mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 15:52:43 +00:00 
			
		
		
		
	 9dcc7a67e5
			
		
	
	
		9dcc7a67e5
		
	
	
	
	
		
			
			There is a window between dropping a thread's last reference and it being removed from the list. Found in #5541
		
			
				
	
	
		
			1068 lines
		
	
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1068 lines
		
	
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/Demangle.h>
 | |
| #include <AK/ScopeGuard.h>
 | |
| #include <AK/StringBuilder.h>
 | |
| #include <AK/Time.h>
 | |
| #include <Kernel/Arch/x86/CPU.h>
 | |
| #include <Kernel/Arch/x86/SmapDisabler.h>
 | |
| #include <Kernel/Debug.h>
 | |
| #include <Kernel/FileSystem/FileDescription.h>
 | |
| #include <Kernel/KSyms.h>
 | |
| #include <Kernel/Panic.h>
 | |
| #include <Kernel/PerformanceEventBuffer.h>
 | |
| #include <Kernel/Process.h>
 | |
| #include <Kernel/Scheduler.h>
 | |
| #include <Kernel/Thread.h>
 | |
| #include <Kernel/ThreadTracer.h>
 | |
| #include <Kernel/TimerQueue.h>
 | |
| #include <Kernel/VM/MemoryManager.h>
 | |
| #include <Kernel/VM/PageDirectory.h>
 | |
| #include <Kernel/VM/ProcessPagingScope.h>
 | |
| #include <LibC/signal_numbers.h>
 | |
| 
 | |
| namespace Kernel {
 | |
| 
 | |
| SpinLock<u8> Thread::g_tid_map_lock;
 | |
| READONLY_AFTER_INIT HashMap<ThreadID, Thread*>* Thread::g_tid_map;
 | |
| 
 | |
| UNMAP_AFTER_INIT void Thread::initialize()
 | |
| {
 | |
|     g_tid_map = new HashMap<ThreadID, Thread*>();
 | |
| }
 | |
| 
 | |
| KResultOr<NonnullRefPtr<Thread>> Thread::try_create(NonnullRefPtr<Process> process)
 | |
| {
 | |
|     auto kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, {}, Region::Access::Read | Region::Access::Write, AllocationStrategy::AllocateNow);
 | |
|     if (!kernel_stack_region)
 | |
|         return ENOMEM;
 | |
|     kernel_stack_region->set_stack(true);
 | |
| 
 | |
|     auto block_timer = adopt_ref_if_nonnull(new Timer());
 | |
|     if (!block_timer)
 | |
|         return ENOMEM;
 | |
| 
 | |
|     auto thread = adopt_ref_if_nonnull(new Thread(move(process), kernel_stack_region.release_nonnull(), block_timer.release_nonnull()));
 | |
|     if (!thread)
 | |
|         return ENOMEM;
 | |
| 
 | |
|     return thread.release_nonnull();
 | |
| }
 | |
| 
 | |
| Thread::Thread(NonnullRefPtr<Process> process, NonnullOwnPtr<Region> kernel_stack_region, NonnullRefPtr<Timer> block_timer)
 | |
|     : m_process(move(process))
 | |
|     , m_kernel_stack_region(move(kernel_stack_region))
 | |
|     , m_name(m_process->name())
 | |
|     , m_block_timer(block_timer)
 | |
| {
 | |
|     bool is_first_thread = m_process->add_thread(*this);
 | |
|     if (is_first_thread) {
 | |
|         // First thread gets TID == PID
 | |
|         m_tid = m_process->pid().value();
 | |
|     } else {
 | |
|         m_tid = Process::allocate_pid().value();
 | |
|     }
 | |
| 
 | |
|     m_kernel_stack_region->set_name(String::formatted("Kernel stack (thread {})", m_tid.value()));
 | |
| 
 | |
|     {
 | |
|         ScopedSpinLock lock(g_tid_map_lock);
 | |
|         auto result = g_tid_map->set(m_tid, this);
 | |
|         VERIFY(result == AK::HashSetResult::InsertedNewEntry);
 | |
|     }
 | |
|     if constexpr (THREAD_DEBUG)
 | |
|         dbgln("Created new thread {}({}:{})", m_process->name(), m_process->pid().value(), m_tid.value());
 | |
| 
 | |
|     m_fpu_state = (FPUState*)kmalloc_aligned<16>(sizeof(FPUState));
 | |
|     reset_fpu_state();
 | |
|     m_tss.iomapbase = sizeof(TSS32);
 | |
| 
 | |
|     // Only IF is set when a process boots.
 | |
|     m_tss.eflags = 0x0202;
 | |
| 
 | |
|     if (m_process->is_kernel_process()) {
 | |
|         m_tss.cs = GDT_SELECTOR_CODE0;
 | |
|         m_tss.ds = GDT_SELECTOR_DATA0;
 | |
|         m_tss.es = GDT_SELECTOR_DATA0;
 | |
|         m_tss.fs = GDT_SELECTOR_PROC;
 | |
|         m_tss.ss = GDT_SELECTOR_DATA0;
 | |
|         m_tss.gs = 0;
 | |
|     } else {
 | |
|         m_tss.cs = GDT_SELECTOR_CODE3 | 3;
 | |
|         m_tss.ds = GDT_SELECTOR_DATA3 | 3;
 | |
|         m_tss.es = GDT_SELECTOR_DATA3 | 3;
 | |
|         m_tss.fs = GDT_SELECTOR_DATA3 | 3;
 | |
|         m_tss.ss = GDT_SELECTOR_DATA3 | 3;
 | |
|         m_tss.gs = GDT_SELECTOR_TLS | 3;
 | |
|     }
 | |
| 
 | |
|     m_tss.cr3 = m_process->space().page_directory().cr3();
 | |
| 
 | |
|     m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
 | |
|     m_kernel_stack_top = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & 0xfffffff8u;
 | |
| 
 | |
|     if (m_process->is_kernel_process()) {
 | |
|         m_tss.esp = m_tss.esp0 = m_kernel_stack_top;
 | |
|     } else {
 | |
|         // Ring 3 processes get a separate stack for ring 0.
 | |
|         // The ring 3 stack will be assigned by exec().
 | |
|         m_tss.ss0 = GDT_SELECTOR_DATA0;
 | |
|         m_tss.esp0 = m_kernel_stack_top;
 | |
|     }
 | |
| 
 | |
|     // We need to add another reference if we could successfully create
 | |
|     // all the resources needed for this thread. The reason for this is that
 | |
|     // we don't want to delete this thread after dropping the reference,
 | |
|     // it may still be running or scheduled to be run.
 | |
|     // The finalizer is responsible for dropping this reference once this
 | |
|     // thread is ready to be cleaned up.
 | |
|     ref();
 | |
| }
 | |
| 
 | |
| Thread::~Thread()
 | |
| {
 | |
|     {
 | |
|         // We need to explicitly remove ourselves from the thread list
 | |
|         // here. We may get pre-empted in the middle of destructing this
 | |
|         // thread, which causes problems if the thread list is iterated.
 | |
|         // Specifically, if this is the last thread of a process, checking
 | |
|         // block conditions would access m_process, which would be in
 | |
|         // the middle of being destroyed.
 | |
|         ScopedSpinLock lock(g_scheduler_lock);
 | |
|         VERIFY(!m_process_thread_list_node.is_in_list());
 | |
| 
 | |
|         // We shouldn't be queued
 | |
|         VERIFY(m_runnable_priority < 0);
 | |
|     }
 | |
|     {
 | |
|         ScopedSpinLock lock(g_tid_map_lock);
 | |
|         auto result = g_tid_map->remove(m_tid);
 | |
|         VERIFY(result);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Thread::unblock_from_blocker(Blocker& blocker)
 | |
| {
 | |
|     auto do_unblock = [&]() {
 | |
|         ScopedSpinLock scheduler_lock(g_scheduler_lock);
 | |
|         ScopedSpinLock block_lock(m_block_lock);
 | |
|         if (m_blocker != &blocker)
 | |
|             return;
 | |
|         if (!should_be_stopped() && !is_stopped())
 | |
|             unblock();
 | |
|     };
 | |
|     if (Processor::current().in_irq()) {
 | |
|         Processor::current().deferred_call_queue([do_unblock = move(do_unblock), self = make_weak_ptr()]() {
 | |
|             if (auto this_thread = self.strong_ref())
 | |
|                 do_unblock();
 | |
|         });
 | |
|     } else {
 | |
|         do_unblock();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Thread::unblock(u8 signal)
 | |
| {
 | |
|     VERIFY(!Processor::current().in_irq());
 | |
|     VERIFY(g_scheduler_lock.own_lock());
 | |
|     VERIFY(m_block_lock.own_lock());
 | |
|     if (m_state != Thread::Blocked)
 | |
|         return;
 | |
|     VERIFY(m_blocker);
 | |
|     if (signal != 0) {
 | |
|         if (is_handling_page_fault()) {
 | |
|             // Don't let signals unblock threads that are blocked inside a page fault handler.
 | |
|             // This prevents threads from EINTR'ing the inode read in an inode page fault.
 | |
|             // FIXME: There's probably a better way to solve this.
 | |
|             return;
 | |
|         }
 | |
|         if (!m_blocker->can_be_interrupted() && !m_should_die)
 | |
|             return;
 | |
|         m_blocker->set_interrupted_by_signal(signal);
 | |
|     }
 | |
|     m_blocker = nullptr;
 | |
|     if (Thread::current() == this) {
 | |
|         set_state(Thread::Running);
 | |
|         return;
 | |
|     }
 | |
|     VERIFY(m_state != Thread::Runnable && m_state != Thread::Running);
 | |
|     set_state(Thread::Runnable);
 | |
| }
 | |
| 
 | |
| void Thread::set_should_die()
 | |
| {
 | |
|     if (m_should_die) {
 | |
|         dbgln("{} Should already die", *this);
 | |
|         return;
 | |
|     }
 | |
|     ScopedCritical critical;
 | |
| 
 | |
|     // Remember that we should die instead of returning to
 | |
|     // the userspace.
 | |
|     ScopedSpinLock lock(g_scheduler_lock);
 | |
|     m_should_die = true;
 | |
| 
 | |
|     // NOTE: Even the current thread can technically be in "Stopped"
 | |
|     // state! This is the case when another thread sent a SIGSTOP to
 | |
|     // it while it was running and it calls e.g. exit() before
 | |
|     // the scheduler gets involved again.
 | |
|     if (is_stopped()) {
 | |
|         // If we were stopped, we need to briefly resume so that
 | |
|         // the kernel stacks can clean up. We won't ever return back
 | |
|         // to user mode, though
 | |
|         VERIFY(!process().is_stopped());
 | |
|         resume_from_stopped();
 | |
|     }
 | |
|     if (is_blocked()) {
 | |
|         ScopedSpinLock block_lock(m_block_lock);
 | |
|         if (m_blocker) {
 | |
|             // We're blocked in the kernel.
 | |
|             m_blocker->set_interrupted_by_death();
 | |
|             unblock();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Thread::die_if_needed()
 | |
| {
 | |
|     VERIFY(Thread::current() == this);
 | |
| 
 | |
|     if (!m_should_die)
 | |
|         return;
 | |
| 
 | |
|     u32 unlock_count;
 | |
|     [[maybe_unused]] auto rc = unlock_process_if_locked(unlock_count);
 | |
| 
 | |
|     ScopedCritical critical;
 | |
| 
 | |
|     // Flag a context switch. Because we're in a critical section,
 | |
|     // Scheduler::yield will actually only mark a pending context switch
 | |
|     // Simply leaving the critical section would not necessarily trigger
 | |
|     // a switch.
 | |
|     Scheduler::yield();
 | |
| 
 | |
|     // Now leave the critical section so that we can also trigger the
 | |
|     // actual context switch
 | |
|     u32 prev_flags;
 | |
|     Processor::current().clear_critical(prev_flags, false);
 | |
|     dbgln("die_if_needed returned from clear_critical!!! in irq: {}", Processor::current().in_irq());
 | |
|     // We should never get here, but the scoped scheduler lock
 | |
|     // will be released by Scheduler::context_switch again
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| void Thread::exit(void* exit_value)
 | |
| {
 | |
|     VERIFY(Thread::current() == this);
 | |
|     m_join_condition.thread_did_exit(exit_value);
 | |
|     set_should_die();
 | |
|     u32 unlock_count;
 | |
|     [[maybe_unused]] auto rc = unlock_process_if_locked(unlock_count);
 | |
|     die_if_needed();
 | |
| }
 | |
| 
 | |
| void Thread::yield_while_not_holding_big_lock()
 | |
| {
 | |
|     VERIFY(!g_scheduler_lock.own_lock());
 | |
|     u32 prev_flags;
 | |
|     u32 prev_crit = Processor::current().clear_critical(prev_flags, true);
 | |
|     Scheduler::yield();
 | |
|     // NOTE: We may be on a different CPU now!
 | |
|     Processor::current().restore_critical(prev_crit, prev_flags);
 | |
| }
 | |
| 
 | |
| void Thread::yield_without_holding_big_lock()
 | |
| {
 | |
|     VERIFY(!g_scheduler_lock.own_lock());
 | |
|     u32 lock_count_to_restore = 0;
 | |
|     auto previous_locked = unlock_process_if_locked(lock_count_to_restore);
 | |
|     // NOTE: Even though we call Scheduler::yield here, unless we happen
 | |
|     // to be outside of a critical section, the yield will be postponed
 | |
|     // until leaving it in relock_process.
 | |
|     Scheduler::yield();
 | |
|     relock_process(previous_locked, lock_count_to_restore);
 | |
| }
 | |
| 
 | |
| void Thread::donate_without_holding_big_lock(RefPtr<Thread>& thread, const char* reason)
 | |
| {
 | |
|     VERIFY(!g_scheduler_lock.own_lock());
 | |
|     u32 lock_count_to_restore = 0;
 | |
|     auto previous_locked = unlock_process_if_locked(lock_count_to_restore);
 | |
|     // NOTE: Even though we call Scheduler::yield here, unless we happen
 | |
|     // to be outside of a critical section, the yield will be postponed
 | |
|     // until leaving it in relock_process.
 | |
|     Scheduler::donate_to(thread, reason);
 | |
|     relock_process(previous_locked, lock_count_to_restore);
 | |
| }
 | |
| 
 | |
| LockMode Thread::unlock_process_if_locked(u32& lock_count_to_restore)
 | |
| {
 | |
|     return process().big_lock().force_unlock_if_locked(lock_count_to_restore);
 | |
| }
 | |
| 
 | |
| void Thread::relock_process(LockMode previous_locked, u32 lock_count_to_restore)
 | |
| {
 | |
|     // Clearing the critical section may trigger the context switch
 | |
|     // flagged by calling Scheduler::donate_to or Scheduler::yield
 | |
|     // above. We have to do it this way because we intentionally
 | |
|     // leave the critical section here to be able to switch contexts.
 | |
|     u32 prev_flags;
 | |
|     u32 prev_crit = Processor::current().clear_critical(prev_flags, true);
 | |
| 
 | |
|     // CONTEXT SWITCH HAPPENS HERE!
 | |
| 
 | |
|     // NOTE: We may be on a different CPU now!
 | |
|     Processor::current().restore_critical(prev_crit, prev_flags);
 | |
| 
 | |
|     if (previous_locked != LockMode::Unlocked) {
 | |
|         // We've unblocked, relock the process if needed and carry on.
 | |
|         process().big_lock().restore_lock(previous_locked, lock_count_to_restore);
 | |
|     }
 | |
| }
 | |
| 
 | |
| auto Thread::sleep(clockid_t clock_id, const Time& duration, Time* remaining_time) -> BlockResult
 | |
| {
 | |
|     VERIFY(state() == Thread::Running);
 | |
|     return Thread::current()->block<Thread::SleepBlocker>({}, Thread::BlockTimeout(false, &duration, nullptr, clock_id), remaining_time);
 | |
| }
 | |
| 
 | |
| auto Thread::sleep_until(clockid_t clock_id, const Time& deadline) -> BlockResult
 | |
| {
 | |
|     VERIFY(state() == Thread::Running);
 | |
|     return Thread::current()->block<Thread::SleepBlocker>({}, Thread::BlockTimeout(true, &deadline, nullptr, clock_id));
 | |
| }
 | |
| 
 | |
| const char* Thread::state_string() const
 | |
| {
 | |
|     switch (state()) {
 | |
|     case Thread::Invalid:
 | |
|         return "Invalid";
 | |
|     case Thread::Runnable:
 | |
|         return "Runnable";
 | |
|     case Thread::Running:
 | |
|         return "Running";
 | |
|     case Thread::Dying:
 | |
|         return "Dying";
 | |
|     case Thread::Dead:
 | |
|         return "Dead";
 | |
|     case Thread::Stopped:
 | |
|         return "Stopped";
 | |
|     case Thread::Blocked: {
 | |
|         ScopedSpinLock block_lock(m_block_lock);
 | |
|         VERIFY(m_blocker != nullptr);
 | |
|         return m_blocker->state_string();
 | |
|     }
 | |
|     }
 | |
|     PANIC("Thread::state_string(): Invalid state: {}", (int)state());
 | |
| }
 | |
| 
 | |
| void Thread::finalize()
 | |
| {
 | |
|     VERIFY(Thread::current() == g_finalizer);
 | |
|     VERIFY(Thread::current() != this);
 | |
| 
 | |
| #if LOCK_DEBUG
 | |
|     VERIFY(!m_lock.own_lock());
 | |
|     if (lock_count() > 0) {
 | |
|         dbgln("Thread {} leaking {} Locks!", *this, lock_count());
 | |
|         ScopedSpinLock list_lock(m_holding_locks_lock);
 | |
|         for (auto& info : m_holding_locks_list) {
 | |
|             const auto& location = info.source_location;
 | |
|             dbgln(" - Lock: \"{}\" @ {} locked in function \"{}\" at \"{}:{}\" with a count of: {}", info.lock->name(), info.lock, location.function_name(), location.filename(), location.line_number(), info.count);
 | |
|         }
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     {
 | |
|         ScopedSpinLock lock(g_scheduler_lock);
 | |
|         dbgln_if(THREAD_DEBUG, "Finalizing thread {}", *this);
 | |
|         set_state(Thread::State::Dead);
 | |
|         m_join_condition.thread_finalizing();
 | |
|     }
 | |
| 
 | |
|     if (m_dump_backtrace_on_finalization)
 | |
|         dbgln("{}", backtrace());
 | |
| 
 | |
|     kfree_aligned(m_fpu_state);
 | |
|     drop_thread_count(false);
 | |
| }
 | |
| 
 | |
| void Thread::drop_thread_count(bool initializing_first_thread)
 | |
| {
 | |
|     bool is_last = process().remove_thread(*this);
 | |
| 
 | |
|     if (!initializing_first_thread && is_last)
 | |
|         process().finalize();
 | |
| }
 | |
| 
 | |
| void Thread::finalize_dying_threads()
 | |
| {
 | |
|     VERIFY(Thread::current() == g_finalizer);
 | |
|     Vector<Thread*, 32> dying_threads;
 | |
|     {
 | |
|         ScopedSpinLock lock(g_scheduler_lock);
 | |
|         for_each_in_state(Thread::State::Dying, [&](Thread& thread) {
 | |
|             if (thread.is_finalizable())
 | |
|                 dying_threads.append(&thread);
 | |
|         });
 | |
|     }
 | |
|     for (auto* thread : dying_threads) {
 | |
|         thread->finalize();
 | |
| 
 | |
|         // This thread will never execute again, drop the running reference
 | |
|         // NOTE: This may not necessarily drop the last reference if anything
 | |
|         //       else is still holding onto this thread!
 | |
|         thread->unref();
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool Thread::tick()
 | |
| {
 | |
|     if (previous_mode() == PreviousMode::KernelMode) {
 | |
|         ++m_process->m_ticks_in_kernel;
 | |
|         ++m_ticks_in_kernel;
 | |
|     } else {
 | |
|         ++m_process->m_ticks_in_user;
 | |
|         ++m_ticks_in_user;
 | |
|     }
 | |
|     return --m_ticks_left;
 | |
| }
 | |
| 
 | |
| void Thread::check_dispatch_pending_signal()
 | |
| {
 | |
|     auto result = DispatchSignalResult::Continue;
 | |
|     {
 | |
|         ScopedSpinLock scheduler_lock(g_scheduler_lock);
 | |
|         if (pending_signals_for_state()) {
 | |
|             ScopedSpinLock lock(m_lock);
 | |
|             result = dispatch_one_pending_signal();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     switch (result) {
 | |
|     case DispatchSignalResult::Yield:
 | |
|         yield_while_not_holding_big_lock();
 | |
|         break;
 | |
|     case DispatchSignalResult::Terminate:
 | |
|         process().die();
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| u32 Thread::pending_signals() const
 | |
| {
 | |
|     ScopedSpinLock lock(g_scheduler_lock);
 | |
|     return pending_signals_for_state();
 | |
| }
 | |
| 
 | |
| u32 Thread::pending_signals_for_state() const
 | |
| {
 | |
|     VERIFY(g_scheduler_lock.own_lock());
 | |
|     constexpr u32 stopped_signal_mask = (1 << (SIGCONT - 1)) | (1 << (SIGKILL - 1)) | (1 << (SIGTRAP - 1));
 | |
|     if (is_handling_page_fault())
 | |
|         return 0;
 | |
|     return m_state != Stopped ? m_pending_signals : m_pending_signals & stopped_signal_mask;
 | |
| }
 | |
| 
 | |
| void Thread::send_signal(u8 signal, [[maybe_unused]] Process* sender)
 | |
| {
 | |
|     VERIFY(signal < 32);
 | |
|     ScopedSpinLock scheduler_lock(g_scheduler_lock);
 | |
| 
 | |
|     // FIXME: Figure out what to do for masked signals. Should we also ignore them here?
 | |
|     if (should_ignore_signal(signal)) {
 | |
|         dbgln_if(SIGNAL_DEBUG, "Signal {} was ignored by {}", signal, process());
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if constexpr (SIGNAL_DEBUG) {
 | |
|         if (sender)
 | |
|             dbgln("Signal: {} sent {} to {}", *sender, signal, process());
 | |
|         else
 | |
|             dbgln("Signal: Kernel send {} to {}", signal, process());
 | |
|     }
 | |
| 
 | |
|     m_pending_signals |= 1 << (signal - 1);
 | |
|     m_have_any_unmasked_pending_signals.store(pending_signals_for_state() & ~m_signal_mask, AK::memory_order_release);
 | |
| 
 | |
|     if (m_state == Stopped) {
 | |
|         ScopedSpinLock lock(m_lock);
 | |
|         if (pending_signals_for_state()) {
 | |
|             dbgln_if(SIGNAL_DEBUG, "Signal: Resuming stopped {} to deliver signal {}", *this, signal);
 | |
|             resume_from_stopped();
 | |
|         }
 | |
|     } else {
 | |
|         ScopedSpinLock block_lock(m_block_lock);
 | |
|         dbgln_if(SIGNAL_DEBUG, "Signal: Unblocking {} to deliver signal {}", *this, signal);
 | |
|         unblock(signal);
 | |
|     }
 | |
| }
 | |
| 
 | |
| u32 Thread::update_signal_mask(u32 signal_mask)
 | |
| {
 | |
|     ScopedSpinLock lock(g_scheduler_lock);
 | |
|     auto previous_signal_mask = m_signal_mask;
 | |
|     m_signal_mask = signal_mask;
 | |
|     m_have_any_unmasked_pending_signals.store(pending_signals_for_state() & ~m_signal_mask, AK::memory_order_release);
 | |
|     return previous_signal_mask;
 | |
| }
 | |
| 
 | |
| u32 Thread::signal_mask() const
 | |
| {
 | |
|     ScopedSpinLock lock(g_scheduler_lock);
 | |
|     return m_signal_mask;
 | |
| }
 | |
| 
 | |
| u32 Thread::signal_mask_block(sigset_t signal_set, bool block)
 | |
| {
 | |
|     ScopedSpinLock lock(g_scheduler_lock);
 | |
|     auto previous_signal_mask = m_signal_mask;
 | |
|     if (block)
 | |
|         m_signal_mask &= ~signal_set;
 | |
|     else
 | |
|         m_signal_mask |= signal_set;
 | |
|     m_have_any_unmasked_pending_signals.store(pending_signals_for_state() & ~m_signal_mask, AK::memory_order_release);
 | |
|     return previous_signal_mask;
 | |
| }
 | |
| 
 | |
| void Thread::clear_signals()
 | |
| {
 | |
|     ScopedSpinLock lock(g_scheduler_lock);
 | |
|     m_signal_mask = 0;
 | |
|     m_pending_signals = 0;
 | |
|     m_have_any_unmasked_pending_signals.store(false, AK::memory_order_release);
 | |
|     m_signal_action_data.fill({});
 | |
| }
 | |
| 
 | |
| // Certain exceptions, such as SIGSEGV and SIGILL, put a
 | |
| // thread into a state where the signal handler must be
 | |
| // invoked immediately, otherwise it will continue to fault.
 | |
| // This function should be used in an exception handler to
 | |
| // ensure that when the thread resumes, it's executing in
 | |
| // the appropriate signal handler.
 | |
| void Thread::send_urgent_signal_to_self(u8 signal)
 | |
| {
 | |
|     VERIFY(Thread::current() == this);
 | |
|     DispatchSignalResult result;
 | |
|     {
 | |
|         ScopedSpinLock lock(g_scheduler_lock);
 | |
|         result = dispatch_signal(signal);
 | |
|     }
 | |
|     if (result == DispatchSignalResult::Yield)
 | |
|         yield_without_holding_big_lock();
 | |
| }
 | |
| 
 | |
| DispatchSignalResult Thread::dispatch_one_pending_signal()
 | |
| {
 | |
|     VERIFY(m_lock.own_lock());
 | |
|     u32 signal_candidates = pending_signals_for_state() & ~m_signal_mask;
 | |
|     if (signal_candidates == 0)
 | |
|         return DispatchSignalResult::Continue;
 | |
| 
 | |
|     u8 signal = 1;
 | |
|     for (; signal < 32; ++signal) {
 | |
|         if (signal_candidates & (1 << (signal - 1))) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return dispatch_signal(signal);
 | |
| }
 | |
| 
 | |
| DispatchSignalResult Thread::try_dispatch_one_pending_signal(u8 signal)
 | |
| {
 | |
|     VERIFY(signal != 0);
 | |
|     ScopedSpinLock scheduler_lock(g_scheduler_lock);
 | |
|     ScopedSpinLock lock(m_lock);
 | |
|     u32 signal_candidates = pending_signals_for_state() & ~m_signal_mask;
 | |
|     if (!(signal_candidates & (1 << (signal - 1))))
 | |
|         return DispatchSignalResult::Continue;
 | |
|     return dispatch_signal(signal);
 | |
| }
 | |
| 
 | |
| enum class DefaultSignalAction {
 | |
|     Terminate,
 | |
|     Ignore,
 | |
|     DumpCore,
 | |
|     Stop,
 | |
|     Continue,
 | |
| };
 | |
| 
 | |
| static DefaultSignalAction default_signal_action(u8 signal)
 | |
| {
 | |
|     VERIFY(signal && signal < NSIG);
 | |
| 
 | |
|     switch (signal) {
 | |
|     case SIGHUP:
 | |
|     case SIGINT:
 | |
|     case SIGKILL:
 | |
|     case SIGPIPE:
 | |
|     case SIGALRM:
 | |
|     case SIGUSR1:
 | |
|     case SIGUSR2:
 | |
|     case SIGVTALRM:
 | |
|     case SIGSTKFLT:
 | |
|     case SIGIO:
 | |
|     case SIGPROF:
 | |
|     case SIGTERM:
 | |
|         return DefaultSignalAction::Terminate;
 | |
|     case SIGCHLD:
 | |
|     case SIGURG:
 | |
|     case SIGWINCH:
 | |
|     case SIGINFO:
 | |
|         return DefaultSignalAction::Ignore;
 | |
|     case SIGQUIT:
 | |
|     case SIGILL:
 | |
|     case SIGTRAP:
 | |
|     case SIGABRT:
 | |
|     case SIGBUS:
 | |
|     case SIGFPE:
 | |
|     case SIGSEGV:
 | |
|     case SIGXCPU:
 | |
|     case SIGXFSZ:
 | |
|     case SIGSYS:
 | |
|         return DefaultSignalAction::DumpCore;
 | |
|     case SIGCONT:
 | |
|         return DefaultSignalAction::Continue;
 | |
|     case SIGSTOP:
 | |
|     case SIGTSTP:
 | |
|     case SIGTTIN:
 | |
|     case SIGTTOU:
 | |
|         return DefaultSignalAction::Stop;
 | |
|     }
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| bool Thread::should_ignore_signal(u8 signal) const
 | |
| {
 | |
|     VERIFY(signal < 32);
 | |
|     auto& action = m_signal_action_data[signal];
 | |
|     if (action.handler_or_sigaction.is_null())
 | |
|         return default_signal_action(signal) == DefaultSignalAction::Ignore;
 | |
|     if (action.handler_or_sigaction.as_ptr() == SIG_IGN)
 | |
|         return true;
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool Thread::has_signal_handler(u8 signal) const
 | |
| {
 | |
|     VERIFY(signal < 32);
 | |
|     auto& action = m_signal_action_data[signal];
 | |
|     return !action.handler_or_sigaction.is_null();
 | |
| }
 | |
| 
 | |
| static bool push_value_on_user_stack(FlatPtr* stack, FlatPtr data)
 | |
| {
 | |
|     *stack -= sizeof(FlatPtr);
 | |
|     return copy_to_user((FlatPtr*)*stack, &data);
 | |
| }
 | |
| 
 | |
| void Thread::resume_from_stopped()
 | |
| {
 | |
|     VERIFY(is_stopped());
 | |
|     VERIFY(m_stop_state != State::Invalid);
 | |
|     VERIFY(g_scheduler_lock.own_lock());
 | |
|     if (m_stop_state == Blocked) {
 | |
|         ScopedSpinLock block_lock(m_block_lock);
 | |
|         if (m_blocker) {
 | |
|             // Hasn't been unblocked yet
 | |
|             set_state(Blocked, 0);
 | |
|         } else {
 | |
|             // Was unblocked while stopped
 | |
|             set_state(Runnable);
 | |
|         }
 | |
|     } else {
 | |
|         set_state(m_stop_state, 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| DispatchSignalResult Thread::dispatch_signal(u8 signal)
 | |
| {
 | |
|     VERIFY_INTERRUPTS_DISABLED();
 | |
|     VERIFY(g_scheduler_lock.own_lock());
 | |
|     VERIFY(signal > 0 && signal <= 32);
 | |
|     VERIFY(process().is_user_process());
 | |
|     VERIFY(this == Thread::current());
 | |
| 
 | |
|     dbgln_if(SIGNAL_DEBUG, "Dispatch signal {} to {}, state: {}", signal, *this, state_string());
 | |
| 
 | |
|     if (m_state == Invalid || !is_initialized()) {
 | |
|         // Thread has barely been created, we need to wait until it is
 | |
|         // at least in Runnable state and is_initialized() returns true,
 | |
|         // which indicates that it is fully set up an we actually have
 | |
|         // a register state on the stack that we can modify
 | |
|         return DispatchSignalResult::Deferred;
 | |
|     }
 | |
| 
 | |
|     VERIFY(previous_mode() == PreviousMode::UserMode);
 | |
| 
 | |
|     auto& action = m_signal_action_data[signal];
 | |
|     // FIXME: Implement SA_SIGINFO signal handlers.
 | |
|     VERIFY(!(action.flags & SA_SIGINFO));
 | |
| 
 | |
|     // Mark this signal as handled.
 | |
|     m_pending_signals &= ~(1 << (signal - 1));
 | |
|     m_have_any_unmasked_pending_signals.store(m_pending_signals & ~m_signal_mask, AK::memory_order_release);
 | |
| 
 | |
|     auto& process = this->process();
 | |
|     auto tracer = process.tracer();
 | |
|     if (signal == SIGSTOP || (tracer && default_signal_action(signal) == DefaultSignalAction::DumpCore)) {
 | |
|         dbgln_if(SIGNAL_DEBUG, "Signal {} stopping this thread", signal);
 | |
|         set_state(State::Stopped, signal);
 | |
|         return DispatchSignalResult::Yield;
 | |
|     }
 | |
| 
 | |
|     if (signal == SIGCONT) {
 | |
|         dbgln("signal: SIGCONT resuming {}", *this);
 | |
|     } else {
 | |
|         if (tracer) {
 | |
|             // when a thread is traced, it should be stopped whenever it receives a signal
 | |
|             // the tracer is notified of this by using waitpid()
 | |
|             // only "pending signals" from the tracer are sent to the tracee
 | |
|             if (!tracer->has_pending_signal(signal)) {
 | |
|                 dbgln("signal: {} stopping {} for tracer", signal, *this);
 | |
|                 set_state(Stopped, signal);
 | |
|                 return DispatchSignalResult::Yield;
 | |
|             }
 | |
|             tracer->unset_signal(signal);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     auto handler_vaddr = action.handler_or_sigaction;
 | |
|     if (handler_vaddr.is_null()) {
 | |
|         switch (default_signal_action(signal)) {
 | |
|         case DefaultSignalAction::Stop:
 | |
|             set_state(Stopped, signal);
 | |
|             return DispatchSignalResult::Yield;
 | |
|         case DefaultSignalAction::DumpCore:
 | |
|             process.set_dump_core(true);
 | |
|             process.for_each_thread([](auto& thread) {
 | |
|                 thread.set_dump_backtrace_on_finalization();
 | |
|             });
 | |
|             [[fallthrough]];
 | |
|         case DefaultSignalAction::Terminate:
 | |
|             m_process->terminate_due_to_signal(signal);
 | |
|             return DispatchSignalResult::Terminate;
 | |
|         case DefaultSignalAction::Ignore:
 | |
|             VERIFY_NOT_REACHED();
 | |
|         case DefaultSignalAction::Continue:
 | |
|             return DispatchSignalResult::Continue;
 | |
|         }
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
| 
 | |
|     if (handler_vaddr.as_ptr() == SIG_IGN) {
 | |
|         dbgln_if(SIGNAL_DEBUG, "Ignored signal {}", signal);
 | |
|         return DispatchSignalResult::Continue;
 | |
|     }
 | |
| 
 | |
|     VERIFY(previous_mode() == PreviousMode::UserMode);
 | |
|     VERIFY(current_trap());
 | |
| 
 | |
|     ProcessPagingScope paging_scope(m_process);
 | |
| 
 | |
|     u32 old_signal_mask = m_signal_mask;
 | |
|     u32 new_signal_mask = action.mask;
 | |
|     if (action.flags & SA_NODEFER)
 | |
|         new_signal_mask &= ~(1 << (signal - 1));
 | |
|     else
 | |
|         new_signal_mask |= 1 << (signal - 1);
 | |
| 
 | |
|     m_signal_mask |= new_signal_mask;
 | |
|     m_have_any_unmasked_pending_signals.store(m_pending_signals & ~m_signal_mask, AK::memory_order_release);
 | |
| 
 | |
|     auto setup_stack = [&](RegisterState& state) {
 | |
| #if ARCH(I386)
 | |
|         FlatPtr* stack = &state.userspace_esp;
 | |
|         FlatPtr old_esp = *stack;
 | |
|         FlatPtr ret_eip = state.eip;
 | |
|         FlatPtr ret_eflags = state.eflags;
 | |
| #elif ARCH(X86_64)
 | |
|         FlatPtr* stack = &state.userspace_esp;
 | |
| #endif
 | |
| 
 | |
|         dbgln_if(SIGNAL_DEBUG, "Setting up user stack to return to EIP {:p}, ESP {:p}", ret_eip, old_esp);
 | |
| 
 | |
| #if ARCH(I386)
 | |
|         // Align the stack to 16 bytes.
 | |
|         // Note that we push 56 bytes (4 * 14) on to the stack,
 | |
|         // so we need to account for this here.
 | |
|         FlatPtr stack_alignment = (*stack - 56) % 16;
 | |
|         *stack -= stack_alignment;
 | |
| 
 | |
|         push_value_on_user_stack(stack, ret_eflags);
 | |
| 
 | |
|         push_value_on_user_stack(stack, ret_eip);
 | |
|         push_value_on_user_stack(stack, state.eax);
 | |
|         push_value_on_user_stack(stack, state.ecx);
 | |
|         push_value_on_user_stack(stack, state.edx);
 | |
|         push_value_on_user_stack(stack, state.ebx);
 | |
|         push_value_on_user_stack(stack, old_esp);
 | |
|         push_value_on_user_stack(stack, state.ebp);
 | |
|         push_value_on_user_stack(stack, state.esi);
 | |
|         push_value_on_user_stack(stack, state.edi);
 | |
| 
 | |
| #elif ARCH(X86_64)
 | |
|         // FIXME
 | |
| #endif
 | |
| 
 | |
|         // PUSH old_signal_mask
 | |
|         push_value_on_user_stack(stack, old_signal_mask);
 | |
| 
 | |
|         push_value_on_user_stack(stack, signal);
 | |
|         push_value_on_user_stack(stack, handler_vaddr.get());
 | |
|         push_value_on_user_stack(stack, 0); //push fake return address
 | |
| 
 | |
|         VERIFY((*stack % 16) == 0);
 | |
|     };
 | |
| 
 | |
|     // We now place the thread state on the userspace stack.
 | |
|     // Note that we use a RegisterState.
 | |
|     // Conversely, when the thread isn't blocking the RegisterState may not be
 | |
|     // valid (fork, exec etc) but the tss will, so we use that instead.
 | |
|     auto& regs = get_register_dump_from_stack();
 | |
|     setup_stack(regs);
 | |
|     regs.eip = process.signal_trampoline().get();
 | |
| 
 | |
|     dbgln_if(SIGNAL_DEBUG, "Thread in state '{}' has been primed with signal handler {:04x}:{:08x} to deliver {}", state_string(), m_tss.cs, m_tss.eip, signal);
 | |
|     return DispatchSignalResult::Continue;
 | |
| }
 | |
| 
 | |
| RegisterState& Thread::get_register_dump_from_stack()
 | |
| {
 | |
|     auto* trap = current_trap();
 | |
| 
 | |
|     // We should *always* have a trap. If we don't we're probably a kernel
 | |
|     // thread that hasn't been pre-empted. If we want to support this, we
 | |
|     // need to capture the registers probably into m_tss and return it
 | |
|     VERIFY(trap);
 | |
| 
 | |
|     while (trap) {
 | |
|         if (!trap->next_trap)
 | |
|             break;
 | |
|         trap = trap->next_trap;
 | |
|     }
 | |
|     return *trap->regs;
 | |
| }
 | |
| 
 | |
| RefPtr<Thread> Thread::clone(Process& process)
 | |
| {
 | |
|     auto thread_or_error = Thread::try_create(process);
 | |
|     if (thread_or_error.is_error())
 | |
|         return {};
 | |
|     auto& clone = thread_or_error.value();
 | |
|     auto signal_action_data_span = m_signal_action_data.span();
 | |
|     signal_action_data_span.copy_to(clone->m_signal_action_data.span());
 | |
|     clone->m_signal_mask = m_signal_mask;
 | |
|     memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState));
 | |
|     clone->m_thread_specific_data = m_thread_specific_data;
 | |
|     return clone;
 | |
| }
 | |
| 
 | |
| void Thread::set_state(State new_state, u8 stop_signal)
 | |
| {
 | |
|     State previous_state;
 | |
|     VERIFY(g_scheduler_lock.own_lock());
 | |
|     if (new_state == m_state)
 | |
|         return;
 | |
| 
 | |
|     {
 | |
|         ScopedSpinLock thread_lock(m_lock);
 | |
|         previous_state = m_state;
 | |
|         if (previous_state == Invalid) {
 | |
|             // If we were *just* created, we may have already pending signals
 | |
|             if (has_unmasked_pending_signals()) {
 | |
|                 dbgln_if(THREAD_DEBUG, "Dispatch pending signals to new thread {}", *this);
 | |
|                 dispatch_one_pending_signal();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         m_state = new_state;
 | |
|         dbgln_if(THREAD_DEBUG, "Set thread {} state to {}", *this, state_string());
 | |
|     }
 | |
| 
 | |
|     if (previous_state == Runnable) {
 | |
|         Scheduler::dequeue_runnable_thread(*this);
 | |
|     } else if (previous_state == Stopped) {
 | |
|         m_stop_state = State::Invalid;
 | |
|         auto& process = this->process();
 | |
|         if (process.set_stopped(false) == true) {
 | |
|             process.for_each_thread([&](auto& thread) {
 | |
|                 if (&thread == this)
 | |
|                     return;
 | |
|                 if (!thread.is_stopped())
 | |
|                     return;
 | |
|                 dbgln_if(THREAD_DEBUG, "Resuming peer thread {}", thread);
 | |
|                 thread.resume_from_stopped();
 | |
|             });
 | |
|             process.unblock_waiters(Thread::WaitBlocker::UnblockFlags::Continued);
 | |
|             // Tell the parent process (if any) about this change.
 | |
|             if (auto parent = Process::from_pid(process.ppid())) {
 | |
|                 [[maybe_unused]] auto result = parent->send_signal(SIGCHLD, &process);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (m_state == Runnable) {
 | |
|         Scheduler::queue_runnable_thread(*this);
 | |
|         Processor::smp_wake_n_idle_processors(1);
 | |
|     } else if (m_state == Stopped) {
 | |
|         // We don't want to restore to Running state, only Runnable!
 | |
|         m_stop_state = previous_state != Running ? previous_state : Runnable;
 | |
|         auto& process = this->process();
 | |
|         if (process.set_stopped(true) == false) {
 | |
|             process.for_each_thread([&](auto& thread) {
 | |
|                 if (&thread == this)
 | |
|                     return;
 | |
|                 if (thread.is_stopped())
 | |
|                     return;
 | |
|                 dbgln_if(THREAD_DEBUG, "Stopping peer thread {}", thread);
 | |
|                 thread.set_state(Stopped, stop_signal);
 | |
|             });
 | |
|             process.unblock_waiters(Thread::WaitBlocker::UnblockFlags::Stopped, stop_signal);
 | |
|             // Tell the parent process (if any) about this change.
 | |
|             if (auto parent = Process::from_pid(process.ppid())) {
 | |
|                 [[maybe_unused]] auto result = parent->send_signal(SIGCHLD, &process);
 | |
|             }
 | |
|         }
 | |
|     } else if (m_state == Dying) {
 | |
|         VERIFY(previous_state != Blocked);
 | |
|         if (this != Thread::current() && is_finalizable()) {
 | |
|             // Some other thread set this thread to Dying, notify the
 | |
|             // finalizer right away as it can be cleaned up now
 | |
|             Scheduler::notify_finalizer();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct RecognizedSymbol {
 | |
|     FlatPtr address;
 | |
|     const KernelSymbol* symbol { nullptr };
 | |
| };
 | |
| 
 | |
| static bool symbolicate(const RecognizedSymbol& symbol, const Process& process, StringBuilder& builder)
 | |
| {
 | |
|     if (!symbol.address)
 | |
|         return false;
 | |
| 
 | |
|     bool mask_kernel_addresses = !process.is_superuser();
 | |
|     if (!symbol.symbol) {
 | |
|         if (!is_user_address(VirtualAddress(symbol.address))) {
 | |
|             builder.append("0xdeadc0de\n");
 | |
|         } else {
 | |
|             builder.appendff("{:p}\n", symbol.address);
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
|     unsigned offset = symbol.address - symbol.symbol->address;
 | |
|     if (symbol.symbol->address == g_highest_kernel_symbol_address && offset > 4096) {
 | |
|         builder.appendff("{:p}\n", (void*)(mask_kernel_addresses ? 0xdeadc0de : symbol.address));
 | |
|     } else {
 | |
|         builder.appendff("{:p}  {} +{}\n", (void*)(mask_kernel_addresses ? 0xdeadc0de : symbol.address), demangle(symbol.symbol->name), offset);
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| String Thread::backtrace()
 | |
| {
 | |
|     Vector<RecognizedSymbol, 128> recognized_symbols;
 | |
| 
 | |
|     auto& process = const_cast<Process&>(this->process());
 | |
|     auto stack_trace = Processor::capture_stack_trace(*this);
 | |
|     VERIFY(!g_scheduler_lock.own_lock());
 | |
|     ProcessPagingScope paging_scope(process);
 | |
|     for (auto& frame : stack_trace) {
 | |
|         if (is_user_range(VirtualAddress(frame), sizeof(FlatPtr) * 2)) {
 | |
|             recognized_symbols.append({ frame });
 | |
|         } else {
 | |
|             recognized_symbols.append({ frame, symbolicate_kernel_address(frame) });
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     StringBuilder builder;
 | |
|     for (auto& symbol : recognized_symbols) {
 | |
|         if (!symbolicate(symbol, process, builder))
 | |
|             break;
 | |
|     }
 | |
|     return builder.to_string();
 | |
| }
 | |
| 
 | |
| size_t Thread::thread_specific_region_alignment() const
 | |
| {
 | |
|     return max(process().m_master_tls_alignment, alignof(ThreadSpecificData));
 | |
| }
 | |
| 
 | |
| size_t Thread::thread_specific_region_size() const
 | |
| {
 | |
|     return align_up_to(process().m_master_tls_size, thread_specific_region_alignment()) + sizeof(ThreadSpecificData);
 | |
| }
 | |
| 
 | |
| KResult Thread::make_thread_specific_region(Badge<Process>)
 | |
| {
 | |
|     // The process may not require a TLS region, or allocate TLS later with sys$allocate_tls (which is what dynamically loaded programs do)
 | |
|     if (!process().m_master_tls_region)
 | |
|         return KSuccess;
 | |
| 
 | |
|     auto range = process().space().allocate_range({}, thread_specific_region_size());
 | |
|     if (!range.has_value())
 | |
|         return ENOMEM;
 | |
| 
 | |
|     auto region_or_error = process().space().allocate_region(range.value(), "Thread-specific", PROT_READ | PROT_WRITE);
 | |
|     if (region_or_error.is_error())
 | |
|         return region_or_error.error();
 | |
| 
 | |
|     SmapDisabler disabler;
 | |
|     auto* thread_specific_data = (ThreadSpecificData*)region_or_error.value()->vaddr().offset(align_up_to(process().m_master_tls_size, thread_specific_region_alignment())).as_ptr();
 | |
|     auto* thread_local_storage = (u8*)((u8*)thread_specific_data) - align_up_to(process().m_master_tls_size, process().m_master_tls_alignment);
 | |
|     m_thread_specific_data = VirtualAddress(thread_specific_data);
 | |
|     thread_specific_data->self = thread_specific_data;
 | |
| 
 | |
|     if (process().m_master_tls_size)
 | |
|         memcpy(thread_local_storage, process().m_master_tls_region.unsafe_ptr()->vaddr().as_ptr(), process().m_master_tls_size);
 | |
| 
 | |
|     return KSuccess;
 | |
| }
 | |
| 
 | |
| RefPtr<Thread> Thread::from_tid(ThreadID tid)
 | |
| {
 | |
|     RefPtr<Thread> found_thread;
 | |
|     {
 | |
|         ScopedSpinLock lock(g_tid_map_lock);
 | |
|         if (auto it = g_tid_map->find(tid); it != g_tid_map->end()) {
 | |
|             // We need to call try_ref() here as there is a window between
 | |
|             // dropping the last reference and calling the Thread's destructor!
 | |
|             // We shouldn't remove the threads from that list until it is truly
 | |
|             // destructed as it may stick around past finalization in order to
 | |
|             // be able to wait() on it!
 | |
|             if (it->value->try_ref()) {
 | |
|                 found_thread = adopt_ref(*it->value);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return found_thread;
 | |
| }
 | |
| 
 | |
| void Thread::reset_fpu_state()
 | |
| {
 | |
|     memcpy(m_fpu_state, &Processor::current().clean_fpu_state(), sizeof(FPUState));
 | |
| }
 | |
| 
 | |
| bool Thread::should_be_stopped() const
 | |
| {
 | |
|     return process().is_stopped();
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| void AK::Formatter<Kernel::Thread>::format(FormatBuilder& builder, const Kernel::Thread& value)
 | |
| {
 | |
|     return AK::Formatter<FormatString>::format(
 | |
|         builder,
 | |
|         "{}({}:{})", value.process().name(), value.pid().value(), value.tid().value());
 | |
| }
 |