exception<Error>(global_object, "Call stack size limit exceeded");
else
m_call_stack.append(&call_frame);
}
void pop_call_frame()
{
m_call_stack.take_last();
if (m_call_stack.is_empty() && on_call_stack_emptied)
on_call_stack_emptied();
}
CallFrame& call_frame() { return *m_call_stack.last(); }
const CallFrame& call_frame() const { return *m_call_stack.last(); }
const Vector<CallFrame*>& call_stack() const { return m_call_stack; }
Vector<CallFrame*>& call_stack() { return m_call_stack; }
EnvironmentRecord const* current_environment_record() const { return call_frame().environment_record; }
EnvironmentRecord* current_environment_record() { return call_frame().environment_record; }
bool in_strict_mode() const;
template<typename Callback>
void for_each_argument(Callback callback)
{
if (m_call_stack.is_empty())
return;
for (auto& value : call_frame().arguments)
callback(value);
}
size_t argument_count() const
{
if (m_call_stack.is_empty())
return 0;
return call_frame().arguments.size();
}
Value argument(size_t index) const
{
if (m_call_stack.is_empty())
return {};
auto& arguments = call_frame().arguments;
return index < arguments.size() ? arguments[index] : js_undefined();
}
Value this_value(Object& global_object) const
{
if (m_call_stack.is_empty())
return &global_object;
return call_frame().this_value;
}
Value last_value() const { return m_last_value; }
void set_last_value(Badge<Bytecode::Interpreter>, Value value) { m_last_value = value; }
void set_last_value(Badge<Interpreter>, Value value) { m_last_value = value; }
const StackInfo& stack_info() const { return m_stack_info; };
bool underscore_is_last_value() const { return m_underscore_is_last_value; }
void set_underscore_is_last_value(bool b) { m_underscore_is_last_value = b; }
u32 execution_generation() const { return m_execution_generation; }
void finish_execution_generation() { ++m_execution_generation; }
void unwind(ScopeType type, FlyString label = {})
{
m_unwind_until = type;
m_unwind_until_label = move(label);
}
void stop_unwind()
{
m_unwind_until = ScopeType::None;
m_unwind_until_label = {};
}
bool should_unwind_until(ScopeType type, FlyString const& label) const
{
if (m_unwind_until_label.is_null())
return m_unwind_until == type;
return m_unwind_until == type && m_unwind_until_label == label;
}
bool should_unwind() const { return m_unwind_until != ScopeType::None; }
ScopeType unwind_until() const { return m_unwind_until; }
FlyString unwind_until_label() const { return m_unwind_until_label; }
Value get_variable(const FlyString& name, GlobalObject&);
void set_variable(const FlyString& name, Value, GlobalObject&, bool first_assignment = false, EnvironmentRecord* specific_scope = nullptr);
bool delete_variable(FlyString const& name);
void assign(const Variant<NonnullRefPtr<Identifier>, NonnullRefPtr<BindingPattern>>& target, Value, GlobalObject&, bool first_assignment = false, EnvironmentRecord* specific_scope = nullptr);
void assign(const FlyString& target, Value, GlobalObject&, bool first_assignment = false, EnvironmentRecord* specific_scope = nullptr);
void assign(const NonnullRefPtr<BindingPattern>& target, Value, GlobalObject&, bool first_assignment = false, EnvironmentRecord* specific_scope = nullptr);
Reference get_reference(const FlyString& name);
template<typename T, typename... Args>
void throw_exception(GlobalObject& global_object, Args&&... args)
{
return throw_exception(global_object, T::create(global_object, forward<Args>(args)...));
}
void throw_exception(Exception&);
void throw_exception(GlobalObject& global_object, Value value)
{
return throw_exception(*heap().allocate<Exception>(global_object, value));
}
template<typename T, typename... Args>
void throw_exception(GlobalObject& global_object, ErrorType type, Args&&... args)
{
return throw_exception(global_object, T::create(global_object, String::formatted(type.message(), forward<Args>(args)...)));
}
Value construct(Function&, Function& new_target, Optional<MarkedValueList> arguments);
String join_arguments(size_t start_index = 0) const;
Value get_new_target();
template<typename... Args>
[[nodiscard]] ALWAYS_INLINE Value call(Function& function, Value this_value, Args... args)
{
if constexpr (sizeof...(Args) > 0) {
MarkedValueList arglist { heap() };
(..., arglist.append(move(args)));
return call(function, this_value, move(arglist));
}
return call(function, this_value);
}
CommonPropertyNames names;
Shape& environment_record_shape() { return *m_environment_record_shape; }
void run_queued_promise_jobs();
void enqueue_promise_job(NativeFunction&);
void run_queued_finalization_registry_cleanup_jobs();
void enqueue_finalization_registry_cleanup_job(FinalizationRegistry&);
void promise_rejection_tracker(const Promise&, Promise::RejectionOperation) const;
AK::Function<void()> on_call_stack_emptied;
AK::Function<void(const Promise&)> on_promise_unhandled_rejection;
AK::Function<void(const Promise&)> on_promise_rejection_handled;
private:
VM();
[[nodiscard]] Value call_internal(Function&, Value this_value, Optional<MarkedValueList> arguments);
Exception* m_exception { nullptr };
Heap m_heap;
Vector<Interpreter*> m_interpreters;
Vector<CallFrame*> m_call_stack;
Value m_last_value;
ScopeType m_unwind_until { ScopeType::None };
FlyString m_unwind_until_label;
StackInfo m_stack_info;
HashMap<String, Symbol*> m_global_symbol_map;
Vector<NativeFunction*> m_promise_jobs;
Vector<FinalizationRegistry*> m_finalization_registry_cleanup_jobs;
PrimitiveString* m_empty_string { nullptr };
PrimitiveString* m_single_ascii_character_strings[128] {};
#define __JS_ENUMERATE(SymbolName, snake_name) \
Symbol* m_well_known_symbol_##snake_name { nullptr };
JS_ENUMERATE_WELL_KNOWN_SYMBOLS
#undef __JS_ENUMERATE
Shape* m_environment_record_shape { nullptr };
bool m_underscore_is_last_value { false };
u32 m_execution_generation { 0 };
};
template<>
[[nodiscard]] ALWAYS_INLINE Value VM::call(Function& function, Value this_value, MarkedValueList arguments) { return call_internal(function, this_value, move(arguments)); }
template<>
[[nodiscard]] ALWAYS_INLINE Value VM::call(Function& function, Value this_value, Optional<MarkedValueList> arguments) { return call_internal(function, this_value, move(arguments)); }
template<>
[[nodiscard]] ALWAYS_INLINE Value VM::call(Function& function, Value this_value) { return call(function, this_value, Optional<MarkedValueList> {}); }
ALWAYS_INLINE Heap& Cell::heap() const
{
return HeapBlock::from_cell(this)->heap();
}
ALWAYS_INLINE VM& Cell::vm() const
{
return heap().vm();
}
}