mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 04:32:44 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1642 lines
		
	
	
	
		
			60 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1642 lines
		
	
	
	
		
			60 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
 | |
|  * Copyright (c) 2022, Linus Groh <linusg@serenityos.org>
 | |
|  * Copyright (c) 2022, the SerenityOS developers.
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/BuiltinWrappers.h>
 | |
| #include <AK/Format.h>
 | |
| #include <AK/StdLibExtras.h>
 | |
| #include <AK/StringBuilder.h>
 | |
| #include <AK/Types.h>
 | |
| 
 | |
| #include <Kernel/Interrupts/APIC.h>
 | |
| #include <Kernel/Process.h>
 | |
| #include <Kernel/Scheduler.h>
 | |
| #include <Kernel/Sections.h>
 | |
| #include <Kernel/StdLib.h>
 | |
| #include <Kernel/Thread.h>
 | |
| 
 | |
| #include <Kernel/Arch/Processor.h>
 | |
| #include <Kernel/Arch/ScopedCritical.h>
 | |
| #include <Kernel/Arch/x86/CPUID.h>
 | |
| #include <Kernel/Arch/x86/InterruptDisabler.h>
 | |
| #include <Kernel/Arch/x86/Interrupts.h>
 | |
| #include <Kernel/Arch/x86/MSR.h>
 | |
| #include <Kernel/Arch/x86/ProcessorInfo.h>
 | |
| #include <Kernel/Arch/x86/SafeMem.h>
 | |
| #include <Kernel/Arch/x86/TrapFrame.h>
 | |
| 
 | |
| #include <Kernel/Memory/PageDirectory.h>
 | |
| #include <Kernel/Memory/ScopedAddressSpaceSwitcher.h>
 | |
| 
 | |
| namespace Kernel {
 | |
| 
 | |
| READONLY_AFTER_INIT FPUState Processor::s_clean_fpu_state;
 | |
| 
 | |
| READONLY_AFTER_INIT static ProcessorContainer s_processors {};
 | |
| READONLY_AFTER_INIT Atomic<u32> Processor::g_total_processors;
 | |
| READONLY_AFTER_INIT static bool volatile s_smp_enabled;
 | |
| 
 | |
| static Atomic<ProcessorMessage*> s_message_pool;
 | |
| Atomic<u32> Processor::s_idle_cpu_mask { 0 };
 | |
| 
 | |
| // The compiler can't see the calls to these functions inside assembly.
 | |
| // Declare them, to avoid dead code warnings.
 | |
| extern "C" void context_first_init(Thread* from_thread, Thread* to_thread, TrapFrame* trap) __attribute__((used));
 | |
| extern "C" void enter_thread_context(Thread* from_thread, Thread* to_thread) __attribute__((used));
 | |
| extern "C" FlatPtr do_init_context(Thread* thread, u32 flags) __attribute__((used));
 | |
| extern "C" void syscall_entry();
 | |
| 
 | |
| bool Processor::is_smp_enabled()
 | |
| {
 | |
|     return s_smp_enabled;
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT static void sse_init()
 | |
| {
 | |
|     write_cr0((read_cr0() & 0xfffffffbu) | 0x2);
 | |
|     write_cr4(read_cr4() | 0x600);
 | |
| }
 | |
| 
 | |
| void exit_kernel_thread(void)
 | |
| {
 | |
|     Thread::current()->exit();
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT void Processor::cpu_detect()
 | |
| {
 | |
|     // NOTE: This is called during Processor::early_initialize, we cannot
 | |
|     //       safely log at this point because we don't have kmalloc
 | |
|     //       initialized yet!
 | |
|     m_features = CPUFeature::Type(0u);
 | |
| 
 | |
|     CPUID processor_info(0x1);
 | |
| 
 | |
|     auto handle_edx_bit_11_feature = [&] {
 | |
|         u32 stepping = processor_info.eax() & 0xf;
 | |
|         u32 model = (processor_info.eax() >> 4) & 0xf;
 | |
|         u32 family = (processor_info.eax() >> 8) & 0xf;
 | |
|         // FIXME: I have no clue what these mean or where it's from (the Intel manual I've seen just says EDX[11] is SEP).
 | |
|         //        If you do, please convert them to constants or add comments!
 | |
|         if (!(family == 6 && model < 3 && stepping < 3))
 | |
|             m_features |= CPUFeature::SEP;
 | |
|         if ((family == 6 && model >= 3) || (family == 0xf && model >= 0xe))
 | |
|             m_features |= CPUFeature::CONSTANT_TSC;
 | |
|     };
 | |
| 
 | |
|     if (processor_info.ecx() & (1 << 0))
 | |
|         m_features |= CPUFeature::SSE3;
 | |
|     if (processor_info.ecx() & (1 << 1))
 | |
|         m_features |= CPUFeature::PCLMULQDQ;
 | |
|     if (processor_info.ecx() & (1 << 2))
 | |
|         m_features |= CPUFeature::DTES64;
 | |
|     if (processor_info.ecx() & (1 << 3))
 | |
|         m_features |= CPUFeature::MONITOR;
 | |
|     if (processor_info.ecx() & (1 << 4))
 | |
|         m_features |= CPUFeature::DS_CPL;
 | |
|     if (processor_info.ecx() & (1 << 5))
 | |
|         m_features |= CPUFeature::VMX;
 | |
|     if (processor_info.ecx() & (1 << 6))
 | |
|         m_features |= CPUFeature::SMX;
 | |
|     if (processor_info.ecx() & (1 << 7))
 | |
|         m_features |= CPUFeature::EST;
 | |
|     if (processor_info.ecx() & (1 << 8))
 | |
|         m_features |= CPUFeature::TM2;
 | |
|     if (processor_info.ecx() & (1 << 9))
 | |
|         m_features |= CPUFeature::SSSE3;
 | |
|     if (processor_info.ecx() & (1 << 10))
 | |
|         m_features |= CPUFeature::CNXT_ID;
 | |
|     if (processor_info.ecx() & (1 << 11))
 | |
|         m_features |= CPUFeature::SDBG;
 | |
|     if (processor_info.ecx() & (1 << 12))
 | |
|         m_features |= CPUFeature::FMA;
 | |
|     if (processor_info.ecx() & (1 << 13))
 | |
|         m_features |= CPUFeature::CX16;
 | |
|     if (processor_info.ecx() & (1 << 14))
 | |
|         m_features |= CPUFeature::XTPR;
 | |
|     if (processor_info.ecx() & (1 << 15))
 | |
|         m_features |= CPUFeature::PDCM;
 | |
|     if (processor_info.ecx() & (1 << 17))
 | |
|         m_features |= CPUFeature::PCID;
 | |
|     if (processor_info.ecx() & (1 << 18))
 | |
|         m_features |= CPUFeature::DCA;
 | |
|     if (processor_info.ecx() & (1 << 19))
 | |
|         m_features |= CPUFeature::SSE4_1;
 | |
|     if (processor_info.ecx() & (1 << 20))
 | |
|         m_features |= CPUFeature::SSE4_2;
 | |
|     if (processor_info.ecx() & (1 << 21))
 | |
|         m_features |= CPUFeature::X2APIC;
 | |
|     if (processor_info.ecx() & (1 << 22))
 | |
|         m_features |= CPUFeature::MOVBE;
 | |
|     if (processor_info.ecx() & (1 << 23))
 | |
|         m_features |= CPUFeature::POPCNT;
 | |
|     if (processor_info.ecx() & (1 << 24))
 | |
|         m_features |= CPUFeature::TSC_DEADLINE;
 | |
|     if (processor_info.ecx() & (1 << 25))
 | |
|         m_features |= CPUFeature::AES;
 | |
|     if (processor_info.ecx() & (1 << 26))
 | |
|         m_features |= CPUFeature::XSAVE;
 | |
|     if (processor_info.ecx() & (1 << 27))
 | |
|         m_features |= CPUFeature::OSXSAVE;
 | |
|     if (processor_info.ecx() & (1 << 28))
 | |
|         m_features |= CPUFeature::AVX;
 | |
|     if (processor_info.ecx() & (1 << 29))
 | |
|         m_features |= CPUFeature::F16C;
 | |
|     if (processor_info.ecx() & (1 << 30))
 | |
|         m_features |= CPUFeature::RDRAND;
 | |
|     if (processor_info.ecx() & (1 << 31))
 | |
|         m_features |= CPUFeature::HYPERVISOR;
 | |
| 
 | |
|     if (processor_info.edx() & (1 << 0))
 | |
|         m_features |= CPUFeature::FPU;
 | |
|     if (processor_info.edx() & (1 << 1))
 | |
|         m_features |= CPUFeature::VME;
 | |
|     if (processor_info.edx() & (1 << 2))
 | |
|         m_features |= CPUFeature::DE;
 | |
|     if (processor_info.edx() & (1 << 3))
 | |
|         m_features |= CPUFeature::PSE;
 | |
|     if (processor_info.edx() & (1 << 4))
 | |
|         m_features |= CPUFeature::TSC;
 | |
|     if (processor_info.edx() & (1 << 5))
 | |
|         m_features |= CPUFeature::MSR;
 | |
|     if (processor_info.edx() & (1 << 6))
 | |
|         m_features |= CPUFeature::PAE;
 | |
|     if (processor_info.edx() & (1 << 7))
 | |
|         m_features |= CPUFeature::MCE;
 | |
|     if (processor_info.edx() & (1 << 8))
 | |
|         m_features |= CPUFeature::CX8;
 | |
|     if (processor_info.edx() & (1 << 9))
 | |
|         m_features |= CPUFeature::APIC;
 | |
|     if (processor_info.edx() & (1 << 11))
 | |
|         handle_edx_bit_11_feature();
 | |
|     if (processor_info.edx() & (1 << 12))
 | |
|         m_features |= CPUFeature::MTRR;
 | |
|     if (processor_info.edx() & (1 << 13))
 | |
|         m_features |= CPUFeature::PGE;
 | |
|     if (processor_info.edx() & (1 << 14))
 | |
|         m_features |= CPUFeature::MCA;
 | |
|     if (processor_info.edx() & (1 << 15))
 | |
|         m_features |= CPUFeature::CMOV;
 | |
|     if (processor_info.edx() & (1 << 16))
 | |
|         m_features |= CPUFeature::PAT;
 | |
|     if (processor_info.edx() & (1 << 17))
 | |
|         m_features |= CPUFeature::PSE36;
 | |
|     if (processor_info.edx() & (1 << 18))
 | |
|         m_features |= CPUFeature::PSN;
 | |
|     if (processor_info.edx() & (1 << 19))
 | |
|         m_features |= CPUFeature::CLFLUSH;
 | |
|     if (processor_info.edx() & (1 << 21))
 | |
|         m_features |= CPUFeature::DS;
 | |
|     if (processor_info.edx() & (1 << 22))
 | |
|         m_features |= CPUFeature::ACPI;
 | |
|     if (processor_info.edx() & (1 << 23))
 | |
|         m_features |= CPUFeature::MMX;
 | |
|     if (processor_info.edx() & (1 << 24))
 | |
|         m_features |= CPUFeature::FXSR;
 | |
|     if (processor_info.edx() & (1 << 25))
 | |
|         m_features |= CPUFeature::SSE;
 | |
|     if (processor_info.edx() & (1 << 26))
 | |
|         m_features |= CPUFeature::SSE2;
 | |
|     if (processor_info.edx() & (1 << 27))
 | |
|         m_features |= CPUFeature::SS;
 | |
|     if (processor_info.edx() & (1 << 28))
 | |
|         m_features |= CPUFeature::HTT;
 | |
|     if (processor_info.edx() & (1 << 29))
 | |
|         m_features |= CPUFeature::TM;
 | |
|     if (processor_info.edx() & (1 << 30))
 | |
|         m_features |= CPUFeature::IA64;
 | |
|     if (processor_info.edx() & (1 << 31))
 | |
|         m_features |= CPUFeature::PBE;
 | |
| 
 | |
|     CPUID extended_features(0x7);
 | |
| 
 | |
|     if (extended_features.ebx() & (1 << 0))
 | |
|         m_features |= CPUFeature::FSGSBASE;
 | |
|     if (extended_features.ebx() & (1 << 1))
 | |
|         m_features |= CPUFeature::TSC_ADJUST;
 | |
|     if (extended_features.ebx() & (1 << 2))
 | |
|         m_features |= CPUFeature::SGX;
 | |
|     if (extended_features.ebx() & (1 << 3))
 | |
|         m_features |= CPUFeature::BMI1;
 | |
|     if (extended_features.ebx() & (1 << 4))
 | |
|         m_features |= CPUFeature::HLE;
 | |
|     if (extended_features.ebx() & (1 << 5))
 | |
|         m_features |= CPUFeature::AVX2;
 | |
|     if (extended_features.ebx() & (1 << 6))
 | |
|         m_features |= CPUFeature::FDP_EXCPTN_ONLY;
 | |
|     if (extended_features.ebx() & (1 << 7))
 | |
|         m_features |= CPUFeature::SMEP;
 | |
|     if (extended_features.ebx() & (1 << 8))
 | |
|         m_features |= CPUFeature::BMI2;
 | |
|     if (extended_features.ebx() & (1 << 9))
 | |
|         m_features |= CPUFeature::ERMS;
 | |
|     if (extended_features.ebx() & (1 << 10))
 | |
|         m_features |= CPUFeature::INVPCID;
 | |
|     if (extended_features.ebx() & (1 << 11))
 | |
|         m_features |= CPUFeature::RTM;
 | |
|     if (extended_features.ebx() & (1 << 12))
 | |
|         m_features |= CPUFeature::PQM;
 | |
|     if (extended_features.ebx() & (1 << 13))
 | |
|         m_features |= CPUFeature::ZERO_FCS_FDS;
 | |
|     if (extended_features.ebx() & (1 << 14))
 | |
|         m_features |= CPUFeature::MPX;
 | |
|     if (extended_features.ebx() & (1 << 15))
 | |
|         m_features |= CPUFeature::PQE;
 | |
|     if (extended_features.ebx() & (1 << 16))
 | |
|         m_features |= CPUFeature::AVX512_F;
 | |
|     if (extended_features.ebx() & (1 << 17))
 | |
|         m_features |= CPUFeature::AVX512_DQ;
 | |
|     if (extended_features.ebx() & (1 << 18))
 | |
|         m_features |= CPUFeature::RDSEED;
 | |
|     if (extended_features.ebx() & (1 << 19))
 | |
|         m_features |= CPUFeature::ADX;
 | |
|     if (extended_features.ebx() & (1 << 20))
 | |
|         m_features |= CPUFeature::SMAP;
 | |
|     if (extended_features.ebx() & (1 << 21))
 | |
|         m_features |= CPUFeature::AVX512_IFMA;
 | |
|     if (extended_features.ebx() & (1 << 22))
 | |
|         m_features |= CPUFeature::PCOMMIT;
 | |
|     if (extended_features.ebx() & (1 << 23))
 | |
|         m_features |= CPUFeature::CLFLUSHOPT;
 | |
|     if (extended_features.ebx() & (1 << 24))
 | |
|         m_features |= CPUFeature::CLWB;
 | |
|     if (extended_features.ebx() & (1 << 25))
 | |
|         m_features |= CPUFeature::INTEL_PT;
 | |
|     if (extended_features.ebx() & (1 << 26))
 | |
|         m_features |= CPUFeature::AVX512_PF;
 | |
|     if (extended_features.ebx() & (1 << 27))
 | |
|         m_features |= CPUFeature::AVX512_ER;
 | |
|     if (extended_features.ebx() & (1 << 28))
 | |
|         m_features |= CPUFeature::AVX512_CD;
 | |
|     if (extended_features.ebx() & (1 << 29))
 | |
|         m_features |= CPUFeature::SHA;
 | |
|     if (extended_features.ebx() & (1 << 30))
 | |
|         m_features |= CPUFeature::AVX512_BW;
 | |
|     if (extended_features.ebx() & (1 << 31))
 | |
|         m_features |= CPUFeature::AVX512_VL;
 | |
| 
 | |
|     if (extended_features.ecx() & (1 << 0))
 | |
|         m_features |= CPUFeature::PREFETCHWT1;
 | |
|     if (extended_features.ecx() & (1 << 1))
 | |
|         m_features |= CPUFeature::AVX512_VBMI;
 | |
|     if (extended_features.ecx() & (1 << 2))
 | |
|         m_features |= CPUFeature::UMIP;
 | |
|     if (extended_features.ecx() & (1 << 3))
 | |
|         m_features |= CPUFeature::PKU;
 | |
|     if (extended_features.ecx() & (1 << 4))
 | |
|         m_features |= CPUFeature::OSPKU;
 | |
|     if (extended_features.ecx() & (1 << 5))
 | |
|         m_features |= CPUFeature::WAITPKG;
 | |
|     if (extended_features.ecx() & (1 << 6))
 | |
|         m_features |= CPUFeature::AVX512_VBMI2;
 | |
|     if (extended_features.ecx() & (1 << 7))
 | |
|         m_features |= CPUFeature::CET_SS;
 | |
|     if (extended_features.ecx() & (1 << 8))
 | |
|         m_features |= CPUFeature::GFNI;
 | |
|     if (extended_features.ecx() & (1 << 9))
 | |
|         m_features |= CPUFeature::VAES;
 | |
|     if (extended_features.ecx() & (1 << 10))
 | |
|         m_features |= CPUFeature::VPCLMULQDQ;
 | |
|     if (extended_features.ecx() & (1 << 11))
 | |
|         m_features |= CPUFeature::AVX512_VNNI;
 | |
|     if (extended_features.ecx() & (1 << 12))
 | |
|         m_features |= CPUFeature::AVX512_BITALG;
 | |
|     if (extended_features.ecx() & (1 << 13))
 | |
|         m_features |= CPUFeature::TME_EN;
 | |
|     if (extended_features.ecx() & (1 << 14))
 | |
|         m_features |= CPUFeature::AVX512_VPOPCNTDQ;
 | |
|     if (extended_features.ecx() & (1 << 16))
 | |
|         m_features |= CPUFeature::INTEL_5_LEVEL_PAGING;
 | |
|     if (extended_features.ecx() & (1 << 22))
 | |
|         m_features |= CPUFeature::RDPID;
 | |
|     if (extended_features.ecx() & (1 << 23))
 | |
|         m_features |= CPUFeature::KL;
 | |
|     if (extended_features.ecx() & (1 << 25))
 | |
|         m_features |= CPUFeature::CLDEMOTE;
 | |
|     if (extended_features.ecx() & (1 << 27))
 | |
|         m_features |= CPUFeature::MOVDIRI;
 | |
|     if (extended_features.ecx() & (1 << 28))
 | |
|         m_features |= CPUFeature::MOVDIR64B;
 | |
|     if (extended_features.ecx() & (1 << 29))
 | |
|         m_features |= CPUFeature::ENQCMD;
 | |
|     if (extended_features.ecx() & (1 << 30))
 | |
|         m_features |= CPUFeature::SGX_LC;
 | |
|     if (extended_features.ecx() & (1 << 31))
 | |
|         m_features |= CPUFeature::PKS;
 | |
| 
 | |
|     if (extended_features.edx() & (1 << 2))
 | |
|         m_features |= CPUFeature::AVX512_4VNNIW;
 | |
|     if (extended_features.edx() & (1 << 3))
 | |
|         m_features |= CPUFeature::AVX512_4FMAPS;
 | |
|     if (extended_features.edx() & (1 << 4))
 | |
|         m_features |= CPUFeature::FSRM;
 | |
|     if (extended_features.edx() & (1 << 8))
 | |
|         m_features |= CPUFeature::AVX512_VP2INTERSECT;
 | |
|     if (extended_features.edx() & (1 << 9))
 | |
|         m_features |= CPUFeature::SRBDS_CTRL;
 | |
|     if (extended_features.edx() & (1 << 10))
 | |
|         m_features |= CPUFeature::MD_CLEAR;
 | |
|     if (extended_features.edx() & (1 << 11))
 | |
|         m_features |= CPUFeature::RTM_ALWAYS_ABORT;
 | |
|     if (extended_features.edx() & (1 << 13))
 | |
|         m_features |= CPUFeature::TSX_FORCE_ABORT;
 | |
|     if (extended_features.edx() & (1 << 14))
 | |
|         m_features |= CPUFeature::SERIALIZE;
 | |
|     if (extended_features.edx() & (1 << 15))
 | |
|         m_features |= CPUFeature::HYBRID;
 | |
|     if (extended_features.edx() & (1 << 16))
 | |
|         m_features |= CPUFeature::TSXLDTRK;
 | |
|     if (extended_features.edx() & (1 << 18))
 | |
|         m_features |= CPUFeature::PCONFIG;
 | |
|     if (extended_features.edx() & (1 << 19))
 | |
|         m_features |= CPUFeature::LBR;
 | |
|     if (extended_features.edx() & (1 << 20))
 | |
|         m_features |= CPUFeature::CET_IBT;
 | |
|     if (extended_features.edx() & (1 << 22))
 | |
|         m_features |= CPUFeature::AMX_BF16;
 | |
|     if (extended_features.edx() & (1 << 23))
 | |
|         m_features |= CPUFeature::AVX512_FP16;
 | |
|     if (extended_features.edx() & (1 << 24))
 | |
|         m_features |= CPUFeature::AMX_TILE;
 | |
|     if (extended_features.edx() & (1 << 25))
 | |
|         m_features |= CPUFeature::AMX_INT8;
 | |
|     if (extended_features.edx() & (1 << 26))
 | |
|         m_features |= CPUFeature::SPEC_CTRL;
 | |
|     if (extended_features.edx() & (1 << 27))
 | |
|         m_features |= CPUFeature::STIBP;
 | |
|     if (extended_features.edx() & (1 << 28))
 | |
|         m_features |= CPUFeature::L1D_FLUSH;
 | |
|     if (extended_features.edx() & (1 << 29))
 | |
|         m_features |= CPUFeature::IA32_ARCH_CAPABILITIES;
 | |
|     if (extended_features.edx() & (1 << 30))
 | |
|         m_features |= CPUFeature::IA32_CORE_CAPABILITIES;
 | |
|     if (extended_features.edx() & (1 << 31))
 | |
|         m_features |= CPUFeature::SSBD;
 | |
| 
 | |
|     u32 max_extended_leaf = CPUID(0x80000000).eax();
 | |
| 
 | |
|     if (max_extended_leaf >= 0x80000001) {
 | |
|         CPUID extended_processor_info(0x80000001);
 | |
| 
 | |
|         if (extended_processor_info.ecx() & (1 << 0))
 | |
|             m_features |= CPUFeature::LAHF_LM;
 | |
|         if (extended_processor_info.ecx() & (1 << 1))
 | |
|             m_features |= CPUFeature::CMP_LEGACY;
 | |
|         if (extended_processor_info.ecx() & (1 << 2))
 | |
|             m_features |= CPUFeature::SVM;
 | |
|         if (extended_processor_info.ecx() & (1 << 3))
 | |
|             m_features |= CPUFeature::EXTAPIC;
 | |
|         if (extended_processor_info.ecx() & (1 << 4))
 | |
|             m_features |= CPUFeature::CR8_LEGACY;
 | |
|         if (extended_processor_info.ecx() & (1 << 5))
 | |
|             m_features |= CPUFeature::ABM;
 | |
|         if (extended_processor_info.ecx() & (1 << 6))
 | |
|             m_features |= CPUFeature::SSE4A;
 | |
|         if (extended_processor_info.ecx() & (1 << 7))
 | |
|             m_features |= CPUFeature::MISALIGNSSE;
 | |
|         if (extended_processor_info.ecx() & (1 << 8))
 | |
|             m_features |= CPUFeature::_3DNOWPREFETCH;
 | |
|         if (extended_processor_info.ecx() & (1 << 9))
 | |
|             m_features |= CPUFeature::OSVW;
 | |
|         if (extended_processor_info.ecx() & (1 << 10))
 | |
|             m_features |= CPUFeature::IBS;
 | |
|         if (extended_processor_info.ecx() & (1 << 11))
 | |
|             m_features |= CPUFeature::XOP;
 | |
|         if (extended_processor_info.ecx() & (1 << 12))
 | |
|             m_features |= CPUFeature::SKINIT;
 | |
|         if (extended_processor_info.ecx() & (1 << 13))
 | |
|             m_features |= CPUFeature::WDT;
 | |
|         if (extended_processor_info.ecx() & (1 << 15))
 | |
|             m_features |= CPUFeature::LWP;
 | |
|         if (extended_processor_info.ecx() & (1 << 16))
 | |
|             m_features |= CPUFeature::FMA4;
 | |
|         if (extended_processor_info.ecx() & (1 << 17))
 | |
|             m_features |= CPUFeature::TCE;
 | |
|         if (extended_processor_info.ecx() & (1 << 19))
 | |
|             m_features |= CPUFeature::NODEID_MSR;
 | |
|         if (extended_processor_info.ecx() & (1 << 21))
 | |
|             m_features |= CPUFeature::TBM;
 | |
|         if (extended_processor_info.ecx() & (1 << 22))
 | |
|             m_features |= CPUFeature::TOPOEXT;
 | |
|         if (extended_processor_info.ecx() & (1 << 23))
 | |
|             m_features |= CPUFeature::PERFCTR_CORE;
 | |
|         if (extended_processor_info.ecx() & (1 << 24))
 | |
|             m_features |= CPUFeature::PERFCTR_NB;
 | |
|         if (extended_processor_info.ecx() & (1 << 26))
 | |
|             m_features |= CPUFeature::DBX;
 | |
|         if (extended_processor_info.ecx() & (1 << 27))
 | |
|             m_features |= CPUFeature::PERFTSC;
 | |
|         if (extended_processor_info.ecx() & (1 << 28))
 | |
|             m_features |= CPUFeature::PCX_L2I;
 | |
| 
 | |
|         if (extended_processor_info.edx() & (1 << 11))
 | |
|             m_features |= CPUFeature::SYSCALL; // Only available in 64 bit mode
 | |
|         if (extended_processor_info.edx() & (1 << 19))
 | |
|             m_features |= CPUFeature::MP;
 | |
|         if (extended_processor_info.edx() & (1 << 20))
 | |
|             m_features |= CPUFeature::NX;
 | |
|         if (extended_processor_info.edx() & (1 << 22))
 | |
|             m_features |= CPUFeature::MMXEXT;
 | |
|         if (extended_processor_info.edx() & (1 << 23))
 | |
|             m_features |= CPUFeature::RDTSCP;
 | |
|         if (extended_processor_info.edx() & (1 << 25))
 | |
|             m_features |= CPUFeature::FXSR_OPT;
 | |
|         if (extended_processor_info.edx() & (1 << 26))
 | |
|             m_features |= CPUFeature::PDPE1GB;
 | |
|         if (extended_processor_info.edx() & (1 << 27))
 | |
|             m_features |= CPUFeature::RDTSCP;
 | |
|         if (extended_processor_info.edx() & (1 << 29))
 | |
|             m_features |= CPUFeature::LM;
 | |
|         if (extended_processor_info.edx() & (1 << 30))
 | |
|             m_features |= CPUFeature::_3DNOWEXT;
 | |
|         if (extended_processor_info.edx() & (1 << 31))
 | |
|             m_features |= CPUFeature::_3DNOW;
 | |
|     }
 | |
| 
 | |
|     if (max_extended_leaf >= 0x80000007) {
 | |
|         CPUID cpuid(0x80000007);
 | |
|         if (cpuid.edx() & (1 << 8)) {
 | |
|             m_features |= CPUFeature::CONSTANT_TSC;
 | |
|             m_features |= CPUFeature::NONSTOP_TSC;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #if ARCH(X86_64)
 | |
|     m_has_qemu_hvf_quirk = false;
 | |
| #endif
 | |
| 
 | |
|     if (max_extended_leaf >= 0x80000008) {
 | |
|         // CPUID.80000008H:EAX[7:0] reports the physical-address width supported by the processor.
 | |
|         CPUID cpuid(0x80000008);
 | |
|         m_physical_address_bit_width = cpuid.eax() & 0xff;
 | |
|         // CPUID.80000008H:EAX[15:8] reports the linear-address width supported by the processor.
 | |
|         m_virtual_address_bit_width = (cpuid.eax() >> 8) & 0xff;
 | |
|     } else {
 | |
|         // For processors that do not support CPUID function 80000008H, the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1 and 32 otherwise.
 | |
|         m_physical_address_bit_width = has_feature(CPUFeature::PAE) ? 36 : 32;
 | |
|         // Processors that do not support CPUID function 80000008H, support a linear-address width of 32.
 | |
|         m_virtual_address_bit_width = 32;
 | |
| #if ARCH(X86_64)
 | |
|         // Workaround QEMU hypervisor.framework bug
 | |
|         // https://gitlab.com/qemu-project/qemu/-/issues/664
 | |
|         //
 | |
|         // We detect this as follows:
 | |
|         //    * We're in a hypervisor
 | |
|         //    * hypervisor_leaf_range is null under Hypervisor.framework
 | |
|         //    * m_physical_address_bit_width is 36 bits
 | |
|         if (has_feature(CPUFeature::HYPERVISOR)) {
 | |
|             CPUID hypervisor_leaf_range(0x40000000);
 | |
|             if (!hypervisor_leaf_range.ebx() && m_physical_address_bit_width == 36) {
 | |
|                 m_has_qemu_hvf_quirk = true;
 | |
|                 m_virtual_address_bit_width = 48;
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT void Processor::cpu_setup()
 | |
| {
 | |
|     // NOTE: This is called during Processor::early_initialize, we cannot
 | |
|     //       safely log at this point because we don't have kmalloc
 | |
|     //       initialized yet!
 | |
|     cpu_detect();
 | |
| 
 | |
|     if (has_feature(CPUFeature::SSE)) {
 | |
|         // enter_thread_context() assumes that if a x86 CPU supports SSE then it also supports FXSR.
 | |
|         // SSE support without FXSR is an extremely unlikely scenario, so let's be pragmatic about it.
 | |
|         VERIFY(has_feature(CPUFeature::FXSR));
 | |
|         sse_init();
 | |
|     }
 | |
| 
 | |
|     write_cr0(read_cr0() | 0x00010000);
 | |
| 
 | |
|     if (has_feature(CPUFeature::PGE)) {
 | |
|         // Turn on CR4.PGE so the CPU will respect the G bit in page tables.
 | |
|         write_cr4(read_cr4() | 0x80);
 | |
|     }
 | |
| 
 | |
|     if (has_feature(CPUFeature::NX)) {
 | |
|         // Turn on IA32_EFER.NXE
 | |
|         MSR ia32_efer(MSR_IA32_EFER);
 | |
|         ia32_efer.set(ia32_efer.get() | 0x800);
 | |
|     }
 | |
| 
 | |
|     if (has_feature(CPUFeature::PAT)) {
 | |
|         MSR ia32_pat(MSR_IA32_PAT);
 | |
|         // Set PA4 to Write Comine. This allows us to
 | |
|         // use this mode by only setting the bit in the PTE
 | |
|         // and leaving all other bits in the upper levels unset,
 | |
|         // which maps to setting bit 3 of the index, resulting
 | |
|         // in the index value 0 or 4.
 | |
|         u64 pat = ia32_pat.get() & ~(0x7ull << 32);
 | |
|         pat |= 0x1ull << 32; // set WC mode for PA4
 | |
|         ia32_pat.set(pat);
 | |
|     }
 | |
| 
 | |
|     if (has_feature(CPUFeature::SMEP)) {
 | |
|         // Turn on CR4.SMEP
 | |
|         write_cr4(read_cr4() | 0x100000);
 | |
|     }
 | |
| 
 | |
|     if (has_feature(CPUFeature::SMAP)) {
 | |
|         // Turn on CR4.SMAP
 | |
|         write_cr4(read_cr4() | 0x200000);
 | |
|     }
 | |
| 
 | |
|     if (has_feature(CPUFeature::UMIP)) {
 | |
|         write_cr4(read_cr4() | 0x800);
 | |
|     }
 | |
| 
 | |
|     if (has_feature(CPUFeature::TSC)) {
 | |
|         write_cr4(read_cr4() | 0x4);
 | |
|     }
 | |
| 
 | |
|     if (has_feature(CPUFeature::XSAVE)) {
 | |
|         // Turn on CR4.OSXSAVE
 | |
|         write_cr4(read_cr4() | 0x40000);
 | |
| 
 | |
|         // According to the Intel manual: "After reset, all bits (except bit 0) in XCR0 are cleared to zero; XCR0[0] is set to 1."
 | |
|         // Sadly we can't trust this, for example VirtualBox starts with bits 0-4 set, so let's do it ourselves.
 | |
|         write_xcr0(0x1);
 | |
| 
 | |
|         if (has_feature(CPUFeature::AVX)) {
 | |
|             // Turn on SSE, AVX and x87 flags
 | |
|             write_xcr0(read_xcr0() | 0x7);
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #if ARCH(X86_64)
 | |
|     // x86_64 processors must support the syscall feature.
 | |
|     VERIFY(has_feature(CPUFeature::SYSCALL));
 | |
|     MSR efer_msr(MSR_EFER);
 | |
|     efer_msr.set(efer_msr.get() | 1u);
 | |
| 
 | |
|     // Write code and stack selectors to the STAR MSR. The first value stored in bits 63:48 controls the sysret CS (value + 0x10) and SS (value + 0x8),
 | |
|     // and the value stored in bits 47:32 controls the syscall CS (value) and SS (value + 0x8).
 | |
|     u64 star = 0;
 | |
|     star |= 0x13ul << 48u;
 | |
|     star |= 0x08ul << 32u;
 | |
|     MSR star_msr(MSR_STAR);
 | |
|     star_msr.set(star);
 | |
| 
 | |
|     // Write the syscall entry point to the LSTAR MSR.
 | |
|     MSR lstar_msr(MSR_LSTAR);
 | |
|     lstar_msr.set(reinterpret_cast<u64>(&syscall_entry));
 | |
| 
 | |
|     // Write the SFMASK MSR. This MSR controls which bits of rflags are masked when a syscall instruction is executed -
 | |
|     // if a bit is set in sfmask, the corresponding bit in rflags is cleared. The value set here clears most of rflags,
 | |
|     // but keeps the reserved and virtualization bits intact. The userspace rflags value is saved in r11 by syscall.
 | |
|     constexpr u64 rflags_mask = 0x257fd5u;
 | |
|     MSR sfmask_msr(MSR_SFMASK);
 | |
|     sfmask_msr.set(rflags_mask);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT void Processor::early_initialize(u32 cpu)
 | |
| {
 | |
|     m_self = this;
 | |
| 
 | |
|     m_cpu = cpu;
 | |
|     m_in_irq = 0;
 | |
|     m_in_critical = 0;
 | |
| 
 | |
|     m_invoke_scheduler_async = false;
 | |
|     m_scheduler_initialized = false;
 | |
|     m_in_scheduler = true;
 | |
| 
 | |
|     m_message_queue = nullptr;
 | |
|     m_idle_thread = nullptr;
 | |
|     m_current_thread = nullptr;
 | |
|     m_info = nullptr;
 | |
| 
 | |
|     m_halt_requested = false;
 | |
|     if (cpu == 0) {
 | |
|         s_smp_enabled = false;
 | |
|         g_total_processors.store(1u, AK::MemoryOrder::memory_order_release);
 | |
|     } else {
 | |
|         g_total_processors.fetch_add(1u, AK::MemoryOrder::memory_order_acq_rel);
 | |
|     }
 | |
| 
 | |
|     deferred_call_pool_init();
 | |
| 
 | |
|     cpu_setup();
 | |
|     gdt_init();
 | |
| 
 | |
|     VERIFY(is_initialized());   // sanity check
 | |
|     VERIFY(¤t() == this); // sanity check
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT void Processor::initialize(u32 cpu)
 | |
| {
 | |
|     VERIFY(m_self == this);
 | |
|     VERIFY(¤t() == this); // sanity check
 | |
| 
 | |
|     m_info = new ProcessorInfo(*this);
 | |
| 
 | |
|     dmesgln("CPU[{}]: Supported features: {}", current_id(), m_info->features_string());
 | |
|     if (!has_feature(CPUFeature::RDRAND))
 | |
|         dmesgln("CPU[{}]: No RDRAND support detected, randomness will be poor", current_id());
 | |
|     dmesgln("CPU[{}]: Physical address bit width: {}", current_id(), m_physical_address_bit_width);
 | |
|     dmesgln("CPU[{}]: Virtual address bit width: {}", current_id(), m_virtual_address_bit_width);
 | |
| #if ARCH(X86_64)
 | |
|     if (m_has_qemu_hvf_quirk)
 | |
|         dmesgln("CPU[{}]: Applied correction for QEMU Hypervisor.framework quirk", current_id());
 | |
| #endif
 | |
| 
 | |
|     if (cpu == 0)
 | |
|         idt_init();
 | |
|     else
 | |
|         flush_idt();
 | |
| 
 | |
|     if (cpu == 0) {
 | |
|         VERIFY((FlatPtr(&s_clean_fpu_state) & 0xF) == 0);
 | |
|         asm volatile("fninit");
 | |
|         if (has_feature(CPUFeature::FXSR))
 | |
|             asm volatile("fxsave %0"
 | |
|                          : "=m"(s_clean_fpu_state));
 | |
|         else
 | |
|             asm volatile("fnsave %0"
 | |
|                          : "=m"(s_clean_fpu_state));
 | |
| 
 | |
|         if (has_feature(CPUFeature::HYPERVISOR))
 | |
|             detect_hypervisor();
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         // We need to prevent races between APs starting up at the same time
 | |
|         VERIFY(cpu < s_processors.size());
 | |
|         s_processors[cpu] = this;
 | |
|     }
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT void Processor::detect_hypervisor()
 | |
| {
 | |
|     CPUID hypervisor_leaf_range(0x40000000);
 | |
|     auto hypervisor_vendor_id_string = m_info->hypervisor_vendor_id_string();
 | |
|     dmesgln("CPU[{}]: CPUID hypervisor signature '{}', max leaf {:#x}", current_id(), hypervisor_vendor_id_string, hypervisor_leaf_range.eax());
 | |
| 
 | |
|     if (hypervisor_vendor_id_string == "Microsoft Hv"sv)
 | |
|         detect_hypervisor_hyperv(hypervisor_leaf_range);
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT void Processor::detect_hypervisor_hyperv(CPUID const& hypervisor_leaf_range)
 | |
| {
 | |
|     if (hypervisor_leaf_range.eax() < 0x40000001)
 | |
|         return;
 | |
| 
 | |
|     CPUID hypervisor_interface(0x40000001);
 | |
| 
 | |
|     // Get signature of hypervisor interface.
 | |
|     alignas(sizeof(u32)) char interface_signature_buffer[5];
 | |
|     *reinterpret_cast<u32*>(interface_signature_buffer) = hypervisor_interface.eax();
 | |
|     interface_signature_buffer[4] = '\0';
 | |
|     StringView hyperv_interface_signature(interface_signature_buffer);
 | |
| 
 | |
|     dmesgln("CPU[{}]: Hyper-V interface signature '{}' ({:#x})", current_id(), hyperv_interface_signature, hypervisor_interface.eax());
 | |
| 
 | |
|     if (hypervisor_leaf_range.eax() < 0x40000001)
 | |
|         return;
 | |
| 
 | |
|     CPUID hypervisor_sysid(0x40000002);
 | |
|     dmesgln("CPU[{}]: Hyper-V system identity {}.{}, build number {}", current_id(), hypervisor_sysid.ebx() >> 16, hypervisor_sysid.ebx() & 0xFFFF, hypervisor_sysid.eax());
 | |
| 
 | |
|     if (hypervisor_leaf_range.eax() < 0x40000005 || hyperv_interface_signature != "Hv#1"sv)
 | |
|         return;
 | |
| 
 | |
|     dmesgln("CPU[{}]: Hyper-V hypervisor detected", current_id());
 | |
| 
 | |
|     // TODO: Actually do something with Hyper-V.
 | |
| }
 | |
| 
 | |
| void Processor::write_raw_gdt_entry(u16 selector, u32 low, u32 high)
 | |
| {
 | |
|     u16 i = (selector & 0xfffc) >> 3;
 | |
|     u32 prev_gdt_length = m_gdt_length;
 | |
| 
 | |
|     if (i >= m_gdt_length) {
 | |
|         m_gdt_length = i + 1;
 | |
|         VERIFY(m_gdt_length <= sizeof(m_gdt) / sizeof(m_gdt[0]));
 | |
|         m_gdtr.limit = (m_gdt_length + 1) * 8 - 1;
 | |
|     }
 | |
|     m_gdt[i].low = low;
 | |
|     m_gdt[i].high = high;
 | |
| 
 | |
|     // clear selectors we may have skipped
 | |
|     for (auto j = prev_gdt_length; j < i; ++j) {
 | |
|         m_gdt[j].low = 0;
 | |
|         m_gdt[j].high = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Processor::write_gdt_entry(u16 selector, Descriptor& descriptor)
 | |
| {
 | |
|     write_raw_gdt_entry(selector, descriptor.low, descriptor.high);
 | |
| }
 | |
| 
 | |
| Descriptor& Processor::get_gdt_entry(u16 selector)
 | |
| {
 | |
|     u16 i = (selector & 0xfffc) >> 3;
 | |
|     return *(Descriptor*)(&m_gdt[i]);
 | |
| }
 | |
| 
 | |
| void Processor::flush_gdt()
 | |
| {
 | |
|     m_gdtr.address = m_gdt;
 | |
|     m_gdtr.limit = (m_gdt_length * 8) - 1;
 | |
|     asm volatile("lgdt %0" ::"m"(m_gdtr)
 | |
|                  : "memory");
 | |
| }
 | |
| 
 | |
| DescriptorTablePointer const& Processor::get_gdtr()
 | |
| {
 | |
|     return m_gdtr;
 | |
| }
 | |
| 
 | |
| ErrorOr<Vector<FlatPtr, 32>> Processor::capture_stack_trace(Thread& thread, size_t max_frames)
 | |
| {
 | |
|     FlatPtr frame_ptr = 0, ip = 0;
 | |
|     Vector<FlatPtr, 32> stack_trace;
 | |
| 
 | |
|     auto walk_stack = [&](FlatPtr stack_ptr) -> ErrorOr<void> {
 | |
|         constexpr size_t max_stack_frames = 4096;
 | |
|         bool is_walking_userspace_stack = false;
 | |
|         TRY(stack_trace.try_append(ip));
 | |
|         size_t count = 1;
 | |
|         while (stack_ptr && stack_trace.size() < max_stack_frames) {
 | |
|             FlatPtr retaddr;
 | |
| 
 | |
|             count++;
 | |
|             if (max_frames != 0 && count > max_frames)
 | |
|                 break;
 | |
| 
 | |
|             if (!Memory::is_user_address(VirtualAddress { stack_ptr })) {
 | |
|                 if (is_walking_userspace_stack) {
 | |
|                     dbgln("SHENANIGANS! Userspace stack points back into kernel memory");
 | |
|                     break;
 | |
|                 }
 | |
|             } else {
 | |
|                 is_walking_userspace_stack = true;
 | |
|             }
 | |
| 
 | |
|             if (Memory::is_user_range(VirtualAddress(stack_ptr), sizeof(FlatPtr) * 2)) {
 | |
|                 if (copy_from_user(&retaddr, &((FlatPtr*)stack_ptr)[1]).is_error() || !retaddr)
 | |
|                     break;
 | |
|                 TRY(stack_trace.try_append(retaddr));
 | |
|                 if (copy_from_user(&stack_ptr, (FlatPtr*)stack_ptr).is_error())
 | |
|                     break;
 | |
|             } else {
 | |
|                 void* fault_at;
 | |
|                 if (!safe_memcpy(&retaddr, &((FlatPtr*)stack_ptr)[1], sizeof(FlatPtr), fault_at) || !retaddr)
 | |
|                     break;
 | |
|                 TRY(stack_trace.try_append(retaddr));
 | |
|                 if (!safe_memcpy(&stack_ptr, (FlatPtr*)stack_ptr, sizeof(FlatPtr), fault_at))
 | |
|                     break;
 | |
|             }
 | |
|         }
 | |
|         return {};
 | |
|     };
 | |
|     auto capture_current_thread = [&]() {
 | |
|         frame_ptr = (FlatPtr)__builtin_frame_address(0);
 | |
|         ip = (FlatPtr)__builtin_return_address(0);
 | |
| 
 | |
|         return walk_stack(frame_ptr);
 | |
|     };
 | |
| 
 | |
|     // Since the thread may be running on another processor, there
 | |
|     // is a chance a context switch may happen while we're trying
 | |
|     // to get it. It also won't be entirely accurate and merely
 | |
|     // reflect the status at the last context switch.
 | |
|     SpinlockLocker lock(g_scheduler_lock);
 | |
|     if (&thread == Processor::current_thread()) {
 | |
|         VERIFY(thread.state() == Thread::State::Running);
 | |
|         // Leave the scheduler lock. If we trigger page faults we may
 | |
|         // need to be preempted. Since this is our own thread it won't
 | |
|         // cause any problems as the stack won't change below this frame.
 | |
|         lock.unlock();
 | |
|         TRY(capture_current_thread());
 | |
|     } else if (thread.is_active()) {
 | |
|         VERIFY(thread.cpu() != Processor::current_id());
 | |
|         // If this is the case, the thread is currently running
 | |
|         // on another processor. We can't trust the kernel stack as
 | |
|         // it may be changing at any time. We need to probably send
 | |
|         // an IPI to that processor, have it walk the stack and wait
 | |
|         // until it returns the data back to us
 | |
|         auto& proc = Processor::current();
 | |
|         ErrorOr<void> result;
 | |
|         smp_unicast(
 | |
|             thread.cpu(),
 | |
|             [&]() {
 | |
|                 dbgln("CPU[{}] getting stack for cpu #{}", Processor::current_id(), proc.id());
 | |
|                 ScopedAddressSpaceSwitcher switcher(thread.process());
 | |
|                 VERIFY(&Processor::current() != &proc);
 | |
|                 VERIFY(&thread == Processor::current_thread());
 | |
|                 // NOTE: Because the other processor is still holding the
 | |
|                 // scheduler lock while waiting for this callback to finish,
 | |
|                 // the current thread on the target processor cannot change
 | |
| 
 | |
|                 // TODO: What to do about page faults here? We might deadlock
 | |
|                 //       because the other processor is still holding the
 | |
|                 //       scheduler lock...
 | |
|                 result = capture_current_thread();
 | |
|             },
 | |
|             false);
 | |
|         TRY(result);
 | |
|     } else {
 | |
|         switch (thread.state()) {
 | |
|         case Thread::State::Running:
 | |
|             VERIFY_NOT_REACHED(); // should have been handled above
 | |
|         case Thread::State::Runnable:
 | |
|         case Thread::State::Stopped:
 | |
|         case Thread::State::Blocked:
 | |
|         case Thread::State::Dying:
 | |
|         case Thread::State::Dead: {
 | |
|             // We need to retrieve ebp from what was last pushed to the kernel
 | |
|             // stack. Before switching out of that thread, it switch_context
 | |
|             // pushed the callee-saved registers, and the last of them happens
 | |
|             // to be ebp.
 | |
|             ScopedAddressSpaceSwitcher switcher(thread.process());
 | |
|             auto& regs = thread.regs();
 | |
|             auto* stack_top = reinterpret_cast<FlatPtr*>(regs.sp());
 | |
|             if (Memory::is_user_range(VirtualAddress(stack_top), sizeof(FlatPtr))) {
 | |
|                 if (copy_from_user(&frame_ptr, &((FlatPtr*)stack_top)[0]).is_error())
 | |
|                     frame_ptr = 0;
 | |
|             } else {
 | |
|                 void* fault_at;
 | |
|                 if (!safe_memcpy(&frame_ptr, &((FlatPtr*)stack_top)[0], sizeof(FlatPtr), fault_at))
 | |
|                     frame_ptr = 0;
 | |
|             }
 | |
| 
 | |
|             ip = regs.ip();
 | |
| 
 | |
|             // TODO: We need to leave the scheduler lock here, but we also
 | |
|             //       need to prevent the target thread from being run while
 | |
|             //       we walk the stack
 | |
|             lock.unlock();
 | |
|             TRY(walk_stack(frame_ptr));
 | |
|             break;
 | |
|         }
 | |
|         default:
 | |
|             dbgln("Cannot capture stack trace for thread {} in state {}", thread, thread.state_string());
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return stack_trace;
 | |
| }
 | |
| 
 | |
| ProcessorContainer& Processor::processors()
 | |
| {
 | |
|     return s_processors;
 | |
| }
 | |
| 
 | |
| Processor& Processor::by_id(u32 id)
 | |
| {
 | |
|     return *s_processors[id];
 | |
| }
 | |
| 
 | |
| void Processor::enter_trap(TrapFrame& trap, bool raise_irq)
 | |
| {
 | |
|     VERIFY_INTERRUPTS_DISABLED();
 | |
|     VERIFY(&Processor::current() == this);
 | |
|     trap.prev_irq_level = m_in_irq;
 | |
|     if (raise_irq)
 | |
|         m_in_irq++;
 | |
|     auto* current_thread = Processor::current_thread();
 | |
|     if (current_thread) {
 | |
|         auto& current_trap = current_thread->current_trap();
 | |
|         trap.next_trap = current_trap;
 | |
|         current_trap = &trap;
 | |
|         // The cs register of this trap tells us where we will return back to
 | |
|         auto new_previous_mode = ((trap.regs->cs & 3) != 0) ? Thread::PreviousMode::UserMode : Thread::PreviousMode::KernelMode;
 | |
|         if (current_thread->set_previous_mode(new_previous_mode) && trap.prev_irq_level == 0) {
 | |
|             current_thread->update_time_scheduled(Scheduler::current_time(), new_previous_mode == Thread::PreviousMode::KernelMode, false);
 | |
|         }
 | |
|     } else {
 | |
|         trap.next_trap = nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Processor::exit_trap(TrapFrame& trap)
 | |
| {
 | |
|     VERIFY_INTERRUPTS_DISABLED();
 | |
|     VERIFY(&Processor::current() == this);
 | |
| 
 | |
|     // Temporarily enter a critical section. This is to prevent critical
 | |
|     // sections entered and left within e.g. smp_process_pending_messages
 | |
|     // to trigger a context switch while we're executing this function
 | |
|     // See the comment at the end of the function why we don't use
 | |
|     // ScopedCritical here.
 | |
|     m_in_critical = m_in_critical + 1;
 | |
| 
 | |
|     VERIFY(m_in_irq >= trap.prev_irq_level);
 | |
|     m_in_irq = trap.prev_irq_level;
 | |
| 
 | |
|     if (s_smp_enabled)
 | |
|         smp_process_pending_messages();
 | |
| 
 | |
|     // Process the deferred call queue. Among other things, this ensures
 | |
|     // that any pending thread unblocks happen before we enter the scheduler.
 | |
|     deferred_call_execute_pending();
 | |
| 
 | |
|     auto* current_thread = Processor::current_thread();
 | |
|     if (current_thread) {
 | |
|         auto& current_trap = current_thread->current_trap();
 | |
|         current_trap = trap.next_trap;
 | |
|         Thread::PreviousMode new_previous_mode;
 | |
|         if (current_trap) {
 | |
|             VERIFY(current_trap->regs);
 | |
|             // If we have another higher level trap then we probably returned
 | |
|             // from an interrupt or irq handler. The cs register of the
 | |
|             // new/higher level trap tells us what the mode prior to it was
 | |
|             new_previous_mode = ((current_trap->regs->cs & 3) != 0) ? Thread::PreviousMode::UserMode : Thread::PreviousMode::KernelMode;
 | |
|         } else {
 | |
|             // If we don't have a higher level trap then we're back in user mode.
 | |
|             // Which means that the previous mode prior to being back in user mode was kernel mode
 | |
|             new_previous_mode = Thread::PreviousMode::KernelMode;
 | |
|         }
 | |
| 
 | |
|         if (current_thread->set_previous_mode(new_previous_mode))
 | |
|             current_thread->update_time_scheduled(Scheduler::current_time(), true, false);
 | |
|     }
 | |
| 
 | |
|     VERIFY_INTERRUPTS_DISABLED();
 | |
| 
 | |
|     // Leave the critical section without actually enabling interrupts.
 | |
|     // We don't want context switches to happen until we're explicitly
 | |
|     // triggering a switch in check_invoke_scheduler.
 | |
|     m_in_critical = m_in_critical - 1;
 | |
|     if (!m_in_irq && !m_in_critical)
 | |
|         check_invoke_scheduler();
 | |
| }
 | |
| 
 | |
| void Processor::check_invoke_scheduler()
 | |
| {
 | |
|     InterruptDisabler disabler;
 | |
|     VERIFY(!m_in_irq);
 | |
|     VERIFY(!m_in_critical);
 | |
|     VERIFY(&Processor::current() == this);
 | |
|     if (m_invoke_scheduler_async && m_scheduler_initialized) {
 | |
|         m_invoke_scheduler_async = false;
 | |
|         Scheduler::invoke_async();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Processor::flush_tlb_local(VirtualAddress vaddr, size_t page_count)
 | |
| {
 | |
|     auto ptr = vaddr.as_ptr();
 | |
|     while (page_count > 0) {
 | |
|         // clang-format off
 | |
|         asm volatile("invlpg %0"
 | |
|              :
 | |
|              : "m"(*ptr)
 | |
|              : "memory");
 | |
|         // clang-format on
 | |
|         ptr += PAGE_SIZE;
 | |
|         page_count--;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Processor::flush_tlb(Memory::PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
 | |
| {
 | |
|     if (s_smp_enabled && (!Memory::is_user_address(vaddr) || Process::current().thread_count() > 1))
 | |
|         smp_broadcast_flush_tlb(page_directory, vaddr, page_count);
 | |
|     else
 | |
|         flush_tlb_local(vaddr, page_count);
 | |
| }
 | |
| 
 | |
| void Processor::smp_return_to_pool(ProcessorMessage& msg)
 | |
| {
 | |
|     ProcessorMessage* next = nullptr;
 | |
|     for (;;) {
 | |
|         msg.next = next;
 | |
|         if (s_message_pool.compare_exchange_strong(next, &msg, AK::MemoryOrder::memory_order_acq_rel))
 | |
|             break;
 | |
|         Processor::pause();
 | |
|     }
 | |
| }
 | |
| 
 | |
| ProcessorMessage& Processor::smp_get_from_pool()
 | |
| {
 | |
|     ProcessorMessage* msg;
 | |
| 
 | |
|     // The assumption is that messages are never removed from the pool!
 | |
|     for (;;) {
 | |
|         msg = s_message_pool.load(AK::MemoryOrder::memory_order_consume);
 | |
|         if (!msg) {
 | |
|             if (!Processor::current().smp_process_pending_messages()) {
 | |
|                 Processor::pause();
 | |
|             }
 | |
|             continue;
 | |
|         }
 | |
|         // If another processor were to use this message in the meanwhile,
 | |
|         // "msg" is still valid (because it never gets freed). We'd detect
 | |
|         // this because the expected value "msg" and pool would
 | |
|         // no longer match, and the compare_exchange will fail. But accessing
 | |
|         // "msg->next" is always safe here.
 | |
|         if (s_message_pool.compare_exchange_strong(msg, msg->next, AK::MemoryOrder::memory_order_acq_rel)) {
 | |
|             // We successfully "popped" this available message
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     VERIFY(msg != nullptr);
 | |
|     return *msg;
 | |
| }
 | |
| 
 | |
| u32 Processor::smp_wake_n_idle_processors(u32 wake_count)
 | |
| {
 | |
|     VERIFY_INTERRUPTS_DISABLED();
 | |
|     VERIFY(wake_count > 0);
 | |
|     if (!s_smp_enabled)
 | |
|         return 0;
 | |
| 
 | |
|     // Wake at most N - 1 processors
 | |
|     if (wake_count >= Processor::count()) {
 | |
|         wake_count = Processor::count() - 1;
 | |
|         VERIFY(wake_count > 0);
 | |
|     }
 | |
| 
 | |
|     u32 current_id = Processor::current_id();
 | |
| 
 | |
|     u32 did_wake_count = 0;
 | |
|     auto& apic = APIC::the();
 | |
|     while (did_wake_count < wake_count) {
 | |
|         // Try to get a set of idle CPUs and flip them to busy
 | |
|         u32 idle_mask = s_idle_cpu_mask.load(AK::MemoryOrder::memory_order_relaxed) & ~(1u << current_id);
 | |
|         u32 idle_count = popcount(idle_mask);
 | |
|         if (idle_count == 0)
 | |
|             break; // No (more) idle processor available
 | |
| 
 | |
|         u32 found_mask = 0;
 | |
|         for (u32 i = 0; i < idle_count; i++) {
 | |
|             u32 cpu = bit_scan_forward(idle_mask) - 1;
 | |
|             idle_mask &= ~(1u << cpu);
 | |
|             found_mask |= 1u << cpu;
 | |
|         }
 | |
| 
 | |
|         idle_mask = s_idle_cpu_mask.fetch_and(~found_mask, AK::MemoryOrder::memory_order_acq_rel) & found_mask;
 | |
|         if (idle_mask == 0)
 | |
|             continue; // All of them were flipped to busy, try again
 | |
|         idle_count = popcount(idle_mask);
 | |
|         for (u32 i = 0; i < idle_count; i++) {
 | |
|             u32 cpu = bit_scan_forward(idle_mask) - 1;
 | |
|             idle_mask &= ~(1u << cpu);
 | |
| 
 | |
|             // Send an IPI to that CPU to wake it up. There is a possibility
 | |
|             // someone else woke it up as well, or that it woke up due to
 | |
|             // a timer interrupt. But we tried hard to avoid this...
 | |
|             apic.send_ipi(cpu);
 | |
|             did_wake_count++;
 | |
|         }
 | |
|     }
 | |
|     return did_wake_count;
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT void Processor::smp_enable()
 | |
| {
 | |
|     size_t msg_pool_size = Processor::count() * 100u;
 | |
|     size_t msg_entries_cnt = Processor::count();
 | |
| 
 | |
|     auto msgs = new ProcessorMessage[msg_pool_size];
 | |
|     auto msg_entries = new ProcessorMessageEntry[msg_pool_size * msg_entries_cnt];
 | |
|     size_t msg_entry_i = 0;
 | |
|     for (size_t i = 0; i < msg_pool_size; i++, msg_entry_i += msg_entries_cnt) {
 | |
|         auto& msg = msgs[i];
 | |
|         msg.next = i < msg_pool_size - 1 ? &msgs[i + 1] : nullptr;
 | |
|         msg.per_proc_entries = &msg_entries[msg_entry_i];
 | |
|         for (size_t k = 0; k < msg_entries_cnt; k++)
 | |
|             msg_entries[msg_entry_i + k].msg = &msg;
 | |
|     }
 | |
| 
 | |
|     s_message_pool.store(&msgs[0], AK::MemoryOrder::memory_order_release);
 | |
| 
 | |
|     // Start sending IPI messages
 | |
|     s_smp_enabled = true;
 | |
| }
 | |
| 
 | |
| void Processor::smp_cleanup_message(ProcessorMessage& msg)
 | |
| {
 | |
|     switch (msg.type) {
 | |
|     case ProcessorMessage::Callback:
 | |
|         msg.callback_value().~Function();
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool Processor::smp_process_pending_messages()
 | |
| {
 | |
|     VERIFY(s_smp_enabled);
 | |
| 
 | |
|     bool did_process = false;
 | |
|     enter_critical();
 | |
| 
 | |
|     if (auto pending_msgs = m_message_queue.exchange(nullptr, AK::MemoryOrder::memory_order_acq_rel)) {
 | |
|         // We pulled the stack of pending messages in LIFO order, so we need to reverse the list first
 | |
|         auto reverse_list =
 | |
|             [](ProcessorMessageEntry* list) -> ProcessorMessageEntry* {
 | |
|             ProcessorMessageEntry* rev_list = nullptr;
 | |
|             while (list) {
 | |
|                 auto next = list->next;
 | |
|                 list->next = rev_list;
 | |
|                 rev_list = list;
 | |
|                 list = next;
 | |
|             }
 | |
|             return rev_list;
 | |
|         };
 | |
| 
 | |
|         pending_msgs = reverse_list(pending_msgs);
 | |
| 
 | |
|         // now process in the right order
 | |
|         ProcessorMessageEntry* next_msg;
 | |
|         for (auto cur_msg = pending_msgs; cur_msg; cur_msg = next_msg) {
 | |
|             next_msg = cur_msg->next;
 | |
|             auto msg = cur_msg->msg;
 | |
| 
 | |
|             dbgln_if(SMP_DEBUG, "SMP[{}]: Processing message {}", current_id(), VirtualAddress(msg));
 | |
| 
 | |
|             switch (msg->type) {
 | |
|             case ProcessorMessage::Callback:
 | |
|                 msg->invoke_callback();
 | |
|                 break;
 | |
|             case ProcessorMessage::FlushTlb:
 | |
|                 if (Memory::is_user_address(VirtualAddress(msg->flush_tlb.ptr))) {
 | |
|                     // We assume that we don't cross into kernel land!
 | |
|                     VERIFY(Memory::is_user_range(VirtualAddress(msg->flush_tlb.ptr), msg->flush_tlb.page_count * PAGE_SIZE));
 | |
|                     if (read_cr3() != msg->flush_tlb.page_directory->cr3()) {
 | |
|                         // This processor isn't using this page directory right now, we can ignore this request
 | |
|                         dbgln_if(SMP_DEBUG, "SMP[{}]: No need to flush {} pages at {}", current_id(), msg->flush_tlb.page_count, VirtualAddress(msg->flush_tlb.ptr));
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 flush_tlb_local(VirtualAddress(msg->flush_tlb.ptr), msg->flush_tlb.page_count);
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             bool is_async = msg->async; // Need to cache this value *before* dropping the ref count!
 | |
|             auto prev_refs = msg->refs.fetch_sub(1u, AK::MemoryOrder::memory_order_acq_rel);
 | |
|             VERIFY(prev_refs != 0);
 | |
|             if (prev_refs == 1) {
 | |
|                 // All processors handled this. If this is an async message,
 | |
|                 // we need to clean it up and return it to the pool
 | |
|                 if (is_async) {
 | |
|                     smp_cleanup_message(*msg);
 | |
|                     smp_return_to_pool(*msg);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (m_halt_requested.load(AK::MemoryOrder::memory_order_relaxed))
 | |
|                 halt_this();
 | |
|         }
 | |
|         did_process = true;
 | |
|     } else if (m_halt_requested.load(AK::MemoryOrder::memory_order_relaxed)) {
 | |
|         halt_this();
 | |
|     }
 | |
| 
 | |
|     leave_critical();
 | |
|     return did_process;
 | |
| }
 | |
| 
 | |
| bool Processor::smp_enqueue_message(ProcessorMessage& msg)
 | |
| {
 | |
|     // Note that it's quite possible that the other processor may pop
 | |
|     // the queue at any given time. We rely on the fact that the messages
 | |
|     // are pooled and never get freed!
 | |
|     auto& msg_entry = msg.per_proc_entries[id()];
 | |
|     VERIFY(msg_entry.msg == &msg);
 | |
|     ProcessorMessageEntry* next = nullptr;
 | |
|     for (;;) {
 | |
|         msg_entry.next = next;
 | |
|         if (m_message_queue.compare_exchange_strong(next, &msg_entry, AK::MemoryOrder::memory_order_acq_rel))
 | |
|             break;
 | |
|         Processor::pause();
 | |
|     }
 | |
| 
 | |
|     // If the enqueued message was the only message in the queue when posted,
 | |
|     // we return true. This is used by callers when deciding whether to generate an IPI.
 | |
|     return next == nullptr;
 | |
| }
 | |
| 
 | |
| void Processor::smp_broadcast_message(ProcessorMessage& msg)
 | |
| {
 | |
|     auto& current_processor = Processor::current();
 | |
| 
 | |
|     dbgln_if(SMP_DEBUG, "SMP[{}]: Broadcast message {} to cpus: {} processor: {}", current_processor.id(), VirtualAddress(&msg), count(), VirtualAddress(¤t_processor));
 | |
| 
 | |
|     msg.refs.store(count() - 1, AK::MemoryOrder::memory_order_release);
 | |
|     VERIFY(msg.refs > 0);
 | |
|     bool need_broadcast = false;
 | |
|     for_each(
 | |
|         [&](Processor& proc) {
 | |
|             if (&proc != ¤t_processor) {
 | |
|                 if (proc.smp_enqueue_message(msg))
 | |
|                     need_broadcast = true;
 | |
|             }
 | |
|         });
 | |
| 
 | |
|     // Now trigger an IPI on all other APs (unless all targets already had messages queued)
 | |
|     if (need_broadcast)
 | |
|         APIC::the().broadcast_ipi();
 | |
| }
 | |
| 
 | |
| void Processor::smp_broadcast_wait_sync(ProcessorMessage& msg)
 | |
| {
 | |
|     auto& cur_proc = Processor::current();
 | |
|     VERIFY(!msg.async);
 | |
|     // If synchronous then we must cleanup and return the message back
 | |
|     // to the pool. Otherwise, the last processor to complete it will return it
 | |
|     while (msg.refs.load(AK::MemoryOrder::memory_order_consume) != 0) {
 | |
|         Processor::pause();
 | |
| 
 | |
|         // We need to process any messages that may have been sent to
 | |
|         // us while we're waiting. This also checks if another processor
 | |
|         // may have requested us to halt.
 | |
|         cur_proc.smp_process_pending_messages();
 | |
|     }
 | |
| 
 | |
|     smp_cleanup_message(msg);
 | |
|     smp_return_to_pool(msg);
 | |
| }
 | |
| 
 | |
| void Processor::smp_unicast_message(u32 cpu, ProcessorMessage& msg, bool async)
 | |
| {
 | |
|     auto& current_processor = Processor::current();
 | |
|     VERIFY(cpu != current_processor.id());
 | |
|     auto& target_processor = processors()[cpu];
 | |
|     msg.async = async;
 | |
| 
 | |
|     dbgln_if(SMP_DEBUG, "SMP[{}]: Send message {} to cpu #{} processor: {}", current_processor.id(), VirtualAddress(&msg), cpu, VirtualAddress(&target_processor));
 | |
| 
 | |
|     msg.refs.store(1u, AK::MemoryOrder::memory_order_release);
 | |
|     if (target_processor->smp_enqueue_message(msg)) {
 | |
|         APIC::the().send_ipi(cpu);
 | |
|     }
 | |
| 
 | |
|     if (!async) {
 | |
|         // If synchronous then we must cleanup and return the message back
 | |
|         // to the pool. Otherwise, the last processor to complete it will return it
 | |
|         while (msg.refs.load(AK::MemoryOrder::memory_order_consume) != 0) {
 | |
|             Processor::pause();
 | |
| 
 | |
|             // We need to process any messages that may have been sent to
 | |
|             // us while we're waiting. This also checks if another processor
 | |
|             // may have requested us to halt.
 | |
|             current_processor.smp_process_pending_messages();
 | |
|         }
 | |
| 
 | |
|         smp_cleanup_message(msg);
 | |
|         smp_return_to_pool(msg);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Processor::smp_unicast(u32 cpu, Function<void()> callback, bool async)
 | |
| {
 | |
|     auto& msg = smp_get_from_pool();
 | |
|     msg.type = ProcessorMessage::Callback;
 | |
|     new (msg.callback_storage) ProcessorMessage::CallbackFunction(move(callback));
 | |
|     smp_unicast_message(cpu, msg, async);
 | |
| }
 | |
| 
 | |
| void Processor::smp_broadcast_flush_tlb(Memory::PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count)
 | |
| {
 | |
|     auto& msg = smp_get_from_pool();
 | |
|     msg.async = false;
 | |
|     msg.type = ProcessorMessage::FlushTlb;
 | |
|     msg.flush_tlb.page_directory = page_directory;
 | |
|     msg.flush_tlb.ptr = vaddr.as_ptr();
 | |
|     msg.flush_tlb.page_count = page_count;
 | |
|     smp_broadcast_message(msg);
 | |
|     // While the other processors handle this request, we'll flush ours
 | |
|     flush_tlb_local(vaddr, page_count);
 | |
|     // Now wait until everybody is done as well
 | |
|     smp_broadcast_wait_sync(msg);
 | |
| }
 | |
| 
 | |
| void Processor::smp_broadcast_halt()
 | |
| {
 | |
|     // We don't want to use a message, because this could have been triggered
 | |
|     // by being out of memory and we might not be able to get a message
 | |
|     for_each(
 | |
|         [&](Processor& proc) {
 | |
|             proc.m_halt_requested.store(true, AK::MemoryOrder::memory_order_release);
 | |
|         });
 | |
| 
 | |
|     // Now trigger an IPI on all other APs
 | |
|     APIC::the().broadcast_ipi();
 | |
| }
 | |
| 
 | |
| void Processor::Processor::halt()
 | |
| {
 | |
|     if (s_smp_enabled)
 | |
|         smp_broadcast_halt();
 | |
| 
 | |
|     halt_this();
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT void Processor::deferred_call_pool_init()
 | |
| {
 | |
|     size_t pool_count = sizeof(m_deferred_call_pool) / sizeof(m_deferred_call_pool[0]);
 | |
|     for (size_t i = 0; i < pool_count; i++) {
 | |
|         auto& entry = m_deferred_call_pool[i];
 | |
|         entry.next = i < pool_count - 1 ? &m_deferred_call_pool[i + 1] : nullptr;
 | |
|         new (entry.handler_storage) DeferredCallEntry::HandlerFunction;
 | |
|         entry.was_allocated = false;
 | |
|     }
 | |
|     m_pending_deferred_calls = nullptr;
 | |
|     m_free_deferred_call_pool_entry = &m_deferred_call_pool[0];
 | |
| }
 | |
| 
 | |
| void Processor::deferred_call_return_to_pool(DeferredCallEntry* entry)
 | |
| {
 | |
|     VERIFY(m_in_critical);
 | |
|     VERIFY(!entry->was_allocated);
 | |
| 
 | |
|     entry->handler_value() = {};
 | |
| 
 | |
|     entry->next = m_free_deferred_call_pool_entry;
 | |
|     m_free_deferred_call_pool_entry = entry;
 | |
| }
 | |
| 
 | |
| DeferredCallEntry* Processor::deferred_call_get_free()
 | |
| {
 | |
|     VERIFY(m_in_critical);
 | |
| 
 | |
|     if (m_free_deferred_call_pool_entry) {
 | |
|         // Fast path, we have an entry in our pool
 | |
|         auto* entry = m_free_deferred_call_pool_entry;
 | |
|         m_free_deferred_call_pool_entry = entry->next;
 | |
|         VERIFY(!entry->was_allocated);
 | |
|         return entry;
 | |
|     }
 | |
| 
 | |
|     auto* entry = new DeferredCallEntry;
 | |
|     new (entry->handler_storage) DeferredCallEntry::HandlerFunction;
 | |
|     entry->was_allocated = true;
 | |
|     return entry;
 | |
| }
 | |
| 
 | |
| void Processor::deferred_call_execute_pending()
 | |
| {
 | |
|     VERIFY(m_in_critical);
 | |
| 
 | |
|     if (!m_pending_deferred_calls)
 | |
|         return;
 | |
|     auto* pending_list = m_pending_deferred_calls;
 | |
|     m_pending_deferred_calls = nullptr;
 | |
| 
 | |
|     // We pulled the stack of pending deferred calls in LIFO order, so we need to reverse the list first
 | |
|     auto reverse_list =
 | |
|         [](DeferredCallEntry* list) -> DeferredCallEntry* {
 | |
|         DeferredCallEntry* rev_list = nullptr;
 | |
|         while (list) {
 | |
|             auto next = list->next;
 | |
|             list->next = rev_list;
 | |
|             rev_list = list;
 | |
|             list = next;
 | |
|         }
 | |
|         return rev_list;
 | |
|     };
 | |
|     pending_list = reverse_list(pending_list);
 | |
| 
 | |
|     do {
 | |
|         pending_list->invoke_handler();
 | |
| 
 | |
|         // Return the entry back to the pool, or free it
 | |
|         auto* next = pending_list->next;
 | |
|         if (pending_list->was_allocated) {
 | |
|             pending_list->handler_value().~Function();
 | |
|             delete pending_list;
 | |
|         } else
 | |
|             deferred_call_return_to_pool(pending_list);
 | |
|         pending_list = next;
 | |
|     } while (pending_list);
 | |
| }
 | |
| 
 | |
| void Processor::deferred_call_queue_entry(DeferredCallEntry* entry)
 | |
| {
 | |
|     VERIFY(m_in_critical);
 | |
|     entry->next = m_pending_deferred_calls;
 | |
|     m_pending_deferred_calls = entry;
 | |
| }
 | |
| 
 | |
| void Processor::deferred_call_queue(Function<void()> callback)
 | |
| {
 | |
|     // NOTE: If we are called outside of a critical section and outside
 | |
|     // of an irq handler, the function will be executed before we return!
 | |
|     ScopedCritical critical;
 | |
|     auto& cur_proc = Processor::current();
 | |
| 
 | |
|     auto* entry = cur_proc.deferred_call_get_free();
 | |
|     entry->handler_value() = move(callback);
 | |
| 
 | |
|     cur_proc.deferred_call_queue_entry(entry);
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT void Processor::gdt_init()
 | |
| {
 | |
|     m_gdt_length = 0;
 | |
|     m_gdtr.address = nullptr;
 | |
|     m_gdtr.limit = 0;
 | |
| 
 | |
|     write_raw_gdt_entry(0x0000, 0x00000000, 0x00000000);
 | |
| #if ARCH(I386)
 | |
|     write_raw_gdt_entry(GDT_SELECTOR_CODE0, 0x0000ffff, 0x00cf9a00); // code0
 | |
|     write_raw_gdt_entry(GDT_SELECTOR_DATA0, 0x0000ffff, 0x00cf9200); // data0
 | |
|     write_raw_gdt_entry(GDT_SELECTOR_CODE3, 0x0000ffff, 0x00cffa00); // code3
 | |
|     write_raw_gdt_entry(GDT_SELECTOR_DATA3, 0x0000ffff, 0x00cff200); // data3
 | |
| #else
 | |
|     write_raw_gdt_entry(GDT_SELECTOR_CODE0, 0x0000ffff, 0x00af9a00); // code0
 | |
|     write_raw_gdt_entry(GDT_SELECTOR_DATA0, 0x0000ffff, 0x00af9200); // data0
 | |
|     write_raw_gdt_entry(GDT_SELECTOR_DATA3, 0x0000ffff, 0x008ff200); // data3
 | |
|     write_raw_gdt_entry(GDT_SELECTOR_CODE3, 0x0000ffff, 0x00affa00); // code3
 | |
| #endif
 | |
| 
 | |
| #if ARCH(I386)
 | |
|     Descriptor tls_descriptor {};
 | |
|     tls_descriptor.low = tls_descriptor.high = 0;
 | |
|     tls_descriptor.dpl = 3;
 | |
|     tls_descriptor.segment_present = 1;
 | |
|     tls_descriptor.granularity = 0;
 | |
|     tls_descriptor.operation_size64 = 0;
 | |
|     tls_descriptor.operation_size32 = 1;
 | |
|     tls_descriptor.descriptor_type = 1;
 | |
|     tls_descriptor.type = 2;
 | |
|     write_gdt_entry(GDT_SELECTOR_TLS, tls_descriptor); // tls3
 | |
| 
 | |
|     Descriptor gs_descriptor {};
 | |
|     gs_descriptor.set_base(VirtualAddress { this });
 | |
|     gs_descriptor.set_limit(sizeof(Processor) - 1);
 | |
|     gs_descriptor.dpl = 0;
 | |
|     gs_descriptor.segment_present = 1;
 | |
|     gs_descriptor.granularity = 0;
 | |
|     gs_descriptor.operation_size64 = 0;
 | |
|     gs_descriptor.operation_size32 = 1;
 | |
|     gs_descriptor.descriptor_type = 1;
 | |
|     gs_descriptor.type = 2;
 | |
|     write_gdt_entry(GDT_SELECTOR_PROC, gs_descriptor); // gs0
 | |
| #endif
 | |
| 
 | |
|     Descriptor tss_descriptor {};
 | |
|     tss_descriptor.set_base(VirtualAddress { (size_t)&m_tss & 0xffffffff });
 | |
|     tss_descriptor.set_limit(sizeof(TSS) - 1);
 | |
|     tss_descriptor.dpl = 0;
 | |
|     tss_descriptor.segment_present = 1;
 | |
|     tss_descriptor.granularity = 0;
 | |
|     tss_descriptor.operation_size64 = 0;
 | |
|     tss_descriptor.operation_size32 = 1;
 | |
|     tss_descriptor.descriptor_type = 0;
 | |
|     tss_descriptor.type = Descriptor::SystemType::AvailableTSS;
 | |
|     write_gdt_entry(GDT_SELECTOR_TSS, tss_descriptor); // tss
 | |
| 
 | |
| #if ARCH(X86_64)
 | |
|     Descriptor tss_descriptor_part2 {};
 | |
|     tss_descriptor_part2.low = (size_t)&m_tss >> 32;
 | |
|     write_gdt_entry(GDT_SELECTOR_TSS_PART2, tss_descriptor_part2);
 | |
| #endif
 | |
| 
 | |
|     flush_gdt();
 | |
|     load_task_register(GDT_SELECTOR_TSS);
 | |
| 
 | |
| #if ARCH(X86_64)
 | |
|     MSR gs_base(MSR_GS_BASE);
 | |
|     gs_base.set((u64)this);
 | |
| #else
 | |
|     asm volatile(
 | |
|         "mov %%ax, %%ds\n"
 | |
|         "mov %%ax, %%es\n"
 | |
|         "mov %%ax, %%fs\n"
 | |
|         "mov %%ax, %%ss\n" ::"a"(GDT_SELECTOR_DATA0)
 | |
|         : "memory");
 | |
|     set_gs(GDT_SELECTOR_PROC);
 | |
| #endif
 | |
| 
 | |
| #if ARCH(I386)
 | |
|     // Make sure CS points to the kernel code descriptor.
 | |
|     // clang-format off
 | |
|     asm volatile(
 | |
|         "ljmpl $" __STRINGIFY(GDT_SELECTOR_CODE0) ", $sanity\n"
 | |
|         "sanity:\n");
 | |
|     // clang-format on
 | |
| #endif
 | |
| }
 | |
| 
 | |
| extern "C" void context_first_init([[maybe_unused]] Thread* from_thread, [[maybe_unused]] Thread* to_thread, [[maybe_unused]] TrapFrame* trap)
 | |
| {
 | |
|     VERIFY(!are_interrupts_enabled());
 | |
|     VERIFY(is_kernel_mode());
 | |
| 
 | |
|     dbgln_if(CONTEXT_SWITCH_DEBUG, "switch_context <-- from {} {} to {} {} (context_first_init)", VirtualAddress(from_thread), *from_thread, VirtualAddress(to_thread), *to_thread);
 | |
| 
 | |
|     VERIFY(to_thread == Thread::current());
 | |
| 
 | |
|     Scheduler::enter_current(*from_thread);
 | |
| 
 | |
|     auto in_critical = to_thread->saved_critical();
 | |
|     VERIFY(in_critical > 0);
 | |
|     Processor::restore_in_critical(in_critical);
 | |
| 
 | |
|     // Since we got here and don't have Scheduler::context_switch in the
 | |
|     // call stack (because this is the first time we switched into this
 | |
|     // context), we need to notify the scheduler so that it can release
 | |
|     // the scheduler lock. We don't want to enable interrupts at this point
 | |
|     // as we're still in the middle of a context switch. Doing so could
 | |
|     // trigger a context switch within a context switch, leading to a crash.
 | |
|     FlatPtr flags = trap->regs->flags();
 | |
|     Scheduler::leave_on_first_switch(flags & ~0x200);
 | |
| }
 | |
| 
 | |
| extern "C" void enter_thread_context(Thread* from_thread, Thread* to_thread)
 | |
| {
 | |
|     VERIFY(from_thread == to_thread || from_thread->state() != Thread::State::Running);
 | |
|     VERIFY(to_thread->state() == Thread::State::Running);
 | |
| 
 | |
|     bool has_fxsr = Processor::current().has_feature(CPUFeature::FXSR);
 | |
|     Processor::set_current_thread(*to_thread);
 | |
| 
 | |
|     auto& from_regs = from_thread->regs();
 | |
|     auto& to_regs = to_thread->regs();
 | |
| 
 | |
|     // NOTE: IOPL should never be non-zero in any situation, so let's panic immediately
 | |
|     //       instead of carrying on with elevated I/O privileges.
 | |
|     VERIFY(get_iopl_from_eflags(to_regs.flags()) == 0);
 | |
| 
 | |
|     if (has_fxsr)
 | |
|         asm volatile("fxsave %0"
 | |
|                      : "=m"(from_thread->fpu_state()));
 | |
|     else
 | |
|         asm volatile("fnsave %0"
 | |
|                      : "=m"(from_thread->fpu_state()));
 | |
| 
 | |
| #if ARCH(I386)
 | |
|     from_regs.fs = get_fs();
 | |
|     from_regs.gs = get_gs();
 | |
|     set_fs(to_regs.fs);
 | |
|     set_gs(to_regs.gs);
 | |
| #endif
 | |
| 
 | |
|     if (from_thread->process().is_traced())
 | |
|         read_debug_registers_into(from_thread->debug_register_state());
 | |
| 
 | |
|     if (to_thread->process().is_traced()) {
 | |
|         write_debug_registers_from(to_thread->debug_register_state());
 | |
|     } else {
 | |
|         clear_debug_registers();
 | |
|     }
 | |
| 
 | |
|     auto& processor = Processor::current();
 | |
| #if ARCH(I386)
 | |
|     auto& tls_descriptor = processor.get_gdt_entry(GDT_SELECTOR_TLS);
 | |
|     tls_descriptor.set_base(to_thread->thread_specific_data());
 | |
|     tls_descriptor.set_limit(to_thread->thread_specific_region_size());
 | |
| #else
 | |
|     MSR fs_base_msr(MSR_FS_BASE);
 | |
|     fs_base_msr.set(to_thread->thread_specific_data().get());
 | |
| #endif
 | |
| 
 | |
|     if (from_regs.cr3 != to_regs.cr3)
 | |
|         write_cr3(to_regs.cr3);
 | |
| 
 | |
|     to_thread->set_cpu(processor.id());
 | |
| 
 | |
|     auto in_critical = to_thread->saved_critical();
 | |
|     VERIFY(in_critical > 0);
 | |
|     Processor::restore_in_critical(in_critical);
 | |
| 
 | |
|     if (has_fxsr)
 | |
|         asm volatile("fxrstor %0" ::"m"(to_thread->fpu_state()));
 | |
|     else
 | |
|         asm volatile("frstor %0" ::"m"(to_thread->fpu_state()));
 | |
| }
 | |
| 
 | |
| extern "C" FlatPtr do_init_context(Thread* thread, u32 flags)
 | |
| {
 | |
|     VERIFY_INTERRUPTS_DISABLED();
 | |
|     thread->regs().set_flags(flags);
 | |
|     return Processor::current().init_context(*thread, true);
 | |
| }
 | |
| 
 | |
| void Processor::assume_context(Thread& thread, FlatPtr flags)
 | |
| {
 | |
|     dbgln_if(CONTEXT_SWITCH_DEBUG, "Assume context for thread {} {}", VirtualAddress(&thread), thread);
 | |
| 
 | |
|     VERIFY_INTERRUPTS_DISABLED();
 | |
|     Scheduler::prepare_after_exec();
 | |
|     // in_critical() should be 2 here. The critical section in Process::exec
 | |
|     // and then the scheduler lock
 | |
|     VERIFY(Processor::in_critical() == 2);
 | |
| 
 | |
|     do_assume_context(&thread, flags);
 | |
| 
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| u64 Processor::time_spent_idle() const
 | |
| {
 | |
|     return m_idle_thread->time_in_user() + m_idle_thread->time_in_kernel();
 | |
| }
 | |
| 
 | |
| }
 | 
