mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 02:42:44 +00:00 
			
		
		
		
	 5e1499d104
			
		
	
	
		5e1499d104
		
	
	
	
	
		
			
			This commit un-deprecates DeprecatedString, and repurposes it as a byte
string.
As the null state has already been removed, there are no other
particularly hairy blockers in repurposing this type as a byte string
(what it _really_ is).
This commit is auto-generated:
  $ xs=$(ack -l \bDeprecatedString\b\|deprecated_string AK Userland \
    Meta Ports Ladybird Tests Kernel)
  $ perl -pie 's/\bDeprecatedString\b/ByteString/g;
    s/deprecated_string/byte_string/g' $xs
  $ clang-format --style=file -i \
    $(git diff --name-only | grep \.cpp\|\.h)
  $ gn format $(git ls-files '*.gn' '*.gni')
		
	
			
		
			
				
	
	
		
			810 lines
		
	
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			810 lines
		
	
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2022, Matthew Olsson <mattco@serenityos.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/ByteBuffer.h>
 | |
| #include <AK/Debug.h>
 | |
| #include <AK/Random.h>
 | |
| #include <AK/UFixedBigIntDivision.h>
 | |
| #include <LibCrypto/Cipher/AES.h>
 | |
| #include <LibCrypto/Hash/HashManager.h>
 | |
| #include <LibCrypto/Hash/MD5.h>
 | |
| #include <LibPDF/CommonNames.h>
 | |
| #include <LibPDF/Document.h>
 | |
| #include <LibPDF/Encryption.h>
 | |
| 
 | |
| namespace PDF {
 | |
| 
 | |
| static constexpr Array<u8, 32> standard_encryption_key_padding_bytes = {
 | |
|     0x28,
 | |
|     0xBF,
 | |
|     0x4E,
 | |
|     0x5E,
 | |
|     0x4E,
 | |
|     0x75,
 | |
|     0x8A,
 | |
|     0x41,
 | |
|     0x64,
 | |
|     0x00,
 | |
|     0x4E,
 | |
|     0x56,
 | |
|     0xFF,
 | |
|     0xFA,
 | |
|     0x01,
 | |
|     0x08,
 | |
|     0x2E,
 | |
|     0x2E,
 | |
|     0x00,
 | |
|     0xB6,
 | |
|     0xD0,
 | |
|     0x68,
 | |
|     0x3E,
 | |
|     0x80,
 | |
|     0x2F,
 | |
|     0x0C,
 | |
|     0xA9,
 | |
|     0xFE,
 | |
|     0x64,
 | |
|     0x53,
 | |
|     0x69,
 | |
|     0x7A,
 | |
| };
 | |
| 
 | |
| PDFErrorOr<NonnullRefPtr<SecurityHandler>> SecurityHandler::create(Document* document, NonnullRefPtr<DictObject> encryption_dict)
 | |
| {
 | |
|     auto filter = TRY(encryption_dict->get_name(document, CommonNames::Filter))->name();
 | |
|     if (filter == "Standard")
 | |
|         return TRY(StandardSecurityHandler::create(document, encryption_dict));
 | |
| 
 | |
|     dbgln("Unrecognized security handler filter: {}", filter);
 | |
|     TODO();
 | |
| }
 | |
| 
 | |
| struct CryptFilter {
 | |
|     CryptFilterMethod method { CryptFilterMethod::None };
 | |
|     int length_in_bits { 0 };
 | |
| };
 | |
| 
 | |
| static PDFErrorOr<CryptFilter> parse_v4_or_newer_crypt(Document* document, NonnullRefPtr<DictObject> encryption_dict, ByteString filter)
 | |
| {
 | |
|     // See 3.5 Encryption, Table 3.18 "Entries common to all encryption dictionaries" for StmF and StrF,
 | |
|     // and 3.5.4 Crypt Filters in the 1.7 spec, in particular Table 3.22 "Entries common to all crypt filter dictionaries".
 | |
| 
 | |
|     if (filter == "Identity")
 | |
|         return CryptFilter {};
 | |
| 
 | |
|     // "Every crypt filter used in the document must have an entry in this dictionary"
 | |
|     if (!encryption_dict->contains(CommonNames::CF))
 | |
|         return Error(Error::Type::Parse, "Missing CF key in encryption dict for v4");
 | |
| 
 | |
|     auto crypt_filter_dicts = TRY(encryption_dict->get_dict(document, CommonNames::CF));
 | |
|     if (!crypt_filter_dicts->contains(filter))
 | |
|         return Error(Error::Type::Parse, "Missing key in CF dict for v4");
 | |
| 
 | |
|     auto crypt_filter_dict = TRY(crypt_filter_dicts->get_dict(document, filter));
 | |
| 
 | |
|     // "Default value: None"
 | |
|     if (!crypt_filter_dict->contains(CommonNames::CFM))
 | |
|         return CryptFilter {};
 | |
|     auto crypt_filter_method = TRY(crypt_filter_dict->get_name(document, CommonNames::CFM))->name();
 | |
|     if (crypt_filter_method == "None")
 | |
|         return CryptFilter {};
 | |
| 
 | |
|     // Table 3.22 in the 1.7 spec says this is optional but doesn't give a default value.
 | |
|     // But the 2.0 spec (ISO 32000 2020) says it's required.
 | |
|     // The 2.0 spec also says "The standard security handler expresses the Length entry in bytes" (!).
 | |
|     if (!crypt_filter_dict->contains(CommonNames::Length))
 | |
|         return Error(Error::Type::Parse, "crypt filter /Length missing");
 | |
|     auto length_in_bits = crypt_filter_dict->get_value(CommonNames::Length).get<int>() * 8;
 | |
| 
 | |
|     // NOTE: /CFM's /AuthEvent should be ignored for /StmF, /StrF.
 | |
| 
 | |
|     if (crypt_filter_method == "V2")
 | |
|         return CryptFilter { CryptFilterMethod::V2, length_in_bits };
 | |
| 
 | |
|     if (crypt_filter_method == "AESV2") {
 | |
|         // "the AES algorithm in Cipher Block Chaining (CBC) mode with a 16-byte block size [...] The key size (Length) shall be 128 bits."
 | |
|         if (length_in_bits != 128)
 | |
|             return Error(Error::Type::Parse, "Unexpected bit size for AESV2");
 | |
|         return CryptFilter { CryptFilterMethod::AESV2, length_in_bits };
 | |
|     }
 | |
| 
 | |
|     if (crypt_filter_method == "AESV3") {
 | |
|         // "the AES-256 algorithm in Cipher Block Chaining (CBC) with padding mode with a 16-byte block size [...] The key size (Length) shall be 256 bits."
 | |
|         if (length_in_bits != 256)
 | |
|             return Error(Error::Type::Parse, "Unexpected bit size for AESV3");
 | |
|         return CryptFilter { CryptFilterMethod::AESV3, length_in_bits };
 | |
|     }
 | |
| 
 | |
|     return Error(Error::Type::Parse, "Unknown crypt filter method");
 | |
| }
 | |
| 
 | |
| PDFErrorOr<NonnullRefPtr<StandardSecurityHandler>> StandardSecurityHandler::create(Document* document, NonnullRefPtr<DictObject> encryption_dict)
 | |
| {
 | |
|     auto revision = encryption_dict->get_value(CommonNames::R).get<int>();
 | |
|     auto o = TRY(encryption_dict->get_string(document, CommonNames::O))->string();
 | |
|     auto u = TRY(encryption_dict->get_string(document, CommonNames::U))->string();
 | |
|     auto p = encryption_dict->get_value(CommonNames::P).get<int>();
 | |
| 
 | |
|     // V, number: [...] 1 "Algorithm 1 Encryption of data using the RC4 or AES algorithms" in 7.6.2,
 | |
|     // "General Encryption Algorithm," with an encryption key length of 40 bits, see below [...]
 | |
|     // Length, integer: (Optional; PDF 1.4; only if V is 2 or 3) The length of the encryption key, in bits.
 | |
|     // The value shall be a multiple of 8, in the range 40 to 128. Default value: 40.
 | |
|     auto v = encryption_dict->get_value(CommonNames::V).get<int>();
 | |
| 
 | |
|     auto method = CryptFilterMethod::V2;
 | |
|     size_t length_in_bits = 40;
 | |
| 
 | |
|     if (v >= 4) {
 | |
|         // "Default value: Identity"
 | |
|         ByteString stream_filter = "Identity";
 | |
|         if (encryption_dict->contains(CommonNames::StmF))
 | |
|             stream_filter = TRY(encryption_dict->get_name(document, CommonNames::StmF))->name();
 | |
| 
 | |
|         ByteString string_filter = "Identity";
 | |
|         if (encryption_dict->contains(CommonNames::StrF))
 | |
|             string_filter = TRY(encryption_dict->get_name(document, CommonNames::StrF))->name();
 | |
| 
 | |
|         if (stream_filter != string_filter)
 | |
|             return Error(Error::Type::Parse, "Can't handle StmF and StrF being different");
 | |
| 
 | |
|         auto crypt_filter = TRY(parse_v4_or_newer_crypt(document, encryption_dict, stream_filter));
 | |
|         method = crypt_filter.method;
 | |
|         length_in_bits = crypt_filter.length_in_bits;
 | |
|     } else if (encryption_dict->contains(CommonNames::Length))
 | |
|         length_in_bits = encryption_dict->get_value(CommonNames::Length).get<int>();
 | |
|     else if (v != 1)
 | |
|         return Error(Error::Type::Parse, "Can't determine length of encryption key");
 | |
| 
 | |
|     auto length = length_in_bits / 8;
 | |
| 
 | |
|     dbgln_if(PDF_DEBUG, "encryption v{}, method {}, length {}", v, (int)method, length);
 | |
| 
 | |
|     bool encrypt_metadata = true;
 | |
|     if (encryption_dict->contains(CommonNames::EncryptMetadata))
 | |
|         encryption_dict->get_value(CommonNames::EncryptMetadata).get<bool>();
 | |
| 
 | |
|     ByteString oe, ue, perms;
 | |
|     if (v >= 5) {
 | |
|         oe = TRY(encryption_dict->get_string(document, CommonNames::OE))->string();
 | |
|         ue = TRY(encryption_dict->get_string(document, CommonNames::UE))->string();
 | |
|         perms = TRY(encryption_dict->get_string(document, CommonNames::Perms))->string();
 | |
| 
 | |
|         // O and U are 48 bytes for V == 5, but some files pad them with nul bytes to 127 bytes. So trim them, if necessary.
 | |
|         if (o.length() > 48)
 | |
|             o = o.substring(0, 48);
 | |
|         if (u.length() > 48)
 | |
|             u = u.substring(0, 48);
 | |
| 
 | |
|         if (o.length() != 48)
 | |
|             return Error(Error::Type::Parse, "Invalid O size");
 | |
|         if (oe.length() != 32)
 | |
|             return Error(Error::Type::Parse, "Invalid OE size");
 | |
|         if (u.length() != 48)
 | |
|             return Error(Error::Type::Parse, "Invalid U size");
 | |
|         if (ue.length() != 32)
 | |
|             return Error(Error::Type::Parse, "Invalid UE size");
 | |
|         if (perms.length() != 16)
 | |
|             return Error(Error::Type::Parse, "Invalid Perms size");
 | |
|     }
 | |
| 
 | |
|     return adopt_ref(*new StandardSecurityHandler(document, revision, o, oe, u, ue, perms, p, encrypt_metadata, length, method));
 | |
| }
 | |
| 
 | |
| StandardSecurityHandler::StandardSecurityHandler(Document* document, size_t revision, ByteString const& o_entry, ByteString const& oe_entry, ByteString const& u_entry, ByteString const& ue_entry, ByteString const& perms_entry, u32 flags, bool encrypt_metadata, size_t length, CryptFilterMethod method)
 | |
|     : m_document(document)
 | |
|     , m_revision(revision)
 | |
|     , m_o_entry(o_entry)
 | |
|     , m_oe_entry(oe_entry)
 | |
|     , m_u_entry(u_entry)
 | |
|     , m_ue_entry(ue_entry)
 | |
|     , m_perms_entry(perms_entry)
 | |
|     , m_flags(flags)
 | |
|     , m_encrypt_metadata(encrypt_metadata)
 | |
|     , m_length(length)
 | |
|     , m_method(method)
 | |
| {
 | |
| }
 | |
| 
 | |
| ByteBuffer StandardSecurityHandler::compute_user_password_value_r2(ByteBuffer password_string)
 | |
| {
 | |
|     // Algorithm 4: Computing the encryption dictionary's U (user password)
 | |
|     //              value (Security handlers of revision 2)
 | |
| 
 | |
|     // a) Create an encryption key based on the user password string, as
 | |
|     //    described in [Algorithm 2]
 | |
|     auto encryption_key = compute_encryption_key_r2_to_r5(password_string);
 | |
| 
 | |
|     // b) Encrypt the 32-byte padding string shown in step (a) of [Algorithm 2],
 | |
|     //    using an RC4 encryption function with the encryption key from the
 | |
|     //    preceding step.
 | |
|     RC4 rc4(encryption_key);
 | |
|     auto output = rc4.encrypt(standard_encryption_key_padding_bytes);
 | |
| 
 | |
|     // c) Store the result of step (b) as the value of the U entry in the
 | |
|     //    encryption dictionary.
 | |
|     return output;
 | |
| }
 | |
| 
 | |
| ByteBuffer StandardSecurityHandler::compute_user_password_value_r3_to_r5(ByteBuffer password_string)
 | |
| {
 | |
|     // Algorithm 5: Computing the encryption dictionary's U (user password)
 | |
|     //              value (Security handlers of revision 3 or greater)
 | |
| 
 | |
|     // a) Create an encryption key based on the user password string, as
 | |
|     //    described in [Algorithm 2]
 | |
|     auto encryption_key = compute_encryption_key_r2_to_r5(password_string);
 | |
| 
 | |
|     // b) Initialize the MD5 hash function and pass the 32-byte padding string
 | |
|     //    shown in step (a) of [Algorithm 2] as input to this function
 | |
|     Crypto::Hash::MD5 md5;
 | |
|     md5.update(standard_encryption_key_padding_bytes);
 | |
| 
 | |
|     // e) Pass the first element of the file's file identifier array to the MD5
 | |
|     //    hash function.
 | |
|     auto id_array = m_document->trailer()->get_array(m_document, CommonNames::ID).release_value_but_fixme_should_propagate_errors();
 | |
|     auto first_element_string = id_array->get_string_at(m_document, 0).release_value_but_fixme_should_propagate_errors()->string();
 | |
|     md5.update(first_element_string);
 | |
| 
 | |
|     // d) Encrypt the 16-byte result of the hash, using an RC4 encryption function
 | |
|     //    with the encryption key from step (a).
 | |
|     RC4 rc4(encryption_key);
 | |
|     auto out = md5.peek();
 | |
|     auto buffer = rc4.encrypt(out.bytes());
 | |
| 
 | |
|     // e) Do the following 19 times:
 | |
|     //
 | |
|     //    Take the output from the previous invocation of the RC4 function and pass
 | |
|     //    it as input to a new invocation of the function; use an encryption key generated
 | |
|     //    by taking each byte of the original encryption key obtained in step (a) and
 | |
|     //    performing an XOR operation between the that byte and the single-byte value of
 | |
|     //    the iteration counter (from 1 to 19).
 | |
|     auto new_encryption_key = ByteBuffer::create_uninitialized(encryption_key.size()).release_value_but_fixme_should_propagate_errors();
 | |
|     for (size_t i = 1; i <= 19; i++) {
 | |
|         for (size_t j = 0; j < encryption_key.size(); j++)
 | |
|             new_encryption_key[j] = encryption_key[j] ^ i;
 | |
| 
 | |
|         RC4 new_rc4(new_encryption_key);
 | |
|         buffer = new_rc4.encrypt(buffer);
 | |
|     }
 | |
| 
 | |
|     // f) Append 16 bytes of the arbitrary padding to the output from the final invocation
 | |
|     //    of the RC4 function and store the 32-byte result as the value of the U entry in
 | |
|     //    the encryption dictionary.
 | |
|     VERIFY(buffer.size() == 16);
 | |
|     for (size_t i = 0; i < 16; i++)
 | |
|         buffer.append(0xab);
 | |
| 
 | |
|     return buffer;
 | |
| }
 | |
| 
 | |
| bool StandardSecurityHandler::authenticate_user_password_r2_to_r5(StringView password_string)
 | |
| {
 | |
|     // Algorithm 6: Authenticating the user password
 | |
| 
 | |
|     // a) Perform all but the last step of [Algorithm 4] or [Algorithm 5] using the
 | |
|     //    supplied password string.
 | |
|     ByteBuffer password_buffer = ByteBuffer::copy(password_string.bytes()).release_value_but_fixme_should_propagate_errors();
 | |
|     if (m_revision == 2) {
 | |
|         password_buffer = compute_user_password_value_r2(password_buffer);
 | |
|     } else {
 | |
|         password_buffer = compute_user_password_value_r3_to_r5(password_buffer);
 | |
|     }
 | |
| 
 | |
|     // b) If the result of step (a) is equal to the value of the encryption
 | |
|     //    dictionary's "U" entry (comparing the first 16 bytes in the case of security
 | |
|     //    handlers of revision 3 or greater), the password supplied is the correct user
 | |
|     //    password.
 | |
|     auto u_bytes = m_u_entry.bytes();
 | |
|     if (m_revision >= 3)
 | |
|         return u_bytes.slice(0, 16) == password_buffer.bytes().slice(0, 16);
 | |
|     return u_bytes == password_buffer.bytes();
 | |
| }
 | |
| 
 | |
| bool StandardSecurityHandler::authenticate_user_password_r6_and_later(StringView password)
 | |
| {
 | |
|     // ISO 32000 (PDF 2.0), 7.6.4.4.10 Algorithm 11: Authenticating the user password (Security handlers of
 | |
|     // revision 6)
 | |
| 
 | |
|     // a) Test the password against the user key by computing the 32-byte hash using 7.6.4.3.4, "Algorithm 2.B:
 | |
|     //    Computing a hash (revision 6 or later)" with an input string consisting of the UTF-8 password
 | |
|     //    concatenated with the 8 bytes of User Validation Salt (see 7.6.4.4.7, "Algorithm 8: Computing the
 | |
|     //    encryption dictionary's U (user password) and UE (user encryption) values (Security handlers of
 | |
|     //    revision 6)"). If the 32- byte result matches the first 32 bytes of the U string, this is the user password.
 | |
|     ByteBuffer input;
 | |
|     input.append(password.bytes());
 | |
|     input.append(m_u_entry.bytes().slice(32, 8)); // See comment in compute_encryption_key_r6_and_later() re "Validation Salt".
 | |
|     auto hash = computing_a_hash_r6_and_later(input, password, HashKind::User);
 | |
| 
 | |
|     return hash == m_u_entry.bytes().trim(32);
 | |
| }
 | |
| 
 | |
| bool StandardSecurityHandler::authenticate_owner_password_r6_and_later(StringView password)
 | |
| {
 | |
|     // ISO 32000 (PDF 2.0), 7.6.4.4.11 Algorithm 12: Authenticating the owner password (Security handlers of
 | |
|     // revision 6)
 | |
| 
 | |
|     // a) Test the password against the owner key by computing the 32-byte hash using algorithm 2.B with an
 | |
|     //    input string consisting of the UTF-8 password concatenated with the 8 bytes of Owner Validation Salt
 | |
|     //    and the 48 byte U string.  If the 32- byte result matches the first 32 bytes of the O string, this is the owner
 | |
|     //    password.
 | |
|     ByteBuffer input;
 | |
|     input.append(password.bytes());
 | |
|     input.append(m_o_entry.bytes().slice(32, 8)); // See comment in compute_encryption_key_r6_and_later() re "Validation Salt".
 | |
|     input.append(m_u_entry.bytes());
 | |
|     auto hash = computing_a_hash_r6_and_later(input, password, HashKind::Owner);
 | |
| 
 | |
|     return hash == m_o_entry.bytes().trim(32);
 | |
| }
 | |
| 
 | |
| bool StandardSecurityHandler::try_provide_user_password(StringView password_string)
 | |
| {
 | |
|     bool has_user_password;
 | |
|     if (m_revision >= 6) {
 | |
|         // This checks both owner and user password.
 | |
|         auto password = ByteBuffer::copy(password_string.bytes()).release_value_but_fixme_should_propagate_errors();
 | |
|         has_user_password = compute_encryption_key_r6_and_later(move(password));
 | |
|     } else {
 | |
|         has_user_password = authenticate_user_password_r2_to_r5(password_string);
 | |
|     }
 | |
| 
 | |
|     if (!has_user_password)
 | |
|         m_encryption_key = {};
 | |
|     return has_user_password;
 | |
| }
 | |
| 
 | |
| ByteBuffer StandardSecurityHandler::compute_encryption_key_r2_to_r5(ByteBuffer password_string)
 | |
| {
 | |
|     // This function should never be called after we have a valid encryption key.
 | |
|     VERIFY(!m_encryption_key.has_value());
 | |
| 
 | |
|     // 7.6.3.3 Encryption Key Algorithm
 | |
| 
 | |
|     // Algorithm 2: Computing an encryption key
 | |
| 
 | |
|     // a) Pad or truncate the password string to exactly 32 bytes. If the password string
 | |
|     //    is more than 32 bytes long, use only its first 32 bytes; if it is less than 32
 | |
|     //    bytes long, pad it by appending the required number of additional bytes from the
 | |
|     //    beginning of the following padding string: [omitted]
 | |
| 
 | |
|     if (password_string.size() > 32) {
 | |
|         password_string.resize(32);
 | |
|     } else {
 | |
|         password_string.append(standard_encryption_key_padding_bytes.data(), 32 - password_string.size());
 | |
|     }
 | |
| 
 | |
|     // b) Initialize the MD5 hash function and pass the result of step (a) as input to
 | |
|     //    this function.
 | |
|     Crypto::Hash::MD5 md5;
 | |
|     md5.update(password_string);
 | |
| 
 | |
|     // c) Pass the value of the encryption dictionary's "O" entry to the MD5 hash function.
 | |
|     md5.update(m_o_entry);
 | |
| 
 | |
|     // d) Convert the integer value of the P entry to a 32-bit unsigned binary number and pass
 | |
|     //    these bytes to the MD5 hash function, low-order byte first.
 | |
|     md5.update(reinterpret_cast<u8 const*>(&m_flags), sizeof(m_flags));
 | |
| 
 | |
|     // e) Pass the first element of the file's file identifier array to the MD5 hash function.
 | |
|     auto id_array = m_document->trailer()->get_array(m_document, CommonNames::ID).release_value_but_fixme_should_propagate_errors();
 | |
|     auto first_element_string = id_array->get_string_at(m_document, 0).release_value_but_fixme_should_propagate_errors()->string();
 | |
|     md5.update(first_element_string);
 | |
| 
 | |
|     // f) (Security handlers of revision 4 or greater) if the document metadata is not being
 | |
|     //    encrypted, pass 4 bytes with the value 0xffffffff to the MD5 hash function.
 | |
|     if (m_revision >= 4 && !m_encrypt_metadata) {
 | |
|         u32 value = 0xffffffff;
 | |
|         md5.update(reinterpret_cast<u8 const*>(&value), 4);
 | |
|     }
 | |
| 
 | |
|     // g) Finish the hash.
 | |
|     // h) (Security handlers of revision 3 or greater) Do the following 50 times:
 | |
|     //
 | |
|     //    Take the output from the previous MD5 hash and pass the first n bytes
 | |
|     //    of the output as input into a new MD5 hash, where n is the number of
 | |
|     //    bytes of the encryption key as defined by the value of the encryption
 | |
|     //    dictionary's Length entry.
 | |
|     if (m_revision >= 3) {
 | |
|         ByteBuffer n_bytes;
 | |
| 
 | |
|         for (u32 i = 0; i < 50; i++) {
 | |
|             Crypto::Hash::MD5 new_md5;
 | |
|             n_bytes.ensure_capacity(m_length);
 | |
| 
 | |
|             while (n_bytes.size() < m_length) {
 | |
|                 auto out = md5.peek();
 | |
|                 for (size_t j = 0; j < out.data_length() && n_bytes.size() < m_length; j++)
 | |
|                     n_bytes.append(out.data[j]);
 | |
|             }
 | |
| 
 | |
|             VERIFY(n_bytes.size() == m_length);
 | |
|             new_md5.update(n_bytes);
 | |
|             md5 = move(new_md5);
 | |
|             n_bytes.clear();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // i) Set the encryption key to the first n bytes of the output from the final MD5
 | |
|     //    hash, where n shall always be 5 for security handlers of revision 2 but, for
 | |
|     //    security handlers of revision 3 or greater, shall depend on the value of the
 | |
|     //    encryption dictionary's Length entry.
 | |
|     size_t n;
 | |
|     if (m_revision == 2) {
 | |
|         n = 5;
 | |
|     } else if (m_revision >= 3) {
 | |
|         n = m_length;
 | |
|     } else {
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
| 
 | |
|     ByteBuffer encryption_key;
 | |
|     encryption_key.ensure_capacity(n);
 | |
|     while (encryption_key.size() < n) {
 | |
|         auto out = md5.peek();
 | |
|         for (size_t i = 0; encryption_key.size() < n && i < out.data_length(); i++)
 | |
|             encryption_key.append(out.bytes()[i]);
 | |
|     }
 | |
| 
 | |
|     m_encryption_key = encryption_key;
 | |
| 
 | |
|     return encryption_key;
 | |
| }
 | |
| 
 | |
| bool StandardSecurityHandler::compute_encryption_key_r6_and_later(ByteBuffer password_string)
 | |
| {
 | |
|     // This function should never be called after we have a valid encryption key.
 | |
|     VERIFY(!m_encryption_key.has_value());
 | |
| 
 | |
|     auto const zero_iv = ByteBuffer::create_zeroed(16).release_value_but_fixme_should_propagate_errors();
 | |
| 
 | |
|     // ISO 32000 (PDF 2.0), 7.6.4.3.3 Algorithm 2.A: Retrieving the file encryption key from an encrypted
 | |
|     // document in order to decrypt it (revision 6 or later)
 | |
| 
 | |
|     // "It is necessary to treat the 48-bytes of the O and U strings in the
 | |
|     //  Encrypt dictionary as made up of three sections [...]. The first 32 bytes
 | |
|     //  are a hash value (explained below). The next 8 bytes are called the Validation Salt. The final 8 bytes are
 | |
|     //  called the Key Salt."
 | |
| 
 | |
|     // a) The UTF-8 password string shall be generated from Unicode input by processing the input string with
 | |
|     //    the SASLprep (Internet RFC 4013) profile of stringprep (Internet RFC 3454) using the Normalize and BiDi
 | |
|     //    options, and then converting to a UTF-8 representation.
 | |
|     // FIXME
 | |
| 
 | |
|     // b) Truncate the UTF-8 representation to 127 bytes if it is longer than 127 bytes.
 | |
|     if (password_string.size() > 127)
 | |
|         password_string.resize(127);
 | |
| 
 | |
|     // c) Test the password against the owner key by computing a hash using algorithm 2.B with an input string
 | |
|     //    consisting of the UTF-8 password concatenated with the 8 bytes of owner Validation Salt, concatenated
 | |
|     //    with the 48-byte U string. If the 32-byte result matches the first 32 bytes of the O string, this is the owner
 | |
|     //    password.
 | |
|     // [Implementor's note: This is the same as Algorithm 12 in the spec.]
 | |
|     if (authenticate_owner_password_r6_and_later(password_string)) {
 | |
|         // d) Compute an intermediate owner key by computing a hash using algorithm 2.B with an input string
 | |
|         //    consisting of the UTF-8 owner password concatenated with the 8 bytes of owner Key Salt, concatenated
 | |
|         //    with the 48-byte U string. The 32-byte result is the key used to decrypt the 32-byte OE string using AES-
 | |
|         //    256 in CBC mode with no padding and an initialization vector of zero. The 32-byte result is the file
 | |
|         //    encryption key.
 | |
|         ByteBuffer input;
 | |
|         input.append(password_string);
 | |
|         input.append(m_o_entry.bytes().slice(40, 8));
 | |
|         input.append(m_u_entry.bytes());
 | |
|         auto key = computing_a_hash_r6_and_later(input, password_string, HashKind::Owner);
 | |
| 
 | |
|         // [Implementor's note: PaddingMode doesn't matter here since input is block-aligned.]
 | |
|         auto cipher = Crypto::Cipher::AESCipher::CBCMode(key, 256, Crypto::Cipher::Intent::Decryption, Crypto::Cipher::PaddingMode::Null);
 | |
|         auto decrypted = cipher.create_aligned_buffer(m_oe_entry.length()).release_value_but_fixme_should_propagate_errors();
 | |
|         Bytes decrypted_span = decrypted.bytes();
 | |
|         cipher.decrypt(m_oe_entry.bytes(), decrypted_span, zero_iv);
 | |
|         m_encryption_key = ByteBuffer::copy(decrypted_span).release_value_but_fixme_should_propagate_errors();
 | |
|     }
 | |
|     // [Implementor's note: The spec seems to miss a step like c) but for the user password here.]
 | |
|     else if (authenticate_user_password_r6_and_later(password_string)) {
 | |
|         // e) Compute an intermediate user key by computing a hash using algorithm 2.B with an input string
 | |
|         //    consisting of the UTF-8 user password concatenated with the 8 bytes of user Key Salt. The 32-byte result
 | |
|         //    is the key used to decrypt the 32-byte UE string using AES-256 in CBC mode with no padding and an
 | |
|         //    initialization vector of zero. The 32-byte result is the file encryption key.
 | |
|         ByteBuffer input;
 | |
|         input.append(password_string);
 | |
|         input.append(m_u_entry.bytes().slice(40, 8));
 | |
|         auto key = computing_a_hash_r6_and_later(input, password_string, HashKind::User);
 | |
| 
 | |
|         // [Implementor's note: PaddingMode doesn't matter here since input is block-aligned.]
 | |
|         auto cipher = Crypto::Cipher::AESCipher::CBCMode(key, 256, Crypto::Cipher::Intent::Decryption, Crypto::Cipher::PaddingMode::Null);
 | |
|         auto decrypted = cipher.create_aligned_buffer(m_ue_entry.length()).release_value_but_fixme_should_propagate_errors();
 | |
|         Bytes decrypted_span = decrypted.bytes();
 | |
|         cipher.decrypt(m_ue_entry.bytes(), decrypted_span, zero_iv);
 | |
|         m_encryption_key = ByteBuffer::copy(decrypted_span).release_value_but_fixme_should_propagate_errors();
 | |
|     }
 | |
|     // [Implementor's note: No explicit step for this in the spec, but if we get here the password was neither owner nor user password.]
 | |
|     else {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // f) Decrypt the 16-byte Perms string using AES-256 in ECB mode with an initialization vector of zero and
 | |
|     //    the file encryption key as the key. Verify that bytes 9-11 of the result are the characters "a", "d", "b". Bytes
 | |
|     //    0-3 of the decrypted Perms entry, treated as a little-endian integer, are the user permissions. They shall
 | |
|     //    match the value in the P key.
 | |
|     // [Implementor's note: For 16-byte long messages, CBC with an IV of zero is the same as ECB. ECB with an IV doesn't make a lot of sense (?) Maybe the spec means CBC.]
 | |
|     auto cipher = Crypto::Cipher::AESCipher::CBCMode(m_encryption_key.value(), 256, Crypto::Cipher::Intent::Decryption, Crypto::Cipher::PaddingMode::Null);
 | |
|     auto decrypted = cipher.create_aligned_buffer(m_perms_entry.length()).release_value_but_fixme_should_propagate_errors();
 | |
|     Bytes decrypted_span = decrypted.bytes();
 | |
|     cipher.decrypt(m_perms_entry.bytes(), decrypted_span, zero_iv);
 | |
| 
 | |
|     return decrypted_span[9] == 'a' && decrypted_span[10] == 'd' && decrypted_span[11] == 'b' && *bit_cast<LittleEndian<u32>*>(decrypted_span.data()) == m_flags;
 | |
| }
 | |
| 
 | |
| ByteBuffer StandardSecurityHandler::computing_a_hash_r6_and_later(ByteBuffer original_input, StringView input_password, HashKind kind)
 | |
| {
 | |
|     // ISO 32000 (PDF 2.0), 7.6.4.3.4 Algorithm 2.B: Computing a hash (revision 6 or later)
 | |
| 
 | |
|     // Take the SHA-256 hash of the original input to the algorithm and name the resulting 32 bytes, K.
 | |
|     static_assert(Crypto::Hash::SHA256::DigestType::Size == 32);
 | |
|     Crypto::Hash::SHA256 sha;
 | |
|     sha.update(original_input);
 | |
|     auto K = ByteBuffer::copy(sha.digest().bytes()).release_value_but_fixme_should_propagate_errors();
 | |
| 
 | |
|     // Perform the following steps (a)-(d) 64 times:
 | |
|     int round_number;
 | |
|     for (round_number = 0;; ++round_number) {
 | |
|         // a) Make a new string, K1, consisting of 64 repetitions of the sequence: Input password, K, the 48-byte user
 | |
|         //    key. The 48 byte user key is only used when checking the owner password or creating the owner key. If
 | |
|         //    checking the user password or creating the user key, K1 is the concatenation of the input password and K.
 | |
|         ByteBuffer K1_part;
 | |
|         K1_part.append(input_password.bytes());
 | |
|         K1_part.append(K.bytes());
 | |
|         if (kind == HashKind::Owner)
 | |
|             K1_part.append(m_u_entry.bytes());
 | |
| 
 | |
|         ByteBuffer K1;
 | |
|         for (int i = 0; i < 64; ++i)
 | |
|             K1.append(K1_part);
 | |
| 
 | |
|         // b) Encrypt K1 with the AES-128 (CBC, no padding) algorithm, using the first 16 bytes of K as the key and
 | |
|         //    the second 16 bytes of K as the initialization vector. The result of this encryption is E.
 | |
|         ReadonlyBytes key = K.bytes().trim(16);
 | |
|         ReadonlyBytes initialization_vector = K.bytes().slice(16);
 | |
| 
 | |
|         // [Implementor's note: PaddingMode doesn't matter here since input is block-aligned.]
 | |
|         auto cipher = Crypto::Cipher::AESCipher::CBCMode(key, 128, Crypto::Cipher::Intent::Encryption, Crypto::Cipher::PaddingMode::Null);
 | |
|         auto E = cipher.create_aligned_buffer(K1.size()).release_value_but_fixme_should_propagate_errors();
 | |
|         Bytes E_span = E.bytes();
 | |
|         cipher.encrypt(K1, E_span, initialization_vector);
 | |
| 
 | |
|         // c) Taking the first 16 bytes of E as an unsigned big-endian integer, compute the remainder, modulo 3. If the
 | |
|         //    result is 0, the next hash used is SHA-256, if the result is 1, the next hash used is SHA-384, if the result is
 | |
|         //    2, the next hash used is SHA-512.
 | |
|         u128 remainder(0);
 | |
|         for (int i = 0; i < 16; ++i)
 | |
|             remainder = (remainder << 8) | E[i];
 | |
|         remainder %= u128(3);
 | |
| 
 | |
|         Crypto::Hash::HashKind hash_kind;
 | |
|         switch (u8 { remainder }) {
 | |
|         case 0:
 | |
|             hash_kind = Crypto::Hash::HashKind::SHA256;
 | |
|             break;
 | |
|         case 1:
 | |
|             hash_kind = Crypto::Hash::HashKind::SHA384;
 | |
|             break;
 | |
|         case 2:
 | |
|             hash_kind = Crypto::Hash::HashKind::SHA512;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // d) Using the hash algorithm determined in step c, take the hash of E. The result is a new value of K, which
 | |
|         //    will be 32, 48, or 64 bytes in length.
 | |
|         Crypto::Hash::Manager hash(hash_kind);
 | |
|         hash.update(E);
 | |
|         K = ByteBuffer::copy(hash.digest().bytes()).release_value_but_fixme_should_propagate_errors();
 | |
| 
 | |
|         // Repeat the process (a-d) with this new value of K. Following 64 rounds (round number 0 to round
 | |
|         // number 63), do the following, starting with round number 64:
 | |
| 
 | |
|         // [Implementor's note: Conceptually, steps e)-f) are at the top of the loop for rounds >= 64, so this has to continue for < 63, not for < 64.]
 | |
|         if (round_number < 63)
 | |
|             continue;
 | |
| 
 | |
|         // NOTE 2 The reason for multiple rounds is to defeat the possibility of running all paths in parallel. With 64
 | |
|         //        rounds (minimum) there are 3^64 paths through the algorithm.
 | |
| 
 | |
|         // e) Look at the very last byte of E. If the value of that byte (taken as an unsigned integer) is greater than the
 | |
|         //    round number - 32, repeat steps (a-d) again.
 | |
| 
 | |
|         // f) Repeat from steps (a-e) until the value of the last byte is <= (round number) - 32.
 | |
| 
 | |
|         // NOTE 3 Tests indicate that the total number of rounds will most likely be between 65 and 80.
 | |
| 
 | |
|         if (E.bytes().last() <= round_number - 32)
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     // The first 32 bytes of the final K are the output of the algorithm.
 | |
|     VERIFY(K.size() >= 32);
 | |
|     K.resize(32);
 | |
|     return K;
 | |
| }
 | |
| 
 | |
| void StandardSecurityHandler::crypt(NonnullRefPtr<Object> object, Reference reference, Crypto::Cipher::Intent direction) const
 | |
| {
 | |
|     VERIFY(m_encryption_key.has_value());
 | |
| 
 | |
|     if (m_method == CryptFilterMethod::None)
 | |
|         return;
 | |
| 
 | |
|     auto aes = [&](ReadonlyBytes bytes, ByteBuffer const& key) {
 | |
|         auto cipher = Crypto::Cipher::AESCipher::CBCMode(key, m_length * 8, direction, Crypto::Cipher::PaddingMode::CMS);
 | |
| 
 | |
|         // "The block size parameter is 16 bytes, and the initialization vector is a 16-byte random number
 | |
|         //  that is stored as the first 16 bytes of the encrypted stream or string."
 | |
|         static_assert(Crypto::Cipher::AESCipher::block_size() == 16);
 | |
|         if (direction == Crypto::Cipher::Intent::Encryption) {
 | |
|             auto output = cipher.create_aligned_buffer(16 + bytes.size()).release_value_but_fixme_should_propagate_errors();
 | |
|             auto iv_span = output.bytes().trim(16);
 | |
|             auto encrypted_span = output.bytes().slice(16);
 | |
| 
 | |
|             fill_with_random(iv_span);
 | |
|             cipher.encrypt(bytes, encrypted_span, iv_span);
 | |
| 
 | |
|             return output;
 | |
|         } else {
 | |
|             VERIFY(direction == Crypto::Cipher::Intent::Decryption);
 | |
| 
 | |
|             auto iv = bytes.trim(16);
 | |
|             bytes = bytes.slice(16);
 | |
| 
 | |
|             auto decrypted = cipher.create_aligned_buffer(bytes.size()).release_value_but_fixme_should_propagate_errors();
 | |
|             auto decrypted_span = decrypted.bytes();
 | |
|             cipher.decrypt(bytes, decrypted_span, iv);
 | |
|             decrypted.resize(decrypted_span.size());
 | |
| 
 | |
|             return decrypted;
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     ReadonlyBytes bytes;
 | |
|     Function<void(ByteBuffer)> assign;
 | |
| 
 | |
|     if (object->is<StreamObject>()) {
 | |
|         auto stream = object->cast<StreamObject>();
 | |
|         bytes = stream->bytes();
 | |
| 
 | |
|         assign = [&object](ByteBuffer buffer) {
 | |
|             object->cast<StreamObject>()->buffer() = move(buffer);
 | |
|         };
 | |
| 
 | |
|         if (stream->dict()->contains(CommonNames::Filter)) {
 | |
|             // ISO 32000 (PDF 2.0), 7.4.10 Crypt filter
 | |
|             // "The Crypt filter shall be the first filter in the Filter array entry."
 | |
|             auto filters = m_document->read_filters(stream->dict()).release_value_but_fixme_should_propagate_errors();
 | |
|             if (!filters.is_empty() && filters[0] == "Crypt")
 | |
|                 TODO();
 | |
|         }
 | |
|     } else if (object->is<StringObject>()) {
 | |
|         auto string = object->cast<StringObject>();
 | |
|         bytes = string->string().bytes();
 | |
|         assign = [&object](ByteBuffer buffer) {
 | |
|             object->cast<StringObject>()->set_string(ByteString(buffer.bytes()));
 | |
|         };
 | |
|     } else {
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
| 
 | |
|     if (m_method == CryptFilterMethod::AESV3) {
 | |
|         // ISO 32000 (PDF 2.0), 7.6.3.3 Algorithm 1.A: Encryption of data using the AES algorithms
 | |
| 
 | |
|         // a) Use the 32-byte file encryption key for the AES-256 symmetric key algorithm, along with the string or
 | |
|         //    stream data to be encrypted.
 | |
|         //
 | |
|         //    Use the AES algorithm in Cipher Block Chaining (CBC) mode, which requires an initialization
 | |
|         //    vector. The block size parameter is set to 16 bytes, and the initialization vector is a 16-byte random
 | |
|         //    number that is stored as the first 16 bytes of the encrypted stream or string.
 | |
|         assign(aes(bytes, m_encryption_key.value()));
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // 7.6.2 General Encryption Algorithm
 | |
|     // Algorithm 1: Encryption of data using the RC3 or AES algorithms
 | |
| 
 | |
|     // a) Obtain the object number and generation number from the object identifier of
 | |
|     //    the string or stream to be encrypted. If the string is a direct object, use
 | |
|     //    the identifier of the indirect object containing it.
 | |
|     //
 | |
|     // Note: This is always passed in at parse time because objects don't know their own
 | |
|     //       object number.
 | |
| 
 | |
|     // b) For all strings and streams with crypt filter specifier; treating the object
 | |
|     //    number as binary integers, extend the original n-byte encryption key to n + 5
 | |
|     //    bytes by appending the low-order 3 bytes of the object number and the low-order
 | |
|     //    2 bytes of the generation number in that order, low-order byte first. ...
 | |
| 
 | |
|     auto encryption_key = m_encryption_key.value();
 | |
|     auto index = reference.as_ref_index();
 | |
|     auto generation = reference.as_ref_generation_index();
 | |
| 
 | |
|     encryption_key.append(index & 0xff);
 | |
|     encryption_key.append((index >> 8) & 0xff);
 | |
|     encryption_key.append((index >> 16) & 0xff);
 | |
|     encryption_key.append(generation & 0xff);
 | |
|     encryption_key.append((generation >> 8) & 0xff);
 | |
| 
 | |
|     if (m_method == CryptFilterMethod::AESV2) {
 | |
|         encryption_key.append('s');
 | |
|         encryption_key.append('A');
 | |
|         encryption_key.append('l');
 | |
|         encryption_key.append('T');
 | |
|     }
 | |
| 
 | |
|     // c) Initialize the MD5 hash function and pass the result of step (b) as input to this
 | |
|     //    function.
 | |
|     Crypto::Hash::MD5 md5;
 | |
|     md5.update(encryption_key);
 | |
| 
 | |
|     // d) Use the first (n + 5) bytes, up to a maximum of 16, of the output from the MD5
 | |
|     //    hash as the key for the RC4 or AES symmetric key algorithms, along with the string
 | |
|     //    or stream data to be encrypted.
 | |
|     auto key = ByteBuffer::copy(md5.peek().bytes()).release_value_but_fixme_should_propagate_errors();
 | |
| 
 | |
|     if (key.size() > min(encryption_key.size(), 16))
 | |
|         key.resize(encryption_key.size());
 | |
| 
 | |
|     if (m_method == CryptFilterMethod::AESV2) {
 | |
|         assign(aes(bytes, key));
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // RC4 is symmetric, so decryption is the same as encryption.
 | |
|     VERIFY(m_method == CryptFilterMethod::V2);
 | |
|     RC4 rc4(key);
 | |
|     auto output = rc4.encrypt(bytes);
 | |
| 
 | |
|     assign(move(output));
 | |
| }
 | |
| 
 | |
| void StandardSecurityHandler::encrypt(NonnullRefPtr<Object> object, Reference reference) const
 | |
| {
 | |
|     crypt(object, reference, Crypto::Cipher::Intent::Encryption);
 | |
| }
 | |
| 
 | |
| void StandardSecurityHandler::decrypt(NonnullRefPtr<Object> object, Reference reference) const
 | |
| {
 | |
|     crypt(object, reference, Crypto::Cipher::Intent::Decryption);
 | |
| }
 | |
| 
 | |
| static constexpr auto identity_permutation = iota_array<size_t, 256>(0);
 | |
| 
 | |
| RC4::RC4(ReadonlyBytes key)
 | |
|     : m_bytes(identity_permutation)
 | |
| {
 | |
|     size_t j = 0;
 | |
|     for (size_t i = 0; i < 256; i++) {
 | |
|         j = (j + m_bytes[i] + key[i % key.size()]) & 0xff;
 | |
|         swap(m_bytes[i], m_bytes[j]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void RC4::generate_bytes(ByteBuffer& bytes)
 | |
| {
 | |
|     size_t i = 0;
 | |
|     size_t j = 0;
 | |
| 
 | |
|     for (size_t count = 0; count < bytes.size(); count++) {
 | |
|         i = (i + 1) % 256;
 | |
|         j = (j + m_bytes[i]) % 256;
 | |
|         swap(m_bytes[i], m_bytes[j]);
 | |
|         bytes[count] = m_bytes[(m_bytes[i] + m_bytes[j]) % 256];
 | |
|     }
 | |
| }
 | |
| 
 | |
| ByteBuffer RC4::encrypt(ReadonlyBytes bytes)
 | |
| {
 | |
|     auto output = ByteBuffer::create_uninitialized(bytes.size()).release_value_but_fixme_should_propagate_errors();
 | |
|     generate_bytes(output);
 | |
|     for (size_t i = 0; i < bytes.size(); i++)
 | |
|         output[i] ^= bytes[i];
 | |
|     return output;
 | |
| }
 | |
| 
 | |
| }
 |