1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-07-06 18:37:35 +00:00
serenity/Userland/Libraries/LibCrypto/Curves/SECP256r1.cpp
Michiel Visser 8f7219c6fa LibCrypto: Implement the SECP256r1 elliptic curve
This implementation of the secp256r1 elliptic curve uses two techniques
to improve the performance of the operations.

1. All coordinates are stored in Jacobian form, (X/Z^2, Y/Z^3, Z), which
   removes the need for division operations during point addition or
   doubling. The points are converted at the start of the computation,
   and converted back at the end.

2. All values are transformed to Montgomery form, to allow for faster
   modular multiplication using the Montgomery modular multiplication
   method. This means that all coordinates have to be converted into
   this form, and back out of this form before returning them.
2022-03-18 07:56:47 +03:30

429 lines
13 KiB
C++

/*
* Copyright (c) 2022, Michiel Visser <opensource@webmichiel.nl>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/ByteReader.h>
#include <AK/Endian.h>
#include <AK/String.h>
#include <AK/StringBuilder.h>
#include <AK/UFixedBigInt.h>
#include <LibCrypto/Curves/SECP256r1.h>
namespace Crypto::Curves {
static u256 import_big_endian(ReadonlyBytes data)
{
VERIFY(data.size() == 32);
u64 d = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(0 * sizeof(u64))));
u64 c = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(1 * sizeof(u64))));
u64 b = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(2 * sizeof(u64))));
u64 a = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(3 * sizeof(u64))));
return u256 { u128 { a, b }, u128 { c, d } };
}
static void export_big_endian(u256 const& value, Bytes data)
{
u64 a = AK::convert_between_host_and_big_endian(value.low().low());
u64 b = AK::convert_between_host_and_big_endian(value.low().high());
u64 c = AK::convert_between_host_and_big_endian(value.high().low());
u64 d = AK::convert_between_host_and_big_endian(value.high().high());
ByteReader::store(data.offset_pointer(0 * sizeof(u64)), d);
ByteReader::store(data.offset_pointer(1 * sizeof(u64)), c);
ByteReader::store(data.offset_pointer(2 * sizeof(u64)), b);
ByteReader::store(data.offset_pointer(3 * sizeof(u64)), a);
}
static u256 select(u256 const& left, u256 const& right, bool condition)
{
// If condition = 0 return left else right
u256 mask = (u256)condition - 1;
return (left & mask) | (right & ~mask);
}
static u512 multiply(u256 const& left, u256 const& right)
{
auto result = left.wide_multiply(right);
return { result.low, result.high };
}
u256 SECP256r1::modular_reduce(u256 const& value)
{
// Add -prime % 2^256 = 2^224-2^192-2^96+1
bool carry = false;
u256 other = value.addc(REDUCE_PRIME, carry);
// Check for overflow
return select(value, other, carry);
}
u256 SECP256r1::modular_reduce_order(u256 const& value)
{
// Add -order % 2^256
bool carry = false;
u256 other = value.addc(REDUCE_ORDER, carry);
// Check for overflow
return select(value, other, carry);
}
u256 SECP256r1::modular_add(u256 const& left, u256 const& right, bool carry_in)
{
bool carry = carry_in;
u256 output = left.addc(right, carry);
// If there is left carry, subtract p by adding 2^256 - p
u64 t = carry;
carry = false;
u256 addend { u128 { t, -(t << 32) }, u128 { -t, (t << 32) - (t << 1) } };
output = output.addc(addend, carry);
// If there is still left carry, subtract p by adding 2^256 - p
t = carry;
addend = { u128 { t, -(t << 32) }, u128 { -t, (t << 32) - (t << 1) } };
return output + addend;
}
u256 SECP256r1::modular_sub(u256 const& left, u256 const& right)
{
bool borrow = false;
u256 output = left.subc(right, borrow);
// If there is left borrow, add p by subtracting 2^256 - p
u64 t = borrow;
borrow = false;
u256 sub { u128 { t, -(t << 32) }, u128 { -t, (t << 32) - (t << 1) } };
output = output.subc(sub, borrow);
// If there is still left borrow, add p by subtracting 2^256 - p
t = borrow;
sub = { u128 { t, -(t << 32) }, u128 { -t, (t << 32) - (t << 1) } };
return output - sub;
}
u256 SECP256r1::modular_multiply(u256 const& left, u256 const& right)
{
// Modular multiplication using the Montgomery method: https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
// This requires that the inputs to this function are in Montgomery form.
// T = left * right
u512 mult = multiply(left, right);
// m = ((T mod R) * curve_p')
u512 m = multiply(mult.low(), PRIME_INVERSE_MOD_R);
// mp = (m mod R) * curve_p
u512 mp = multiply(m.low(), PRIME);
// t = (T + mp)
bool carry = false;
mult.low().addc(mp.low(), carry);
// output = t / R
return modular_add(mult.high(), mp.high(), carry);
}
u256 SECP256r1::modular_square(u256 const& value)
{
return modular_multiply(value, value);
}
u256 SECP256r1::to_montgomery(u256 const& value)
{
return modular_multiply(value, R2_MOD_PRIME);
}
u256 SECP256r1::from_montgomery(u256 const& value)
{
return modular_multiply(value, ONE);
}
u256 SECP256r1::modular_inverse(u256 const& value)
{
// Modular inverse modulo the curve prime can be computed using Fermat's little theorem: a^(p-2) mod p = a^-1 mod p.
// Calculating a^(p-2) mod p can be done using the square-and-multiply exponentiation method, as p-2 is constant.
//
// p-2 = 2^256 - 2^224 + 2^192 + 2^96 - 3, or written as binary:
// 1111111111111111111111111111111100000000000000000000000000000001
// 0000000000000000000000000000000000000000000000000000000000000000
// 0000000000000000000000000000000011111111111111111111111111111111
// 1111111111111111111111111111111111111111111111111111111111111101
u256 base = value;
// 1
u256 result = value;
base = modular_square(base);
// 0
base = modular_square(base);
// 94*1
for (auto i = 0; i < 94; i++) {
result = modular_multiply(result, base);
base = modular_square(base);
}
// 96*0
for (auto i = 0; i < 96; i++) {
base = modular_square(base);
}
// 1
result = modular_multiply(result, base);
base = modular_square(base);
// 31*0
for (auto i = 0; i < 31; i++) {
base = modular_square(base);
}
// 32*1
for (auto i = 0; i < 32; i++) {
result = modular_multiply(result, base);
base = modular_square(base);
}
return result;
}
void SECP256r1::point_double(JacobianPoint& output_point, JacobianPoint const& point)
{
// Based on "Point Doubling" from http://point-at-infinity.org/ecc/Prime_Curve_Jacobian_Coordinates.html
// if (Y == 0)
// return POINT_AT_INFINITY
if (point.y.is_zero_constant_time()) {
VERIFY_NOT_REACHED();
}
u256 temp;
// Y2 = Y^2
u256 y2 = modular_square(point.y);
// S = 4*X*Y2
u256 s = modular_multiply(point.x, y2);
s = modular_add(s, s);
s = modular_add(s, s);
// M = 3*X^2 + a*Z^4 = 3*(X + Z^2)*(X - Z^2)
// This specific equation from https://github.com/earlephilhower/bearssl-esp8266/blob/6105635531027f5b298aa656d44be2289b2d434f/src/ec/ec_p256_m64.c#L811-L816
// This simplification only works because a = -3 mod p
temp = modular_square(point.z);
u256 m = modular_add(point.x, temp);
temp = modular_sub(point.x, temp);
m = modular_multiply(m, temp);
temp = modular_add(m, m);
m = modular_add(m, temp);
// X' = M^2 - 2*S
u256 xp = modular_square(m);
xp = modular_sub(xp, s);
xp = modular_sub(xp, s);
// Y' = M*(S - X') - 8*Y2^2
u256 yp = modular_sub(s, xp);
yp = modular_multiply(yp, m);
temp = modular_square(y2);
temp = modular_add(temp, temp);
temp = modular_add(temp, temp);
temp = modular_add(temp, temp);
yp = modular_sub(yp, temp);
// Z' = 2*Y*Z
u256 zp = modular_multiply(point.y, point.z);
zp = modular_add(zp, zp);
// return (X', Y', Z')
output_point.x = xp;
output_point.y = yp;
output_point.z = zp;
}
void SECP256r1::point_add(JacobianPoint& output_point, JacobianPoint const& point_a, JacobianPoint const& point_b)
{
// Based on "Point Addition" from http://point-at-infinity.org/ecc/Prime_Curve_Jacobian_Coordinates.html
if (point_a.x.is_zero_constant_time() && point_a.y.is_zero_constant_time() && point_a.z.is_zero_constant_time()) {
output_point.x = point_b.x;
output_point.y = point_b.y;
output_point.z = point_b.z;
return;
}
u256 temp;
temp = modular_square(point_b.z);
// U1 = X1*Z2^2
u256 u1 = modular_multiply(point_a.x, temp);
// S1 = Y1*Z2^3
u256 s1 = modular_multiply(point_a.y, temp);
s1 = modular_multiply(s1, point_b.z);
temp = modular_square(point_a.z);
// U2 = X2*Z1^2
u256 u2 = modular_multiply(point_b.x, temp);
// S2 = Y2*Z1^3
u256 s2 = modular_multiply(point_b.y, temp);
s2 = modular_multiply(s2, point_a.z);
// if (U1 == U2)
// if (S1 != S2)
// return POINT_AT_INFINITY
// else
// return POINT_DOUBLE(X1, Y1, Z1)
if (u1.is_equal_to_constant_time(u2)) {
if (s1.is_equal_to_constant_time(s2)) {
point_double(output_point, point_a);
return;
} else {
VERIFY_NOT_REACHED();
}
}
// H = U2 - U1
u256 h = modular_sub(u2, u1);
u256 h2 = modular_square(h);
u256 h3 = modular_multiply(h2, h);
// R = S2 - S1
u256 r = modular_sub(s2, s1);
// X3 = R^2 - H^3 - 2*U1*H^2
u256 x3 = modular_square(r);
x3 = modular_sub(x3, h3);
temp = modular_multiply(u1, h2);
temp = modular_add(temp, temp);
x3 = modular_sub(x3, temp);
// Y3 = R*(U1*H^2 - X3) - S1*H^3
u256 y3 = modular_multiply(u1, h2);
y3 = modular_sub(y3, x3);
y3 = modular_multiply(y3, r);
temp = modular_multiply(s1, h3);
y3 = modular_sub(y3, temp);
// Z3 = H*Z1*Z2
u256 z3 = modular_multiply(h, point_a.z);
z3 = modular_multiply(z3, point_b.z);
// return (X3, Y3, Z3)
output_point.x = x3;
output_point.y = y3;
output_point.z = z3;
}
void SECP256r1::convert_jacobian_to_affine(JacobianPoint& point)
{
u256 temp;
// X' = X/Z^2
temp = modular_square(point.z);
temp = modular_inverse(temp);
point.x = modular_multiply(point.x, temp);
// Y' = Y/Z^3
temp = modular_square(point.z);
temp = modular_multiply(temp, point.z);
temp = modular_inverse(temp);
point.y = modular_multiply(point.y, temp);
}
bool SECP256r1::is_point_on_curve(JacobianPoint const& point)
{
// This check requires the point to be in Montgomery form, with Z=1
u256 temp, temp2;
// Calulcate Y^2 - X^3 - a*X - b = Y^2 - X^3 + 3*X - b
temp = modular_square(point.y);
temp2 = modular_square(point.x);
temp2 = modular_multiply(temp2, point.x);
temp = modular_sub(temp, temp2);
temp = modular_add(temp, point.x);
temp = modular_add(temp, point.x);
temp = modular_add(temp, point.x);
temp = modular_sub(temp, B_MONTGOMERY);
temp = modular_reduce(temp);
return temp.is_zero_constant_time();
}
ErrorOr<ByteBuffer> SECP256r1::generate_public_key(ReadonlyBytes a)
{
// clang-format off
u8 generator_bytes[65] {
0x04,
0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8, 0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2,
0x77, 0x03, 0x7D, 0x81, 0x2D, 0xEB, 0x33, 0xA0, 0xF4, 0xA1, 0x39, 0x45, 0xD8, 0x98, 0xC2, 0x96,
0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F, 0x9B, 0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16,
0x2B, 0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE, 0xCB, 0xB6, 0x40, 0x68, 0x37, 0xBF, 0x51, 0xF5,
};
// clang-format on
return compute_coordinate(a, { generator_bytes, 65 });
}
ErrorOr<ByteBuffer> SECP256r1::compute_coordinate(ReadonlyBytes scalar_bytes, ReadonlyBytes point_bytes)
{
VERIFY(scalar_bytes.size() == 32);
u256 scalar = import_big_endian(scalar_bytes);
// FIXME: This will slightly bias the distribution of client secrets
scalar = modular_reduce_order(scalar);
if (scalar.is_zero_constant_time())
return Error::from_string_literal("SECP256r1: scalar is zero");
// Make sure the point is uncompressed
if (point_bytes.size() != 65 || point_bytes[0] != 0x04)
return Error::from_string_literal("SECP256r1: point is not uncompressed format");
JacobianPoint point {
import_big_endian(point_bytes.slice(1, 32)),
import_big_endian(point_bytes.slice(33, 32)),
1u,
};
// Convert the input point into Montgomery form
point.x = to_montgomery(point.x);
point.y = to_montgomery(point.y);
point.z = to_montgomery(point.z);
// Check that the point is on the curve
if (!is_point_on_curve(point))
return Error::from_string_literal("SECP256r1: point is not on the curve");
JacobianPoint result;
JacobianPoint temp_result;
// Calculate the scalar times point multiplication in constant time
for (auto i = 0; i < 256; i++) {
point_add(temp_result, result, point);
auto condition = (scalar & 1u) == 1u;
result.x = select(result.x, temp_result.x, condition);
result.y = select(result.y, temp_result.y, condition);
result.z = select(result.z, temp_result.z, condition);
point_double(point, point);
scalar >>= 1u;
}
// Convert from Jacobian coordinates back to Affine coordinates
convert_jacobian_to_affine(result);
// Make sure the resulting point is on the curve
VERIFY(is_point_on_curve(result));
// Convert the result back from Montgomery form
result.x = from_montgomery(result.x);
result.y = from_montgomery(result.y);
// Final modular reduction on the coordinates
result.x = modular_reduce(result.x);
result.y = modular_reduce(result.y);
// Export the values into an output buffer
auto buf = TRY(ByteBuffer::create_uninitialized(65));
buf[0] = 0x04;
export_big_endian(result.x, buf.bytes().slice(1, 32));
export_big_endian(result.y, buf.bytes().slice(33, 32));
return buf;
}
}