mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 21:02:44 +00:00 
			
		
		
		
	 3a945051fc
			
		
	
	
		3a945051fc
		
	
	
	
	
		
			
			Previously there was a mix of returning plain strings and returning explicit string views using `operator ""sv`. This change switches them all to standardized on `operator ""sv` as it avoids a call to strlen.
		
			
				
	
	
		
			653 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			653 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/Assertions.h>
 | |
| #include <AK/Memory.h>
 | |
| #include <AK/Singleton.h>
 | |
| #include <AK/Types.h>
 | |
| #include <Kernel/Arch/x86/IO.h>
 | |
| #include <Kernel/Arch/x86/MSR.h>
 | |
| #include <Kernel/Arch/x86/ProcessorInfo.h>
 | |
| #include <Kernel/Debug.h>
 | |
| #include <Kernel/Firmware/ACPI/Parser.h>
 | |
| #include <Kernel/Interrupts/APIC.h>
 | |
| #include <Kernel/Interrupts/SpuriousInterruptHandler.h>
 | |
| #include <Kernel/Memory/AnonymousVMObject.h>
 | |
| #include <Kernel/Memory/MemoryManager.h>
 | |
| #include <Kernel/Memory/PageDirectory.h>
 | |
| #include <Kernel/Memory/TypedMapping.h>
 | |
| #include <Kernel/Panic.h>
 | |
| #include <Kernel/Sections.h>
 | |
| #include <Kernel/Thread.h>
 | |
| #include <Kernel/Time/APICTimer.h>
 | |
| 
 | |
| #define IRQ_APIC_TIMER (0xfc - IRQ_VECTOR_BASE)
 | |
| #define IRQ_APIC_IPI (0xfd - IRQ_VECTOR_BASE)
 | |
| #define IRQ_APIC_ERR (0xfe - IRQ_VECTOR_BASE)
 | |
| #define IRQ_APIC_SPURIOUS (0xff - IRQ_VECTOR_BASE)
 | |
| 
 | |
| #define APIC_ICR_DELIVERY_PENDING (1 << 12)
 | |
| 
 | |
| #define APIC_ENABLED (1 << 8)
 | |
| 
 | |
| #define APIC_BASE_MSR 0x1b
 | |
| #define APIC_REGS_MSR_BASE 0x800
 | |
| 
 | |
| #define APIC_REG_ID 0x20
 | |
| #define APIC_REG_EOI 0xb0
 | |
| #define APIC_REG_LD 0xd0
 | |
| #define APIC_REG_DF 0xe0
 | |
| #define APIC_REG_SIV 0xf0
 | |
| #define APIC_REG_TPR 0x80
 | |
| #define APIC_REG_ICR_LOW 0x300
 | |
| #define APIC_REG_ICR_HIGH 0x310
 | |
| #define APIC_REG_LVT_TIMER 0x320
 | |
| #define APIC_REG_LVT_THERMAL 0x330
 | |
| #define APIC_REG_LVT_PERFORMANCE_COUNTER 0x340
 | |
| #define APIC_REG_LVT_LINT0 0x350
 | |
| #define APIC_REG_LVT_LINT1 0x360
 | |
| #define APIC_REG_LVT_ERR 0x370
 | |
| #define APIC_REG_TIMER_INITIAL_COUNT 0x380
 | |
| #define APIC_REG_TIMER_CURRENT_COUNT 0x390
 | |
| #define APIC_REG_TIMER_CONFIGURATION 0x3e0
 | |
| 
 | |
| namespace Kernel {
 | |
| 
 | |
| static Singleton<APIC> s_apic;
 | |
| 
 | |
| class APICIPIInterruptHandler final : public GenericInterruptHandler {
 | |
| public:
 | |
|     explicit APICIPIInterruptHandler(u8 interrupt_vector)
 | |
|         : GenericInterruptHandler(interrupt_vector, true)
 | |
|     {
 | |
|     }
 | |
|     virtual ~APICIPIInterruptHandler()
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     static void initialize(u8 interrupt_number)
 | |
|     {
 | |
|         auto* handler = new APICIPIInterruptHandler(interrupt_number);
 | |
|         handler->register_interrupt_handler();
 | |
|     }
 | |
| 
 | |
|     virtual bool handle_interrupt(const RegisterState&) override;
 | |
| 
 | |
|     virtual bool eoi() override;
 | |
| 
 | |
|     virtual HandlerType type() const override { return HandlerType::IRQHandler; }
 | |
|     virtual StringView purpose() const override { return "IPI Handler"sv; }
 | |
|     virtual StringView controller() const override { return nullptr; }
 | |
| 
 | |
|     virtual size_t sharing_devices_count() const override { return 0; }
 | |
|     virtual bool is_shared_handler() const override { return false; }
 | |
|     virtual bool is_sharing_with_others() const override { return false; }
 | |
| 
 | |
| private:
 | |
| };
 | |
| 
 | |
| class APICErrInterruptHandler final : public GenericInterruptHandler {
 | |
| public:
 | |
|     explicit APICErrInterruptHandler(u8 interrupt_vector)
 | |
|         : GenericInterruptHandler(interrupt_vector, true)
 | |
|     {
 | |
|     }
 | |
|     virtual ~APICErrInterruptHandler()
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     static void initialize(u8 interrupt_number)
 | |
|     {
 | |
|         auto* handler = new APICErrInterruptHandler(interrupt_number);
 | |
|         handler->register_interrupt_handler();
 | |
|     }
 | |
| 
 | |
|     virtual bool handle_interrupt(const RegisterState&) override;
 | |
| 
 | |
|     virtual bool eoi() override;
 | |
| 
 | |
|     virtual HandlerType type() const override { return HandlerType::IRQHandler; }
 | |
|     virtual StringView purpose() const override { return "SMP Error Handler"sv; }
 | |
|     virtual StringView controller() const override { return nullptr; }
 | |
| 
 | |
|     virtual size_t sharing_devices_count() const override { return 0; }
 | |
|     virtual bool is_shared_handler() const override { return false; }
 | |
|     virtual bool is_sharing_with_others() const override { return false; }
 | |
| 
 | |
| private:
 | |
| };
 | |
| 
 | |
| bool APIC::initialized()
 | |
| {
 | |
|     return s_apic.is_initialized();
 | |
| }
 | |
| 
 | |
| APIC& APIC::the()
 | |
| {
 | |
|     VERIFY(APIC::initialized());
 | |
|     return *s_apic;
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT void APIC::initialize()
 | |
| {
 | |
|     VERIFY(!APIC::initialized());
 | |
|     s_apic.ensure_instance();
 | |
| }
 | |
| 
 | |
| PhysicalAddress APIC::get_base()
 | |
| {
 | |
|     MSR msr(APIC_BASE_MSR);
 | |
|     auto base = msr.get();
 | |
|     return PhysicalAddress(base & 0xfffff000);
 | |
| }
 | |
| 
 | |
| void APIC::set_base(const PhysicalAddress& base)
 | |
| {
 | |
|     MSR msr(APIC_BASE_MSR);
 | |
|     u64 flags = 1 << 11;
 | |
|     if (m_is_x2)
 | |
|         flags |= 1 << 10;
 | |
|     msr.set(base.get() | flags);
 | |
| }
 | |
| 
 | |
| void APIC::write_register(u32 offset, u32 value)
 | |
| {
 | |
|     if (m_is_x2) {
 | |
|         MSR msr(APIC_REGS_MSR_BASE + (offset >> 4));
 | |
|         msr.set(value);
 | |
|     } else {
 | |
|         *reinterpret_cast<volatile u32*>(m_apic_base->vaddr().offset(offset).as_ptr()) = value;
 | |
|     }
 | |
| }
 | |
| 
 | |
| u32 APIC::read_register(u32 offset)
 | |
| {
 | |
|     if (m_is_x2) {
 | |
|         MSR msr(APIC_REGS_MSR_BASE + (offset >> 4));
 | |
|         return (u32)msr.get();
 | |
|     }
 | |
|     return *reinterpret_cast<volatile u32*>(m_apic_base->vaddr().offset(offset).as_ptr());
 | |
| }
 | |
| 
 | |
| void APIC::set_lvt(u32 offset, u8 interrupt)
 | |
| {
 | |
|     write_register(offset, read_register(offset) | interrupt);
 | |
| }
 | |
| 
 | |
| void APIC::set_siv(u32 offset, u8 interrupt)
 | |
| {
 | |
|     write_register(offset, read_register(offset) | interrupt | APIC_ENABLED);
 | |
| }
 | |
| 
 | |
| void APIC::wait_for_pending_icr()
 | |
| {
 | |
|     while ((read_register(APIC_REG_ICR_LOW) & APIC_ICR_DELIVERY_PENDING) != 0) {
 | |
|         IO::delay(200);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void APIC::write_icr(const ICRReg& icr)
 | |
| {
 | |
|     if (m_is_x2) {
 | |
|         MSR msr(APIC_REGS_MSR_BASE + (APIC_REG_ICR_LOW >> 4));
 | |
|         msr.set(icr.x2_value());
 | |
|     } else {
 | |
|         write_register(APIC_REG_ICR_HIGH, icr.x_high());
 | |
|         write_register(APIC_REG_ICR_LOW, icr.x_low());
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define APIC_LVT_TIMER_ONESHOT 0
 | |
| #define APIC_LVT_TIMER_PERIODIC (1 << 17)
 | |
| #define APIC_LVT_TIMER_TSCDEADLINE (1 << 18)
 | |
| 
 | |
| #define APIC_LVT_MASKED (1 << 16)
 | |
| #define APIC_LVT_TRIGGER_LEVEL (1 << 14)
 | |
| #define APIC_LVT(iv, dm) (((iv)&0xff) | (((dm)&0x7) << 8))
 | |
| 
 | |
| extern "C" void apic_ap_start(void);
 | |
| extern "C" u16 apic_ap_start_size;
 | |
| extern "C" u32 ap_cpu_init_stacks;
 | |
| extern "C" u32 ap_cpu_init_processor_info_array;
 | |
| extern "C" u32 ap_cpu_init_cr0;
 | |
| extern "C" u32 ap_cpu_init_cr3;
 | |
| extern "C" u32 ap_cpu_init_cr4;
 | |
| extern "C" u32 ap_cpu_gdtr;
 | |
| extern "C" u32 ap_cpu_idtr;
 | |
| 
 | |
| void APIC::eoi()
 | |
| {
 | |
|     write_register(APIC_REG_EOI, 0x0);
 | |
| }
 | |
| 
 | |
| u8 APIC::spurious_interrupt_vector()
 | |
| {
 | |
|     return IRQ_APIC_SPURIOUS;
 | |
| }
 | |
| 
 | |
| #define APIC_INIT_VAR_PTR(tpe, vaddr, varname)                         \
 | |
|     reinterpret_cast<volatile tpe*>(reinterpret_cast<ptrdiff_t>(vaddr) \
 | |
|         + reinterpret_cast<ptrdiff_t>(&varname)                        \
 | |
|         - reinterpret_cast<ptrdiff_t>(&apic_ap_start))
 | |
| 
 | |
| UNMAP_AFTER_INIT bool APIC::init_bsp()
 | |
| {
 | |
|     // FIXME: Use the ACPI MADT table
 | |
|     if (!MSR::have())
 | |
|         return false;
 | |
| 
 | |
|     // check if we support local apic
 | |
|     CPUID id(1);
 | |
|     if ((id.edx() & (1 << 9)) == 0)
 | |
|         return false;
 | |
|     if (id.ecx() & (1 << 21))
 | |
|         m_is_x2 = true;
 | |
| 
 | |
|     PhysicalAddress apic_base = get_base();
 | |
|     dbgln_if(APIC_DEBUG, "Initializing {}APIC, base: {}", m_is_x2 ? "x2" : "x", apic_base);
 | |
|     set_base(apic_base);
 | |
| 
 | |
|     if (!m_is_x2) {
 | |
|         auto region_or_error = MM.allocate_kernel_region(apic_base.page_base(), PAGE_SIZE, {}, Memory::Region::Access::ReadWrite);
 | |
|         if (region_or_error.is_error()) {
 | |
|             dbgln("APIC: Failed to allocate memory for APIC base");
 | |
|             return false;
 | |
|         }
 | |
|         m_apic_base = region_or_error.release_value();
 | |
|     }
 | |
| 
 | |
|     auto rsdp = ACPI::StaticParsing::find_rsdp();
 | |
|     if (!rsdp.has_value()) {
 | |
|         dbgln("APIC: RSDP not found");
 | |
|         return false;
 | |
|     }
 | |
|     auto madt_address = ACPI::StaticParsing::find_table(rsdp.value(), "APIC");
 | |
|     if (!madt_address.has_value()) {
 | |
|         dbgln("APIC: MADT table not found");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     auto madt = Memory::map_typed<ACPI::Structures::MADT>(madt_address.value());
 | |
|     size_t entry_index = 0;
 | |
|     size_t entries_length = madt->h.length - sizeof(ACPI::Structures::MADT);
 | |
|     auto* madt_entry = madt->entries;
 | |
|     while (entries_length > 0) {
 | |
|         size_t entry_length = madt_entry->length;
 | |
|         if (madt_entry->type == (u8)ACPI::Structures::MADTEntryType::LocalAPIC) {
 | |
|             auto* plapic_entry = (const ACPI::Structures::MADTEntries::ProcessorLocalAPIC*)madt_entry;
 | |
|             dbgln_if(APIC_DEBUG, "APIC: AP found @ MADT entry {}, processor ID: {}, xAPIC ID: {}, flags: {:#08x}", entry_index, plapic_entry->acpi_processor_id, plapic_entry->apic_id, plapic_entry->flags);
 | |
|             m_processor_cnt++;
 | |
|             if ((plapic_entry->flags & 0x1) != 0)
 | |
|                 m_processor_enabled_cnt++;
 | |
|         } else if (madt_entry->type == (u8)ACPI::Structures::MADTEntryType::Local_x2APIC) {
 | |
|             // Only used for APID IDs >= 255
 | |
|             auto* plx2apic_entry = (const ACPI::Structures::MADTEntries::ProcessorLocalX2APIC*)madt_entry;
 | |
|             dbgln_if(APIC_DEBUG, "APIC: AP found @ MADT entry {}, processor ID: {}, x2APIC ID: {}, flags: {:#08x}", entry_index, plx2apic_entry->acpi_processor_id, plx2apic_entry->apic_id, plx2apic_entry->flags);
 | |
|             m_processor_cnt++;
 | |
|             if ((plx2apic_entry->flags & 0x1) != 0)
 | |
|                 m_processor_enabled_cnt++;
 | |
|         }
 | |
|         madt_entry = (ACPI::Structures::MADTEntryHeader*)(VirtualAddress(madt_entry).offset(entry_length).get());
 | |
|         entries_length -= entry_length;
 | |
|         entry_index++;
 | |
|     }
 | |
| 
 | |
|     if (m_processor_enabled_cnt < 1)
 | |
|         m_processor_enabled_cnt = 1;
 | |
|     if (m_processor_cnt < 1)
 | |
|         m_processor_cnt = 1;
 | |
| 
 | |
|     dbgln("APIC processors found: {}, enabled: {}", m_processor_cnt, m_processor_enabled_cnt);
 | |
| 
 | |
|     enable(0);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT static NonnullOwnPtr<Memory::Region> create_identity_mapped_region(PhysicalAddress paddr, size_t size)
 | |
| {
 | |
|     auto maybe_vmobject = Memory::AnonymousVMObject::try_create_for_physical_range(paddr, size);
 | |
|     // FIXME: Would be nice to be able to return a KResultOr from here.
 | |
|     VERIFY(!maybe_vmobject.is_error());
 | |
| 
 | |
|     auto region_or_error = MM.allocate_kernel_region_with_vmobject(
 | |
|         Memory::VirtualRange { VirtualAddress { static_cast<FlatPtr>(paddr.get()) }, size },
 | |
|         maybe_vmobject.release_value(),
 | |
|         {},
 | |
|         Memory::Region::Access::ReadWriteExecute);
 | |
|     VERIFY(!region_or_error.is_error());
 | |
|     return region_or_error.release_value();
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT void APIC::do_boot_aps()
 | |
| {
 | |
|     VERIFY(m_processor_enabled_cnt > 1);
 | |
|     u32 aps_to_enable = m_processor_enabled_cnt - 1;
 | |
| 
 | |
|     // Copy the APIC startup code and variables to P0x00008000
 | |
|     // Also account for the data appended to:
 | |
|     // * aps_to_enable u32 values for ap_cpu_init_stacks
 | |
|     // * aps_to_enable u32 values for ap_cpu_init_processor_info_array
 | |
|     auto apic_startup_region = create_identity_mapped_region(PhysicalAddress(0x8000), Memory::page_round_up(apic_ap_start_size + (2 * aps_to_enable * sizeof(u32))));
 | |
|     memcpy(apic_startup_region->vaddr().as_ptr(), reinterpret_cast<const void*>(apic_ap_start), apic_ap_start_size);
 | |
| 
 | |
|     // Allocate enough stacks for all APs
 | |
|     Vector<OwnPtr<Memory::Region>> apic_ap_stacks;
 | |
|     for (u32 i = 0; i < aps_to_enable; i++) {
 | |
|         auto stack_region_or_error = MM.allocate_kernel_region(Thread::default_kernel_stack_size, {}, Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow);
 | |
|         if (stack_region_or_error.is_error()) {
 | |
|             dbgln("APIC: Failed to allocate stack for AP #{}", i);
 | |
|             return;
 | |
|         }
 | |
|         auto stack_region = stack_region_or_error.release_value();
 | |
|         stack_region->set_stack(true);
 | |
|         apic_ap_stacks.append(move(stack_region));
 | |
|     }
 | |
| 
 | |
|     // Store pointers to all stacks for the APs to use
 | |
|     auto ap_stack_array = APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_stacks);
 | |
|     VERIFY(aps_to_enable == apic_ap_stacks.size());
 | |
|     for (size_t i = 0; i < aps_to_enable; i++) {
 | |
|         ap_stack_array[i] = apic_ap_stacks[i]->vaddr().get() + Thread::default_kernel_stack_size;
 | |
|         dbgln_if(APIC_DEBUG, "APIC: CPU[{}] stack at {}", i + 1, VirtualAddress { ap_stack_array[i] });
 | |
|     }
 | |
| 
 | |
|     // Allocate Processor structures for all APs and store the pointer to the data
 | |
|     m_ap_processor_info.resize(aps_to_enable);
 | |
|     for (size_t i = 0; i < aps_to_enable; i++)
 | |
|         m_ap_processor_info[i] = make<Processor>();
 | |
|     auto ap_processor_info_array = &ap_stack_array[aps_to_enable];
 | |
|     for (size_t i = 0; i < aps_to_enable; i++) {
 | |
|         ap_processor_info_array[i] = FlatPtr(m_ap_processor_info[i].ptr());
 | |
|         dbgln_if(APIC_DEBUG, "APIC: CPU[{}] processor at {}", i + 1, VirtualAddress { ap_processor_info_array[i] });
 | |
|     }
 | |
|     *APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_processor_info_array) = FlatPtr(&ap_processor_info_array[0]);
 | |
| 
 | |
|     // Store the BSP's CR3 value for the APs to use
 | |
|     *APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_cr3) = MM.kernel_page_directory().cr3();
 | |
| 
 | |
|     // Store the BSP's GDT and IDT for the APs to use
 | |
|     const auto& gdtr = Processor::current().get_gdtr();
 | |
|     *APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_gdtr) = FlatPtr(&gdtr);
 | |
|     const auto& idtr = get_idtr();
 | |
|     *APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_idtr) = FlatPtr(&idtr);
 | |
| 
 | |
|     // Store the BSP's CR0 and CR4 values for the APs to use
 | |
|     *APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_cr0) = read_cr0();
 | |
|     *APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_cr4) = read_cr4();
 | |
| 
 | |
|     // Create an idle thread for each processor. We have to do this here
 | |
|     // because we won't be able to send FlushTLB messages, so we have to
 | |
|     // have all memory set up for the threads so that when the APs are
 | |
|     // starting up, they can access all the memory properly
 | |
|     m_ap_idle_threads.resize(aps_to_enable);
 | |
|     for (u32 i = 0; i < aps_to_enable; i++)
 | |
|         m_ap_idle_threads[i] = Scheduler::create_ap_idle_thread(i + 1);
 | |
| 
 | |
|     dbgln_if(APIC_DEBUG, "APIC: Starting {} AP(s)", aps_to_enable);
 | |
| 
 | |
|     // INIT
 | |
|     write_icr({ 0, 0, ICRReg::INIT, ICRReg::Physical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf });
 | |
| 
 | |
|     IO::delay(10 * 1000);
 | |
| 
 | |
|     for (int i = 0; i < 2; i++) {
 | |
|         // SIPI
 | |
|         write_icr({ 0x08, 0, ICRReg::StartUp, ICRReg::Physical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf }); // start execution at P8000
 | |
| 
 | |
|         IO::delay(200);
 | |
|     }
 | |
| 
 | |
|     // Now wait until the ap_cpu_init_pending variable dropped to 0, which means all APs are initialized and no longer need these special mappings
 | |
|     if (m_apic_ap_count.load(AK::MemoryOrder::memory_order_consume) != aps_to_enable) {
 | |
|         dbgln_if(APIC_DEBUG, "APIC: Waiting for {} AP(s) to finish initialization...", aps_to_enable);
 | |
|         do {
 | |
|             // Wait a little bit
 | |
|             IO::delay(200);
 | |
|         } while (m_apic_ap_count.load(AK::MemoryOrder::memory_order_consume) != aps_to_enable);
 | |
|     }
 | |
| 
 | |
|     dbgln_if(APIC_DEBUG, "APIC: {} processors are initialized and running", m_processor_enabled_cnt);
 | |
| 
 | |
|     // NOTE: Since this region is identity-mapped, we have to unmap it manually to prevent the virtual
 | |
|     //       address range from leaking into the general virtual range allocator.
 | |
|     apic_startup_region->unmap(Memory::Region::ShouldDeallocateVirtualRange::No);
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT void APIC::boot_aps()
 | |
| {
 | |
|     if (m_processor_enabled_cnt <= 1)
 | |
|         return;
 | |
| 
 | |
|     // We split this into another call because do_boot_aps() will cause
 | |
|     // MM calls upon exit, and we don't want to call smp_enable before that
 | |
|     do_boot_aps();
 | |
| 
 | |
|     // Enable SMP, which means IPIs may now be sent
 | |
|     Processor::smp_enable();
 | |
| 
 | |
|     dbgln_if(APIC_DEBUG, "All processors initialized and waiting, trigger all to continue");
 | |
| 
 | |
|     // Now trigger all APs to continue execution (need to do this after
 | |
|     // the regions have been freed so that we don't trigger IPIs
 | |
|     m_apic_ap_continue.store(1, AK::MemoryOrder::memory_order_release);
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT void APIC::enable(u32 cpu)
 | |
| {
 | |
|     VERIFY(m_is_x2 || cpu < 8);
 | |
| 
 | |
|     u32 apic_id;
 | |
|     if (m_is_x2) {
 | |
|         dbgln_if(APIC_DEBUG, "Enable x2APIC on CPU #{}", cpu);
 | |
| 
 | |
|         // We need to enable x2 mode on each core independently
 | |
|         set_base(get_base());
 | |
| 
 | |
|         apic_id = read_register(APIC_REG_ID);
 | |
|     } else {
 | |
|         dbgln_if(APIC_DEBUG, "Setting logical xAPIC ID for CPU #{}", cpu);
 | |
| 
 | |
|         // Use the CPU# as logical apic id
 | |
|         VERIFY(cpu <= 8);
 | |
|         write_register(APIC_REG_LD, (read_register(APIC_REG_LD) & 0x00ffffff) | (cpu << 24));
 | |
| 
 | |
|         // read it back to make sure it's actually set
 | |
|         apic_id = read_register(APIC_REG_LD) >> 24;
 | |
|     }
 | |
| 
 | |
|     dbgln_if(APIC_DEBUG, "CPU #{} apic id: {}", cpu, apic_id);
 | |
|     Processor::current().info().set_apic_id(apic_id);
 | |
| 
 | |
|     dbgln_if(APIC_DEBUG, "Enabling local APIC for CPU #{}, logical APIC ID: {}", cpu, apic_id);
 | |
| 
 | |
|     if (cpu == 0) {
 | |
|         SpuriousInterruptHandler::initialize(IRQ_APIC_SPURIOUS);
 | |
| 
 | |
|         APICErrInterruptHandler::initialize(IRQ_APIC_ERR);
 | |
| 
 | |
|         // register IPI interrupt vector
 | |
|         APICIPIInterruptHandler::initialize(IRQ_APIC_IPI);
 | |
|     }
 | |
| 
 | |
|     if (!m_is_x2) {
 | |
|         // local destination mode (flat mode), not supported in x2 mode
 | |
|         write_register(APIC_REG_DF, 0xf0000000);
 | |
|     }
 | |
| 
 | |
|     // set error interrupt vector
 | |
|     set_lvt(APIC_REG_LVT_ERR, IRQ_APIC_ERR);
 | |
| 
 | |
|     // set spurious interrupt vector
 | |
|     set_siv(APIC_REG_SIV, IRQ_APIC_SPURIOUS);
 | |
| 
 | |
|     write_register(APIC_REG_LVT_TIMER, APIC_LVT(0, 0) | APIC_LVT_MASKED);
 | |
|     write_register(APIC_REG_LVT_THERMAL, APIC_LVT(0, 0) | APIC_LVT_MASKED);
 | |
|     write_register(APIC_REG_LVT_PERFORMANCE_COUNTER, APIC_LVT(0, 0) | APIC_LVT_MASKED);
 | |
|     write_register(APIC_REG_LVT_LINT0, APIC_LVT(0, 7) | APIC_LVT_MASKED);
 | |
|     write_register(APIC_REG_LVT_LINT1, APIC_LVT(0, 0) | APIC_LVT_TRIGGER_LEVEL);
 | |
| 
 | |
|     write_register(APIC_REG_TPR, 0);
 | |
| }
 | |
| 
 | |
| Thread* APIC::get_idle_thread(u32 cpu) const
 | |
| {
 | |
|     VERIFY(cpu > 0);
 | |
|     return m_ap_idle_threads[cpu - 1];
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT void APIC::init_finished(u32 cpu)
 | |
| {
 | |
|     // This method is called once the boot stack is no longer needed
 | |
|     VERIFY(cpu > 0);
 | |
|     VERIFY(cpu < m_processor_enabled_cnt);
 | |
|     // Since we're waiting on other APs here, we shouldn't have the
 | |
|     // scheduler lock
 | |
|     VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
 | |
| 
 | |
|     // Notify the BSP that we are done initializing. It will unmap the startup data at P8000
 | |
|     m_apic_ap_count.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
 | |
|     dbgln_if(APIC_DEBUG, "APIC: CPU #{} initialized, waiting for all others", cpu);
 | |
| 
 | |
|     // The reason we're making all APs wait until the BSP signals them is that
 | |
|     // we don't want APs to trigger IPIs (e.g. through MM) while the BSP
 | |
|     // is unable to process them
 | |
|     while (!m_apic_ap_continue.load(AK::MemoryOrder::memory_order_consume)) {
 | |
|         IO::delay(200);
 | |
|     }
 | |
| 
 | |
|     dbgln_if(APIC_DEBUG, "APIC: CPU #{} continues, all others are initialized", cpu);
 | |
| 
 | |
|     // do_boot_aps() freed memory, so we need to update our tlb
 | |
|     Processor::flush_entire_tlb_local();
 | |
| 
 | |
|     // Now enable all the interrupts
 | |
|     APIC::the().enable(cpu);
 | |
| }
 | |
| 
 | |
| void APIC::broadcast_ipi()
 | |
| {
 | |
|     dbgln_if(APIC_SMP_DEBUG, "SMP: Broadcast IPI from CPU #{}", Processor::current_id());
 | |
|     wait_for_pending_icr();
 | |
|     write_icr({ IRQ_APIC_IPI + IRQ_VECTOR_BASE, 0xffffffff, ICRReg::Fixed, ICRReg::Logical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf });
 | |
| }
 | |
| 
 | |
| void APIC::send_ipi(u32 cpu)
 | |
| {
 | |
|     dbgln_if(APIC_SMP_DEBUG, "SMP: Send IPI from CPU #{} to CPU #{}", Processor::current_id(), cpu);
 | |
|     VERIFY(cpu != Processor::current_id());
 | |
|     VERIFY(cpu < Processor::count());
 | |
|     wait_for_pending_icr();
 | |
|     write_icr({ IRQ_APIC_IPI + IRQ_VECTOR_BASE, m_is_x2 ? Processor::by_id(cpu).info().apic_id() : cpu, ICRReg::Fixed, m_is_x2 ? ICRReg::Physical : ICRReg::Logical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::NoShorthand });
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT APICTimer* APIC::initialize_timers(HardwareTimerBase& calibration_timer)
 | |
| {
 | |
|     if (!m_apic_base && !m_is_x2)
 | |
|         return nullptr;
 | |
| 
 | |
|     // We should only initialize and calibrate the APIC timer once on the BSP!
 | |
|     VERIFY(Processor::is_bootstrap_processor());
 | |
|     VERIFY(!m_apic_timer);
 | |
| 
 | |
|     m_apic_timer = APICTimer::initialize(IRQ_APIC_TIMER, calibration_timer);
 | |
|     return m_apic_timer;
 | |
| }
 | |
| 
 | |
| void APIC::setup_local_timer(u32 ticks, TimerMode timer_mode, bool enable)
 | |
| {
 | |
|     u32 flags = 0;
 | |
|     switch (timer_mode) {
 | |
|     case TimerMode::OneShot:
 | |
|         flags |= APIC_LVT_TIMER_ONESHOT;
 | |
|         break;
 | |
|     case TimerMode::Periodic:
 | |
|         flags |= APIC_LVT_TIMER_PERIODIC;
 | |
|         break;
 | |
|     case TimerMode::TSCDeadline:
 | |
|         flags |= APIC_LVT_TIMER_TSCDEADLINE;
 | |
|         break;
 | |
|     }
 | |
|     if (!enable)
 | |
|         flags |= APIC_LVT_MASKED;
 | |
|     write_register(APIC_REG_LVT_TIMER, APIC_LVT(IRQ_APIC_TIMER + IRQ_VECTOR_BASE, 0) | flags);
 | |
| 
 | |
|     u32 config = read_register(APIC_REG_TIMER_CONFIGURATION);
 | |
|     config &= ~0xf; // clear divisor (bits 0-3)
 | |
|     switch (get_timer_divisor()) {
 | |
|     case 1:
 | |
|         config |= (1 << 3) | 3;
 | |
|         break;
 | |
|     case 2:
 | |
|         break;
 | |
|     case 4:
 | |
|         config |= 1;
 | |
|         break;
 | |
|     case 8:
 | |
|         config |= 2;
 | |
|         break;
 | |
|     case 16:
 | |
|         config |= 3;
 | |
|         break;
 | |
|     case 32:
 | |
|         config |= (1 << 3);
 | |
|         break;
 | |
|     case 64:
 | |
|         config |= (1 << 3) | 1;
 | |
|         break;
 | |
|     case 128:
 | |
|         config |= (1 << 3) | 2;
 | |
|         break;
 | |
|     default:
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
|     write_register(APIC_REG_TIMER_CONFIGURATION, config);
 | |
| 
 | |
|     if (timer_mode == TimerMode::Periodic)
 | |
|         write_register(APIC_REG_TIMER_INITIAL_COUNT, ticks / get_timer_divisor());
 | |
| }
 | |
| 
 | |
| u32 APIC::get_timer_current_count()
 | |
| {
 | |
|     return read_register(APIC_REG_TIMER_CURRENT_COUNT);
 | |
| }
 | |
| 
 | |
| u32 APIC::get_timer_divisor()
 | |
| {
 | |
|     return 16;
 | |
| }
 | |
| 
 | |
| bool APICIPIInterruptHandler::handle_interrupt(const RegisterState&)
 | |
| {
 | |
|     dbgln_if(APIC_SMP_DEBUG, "APIC IPI on CPU #{}", Processor::current_id());
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool APICIPIInterruptHandler::eoi()
 | |
| {
 | |
|     dbgln_if(APIC_SMP_DEBUG, "SMP: IPI EOI");
 | |
|     APIC::the().eoi();
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool APICErrInterruptHandler::handle_interrupt(const RegisterState&)
 | |
| {
 | |
|     dbgln("APIC: SMP error on CPU #{}", Processor::current_id());
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool APICErrInterruptHandler::eoi()
 | |
| {
 | |
|     APIC::the().eoi();
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool HardwareTimer<GenericInterruptHandler>::eoi()
 | |
| {
 | |
|     APIC::the().eoi();
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| }
 |