mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 21:02:44 +00:00 
			
		
		
		
	 dd696e7c75
			
		
	
	
		dd696e7c75
		
	
	
	
	
		
			
			We can't rely on libstdc++ inside LibC or LibM, since these libraries are part of the Toolchain bringup build.
		
			
				
	
	
		
			215 lines
		
	
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			215 lines
		
	
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include <LibC/assert.h>
 | |
| #include <LibM/math.h>
 | |
| #include <stdint.h>
 | |
| #include <stdlib.h>
 | |
| 
 | |
| template<size_t> constexpr double e_to_power();
 | |
| template<> constexpr double e_to_power<0>() { return 1; }
 | |
| template<size_t exponent> constexpr double e_to_power() { return M_E * e_to_power<exponent - 1>(); }
 | |
| 
 | |
| template<size_t> constexpr size_t factorial();
 | |
| template<> constexpr size_t factorial<0>() { return 1; }
 | |
| template<size_t value> constexpr size_t factorial() { return value * factorial<value - 1>(); }
 | |
| 
 | |
| extern "C" {
 | |
| double trunc(double x)
 | |
| {
 | |
|     return (int64_t)x;
 | |
| }
 | |
| 
 | |
| double cos(double angle)
 | |
| {
 | |
|     return sin(angle + M_PI_2);
 | |
| }
 | |
| 
 | |
| double ampsin(double angle)
 | |
| {
 | |
|     double looped_angle = fmod(M_PI + angle, M_TAU) - M_PI;
 | |
|     double looped_angle_squared = looped_angle * looped_angle;
 | |
| 
 | |
|     double quadratic_term;
 | |
|     if (looped_angle > 0) {
 | |
|         quadratic_term = -looped_angle_squared;
 | |
|     } else {
 | |
|         quadratic_term = looped_angle_squared;
 | |
|     }
 | |
| 
 | |
|     double linear_term = M_PI * looped_angle;
 | |
| 
 | |
|     return quadratic_term + linear_term;
 | |
| }
 | |
| 
 | |
| double sin(double angle)
 | |
| {
 | |
|     double vertical_scaling = M_PI_2 * M_PI_2;
 | |
|     return ampsin(angle) / vertical_scaling;
 | |
| }
 | |
| 
 | |
| double pow(double x, double y)
 | |
| {
 | |
|     (void)x;
 | |
|     (void)y;
 | |
|     ASSERT_NOT_REACHED();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| double ldexp(double, int exp)
 | |
| {
 | |
|     (void)exp;
 | |
|     ASSERT_NOT_REACHED();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| double tanh(double x)
 | |
| {
 | |
|     if (x > 0) {
 | |
|         double exponentiated = exp(2 * x);
 | |
|         return (exponentiated - 1) / (exponentiated + 1);
 | |
|     }
 | |
|     double plusX = exp(x);
 | |
|     double minusX = exp(-x);
 | |
|     return (plusX - minusX) / (plusX + minusX);
 | |
| }
 | |
| 
 | |
| double tan(double angle)
 | |
| {
 | |
|     return ampsin(angle) / ampsin(M_PI_2 + angle);
 | |
| }
 | |
| 
 | |
| double sqrt(double x)
 | |
| {
 | |
|     double res;
 | |
|     __asm__("fsqrt" : "=t"(res) : "0"(x));
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| double sinh(double x)
 | |
| {
 | |
|     if (x > 0) {
 | |
|         double exponentiated = exp(x);
 | |
|         return (exponentiated * exponentiated - 1) / 2 / exponentiated;
 | |
|     }
 | |
|     return (exp(x) - exp(-x)) / 2;
 | |
| }
 | |
| 
 | |
| double log10(double)
 | |
| {
 | |
|     ASSERT_NOT_REACHED();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| double log(double)
 | |
| {
 | |
|     ASSERT_NOT_REACHED();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| double fmod(double index, double period)
 | |
| {
 | |
|     return index - trunc(index / period) * period;
 | |
| }
 | |
| 
 | |
| double exp(double exponent)
 | |
| {
 | |
|     double result = 1;
 | |
|     if (exponent >= 1) {
 | |
|         size_t integer_part = (size_t)exponent;
 | |
|         if (integer_part & 1) result *= e_to_power<1>();
 | |
|         if (integer_part & 2) result *= e_to_power<2>();
 | |
|         if (integer_part > 3) {
 | |
|             if (integer_part & 4) result *= e_to_power<4>();
 | |
|             if (integer_part & 8) result *= e_to_power<8>();
 | |
|             if (integer_part & 16) result *= e_to_power<16>();
 | |
|             if (integer_part & 32) result *= e_to_power<32>();
 | |
|             if (integer_part >= 64) return __builtin_huge_val();
 | |
|         }
 | |
|         exponent -= integer_part;
 | |
|     } else if (exponent < 0)
 | |
|         return 1 / exp(-exponent);
 | |
|     double taylor_series_result = 1 + exponent;
 | |
|     double taylor_series_numerator = exponent * exponent;
 | |
|     taylor_series_result += taylor_series_numerator / factorial<2>();
 | |
|     taylor_series_numerator *= exponent;
 | |
|     taylor_series_result += taylor_series_numerator / factorial<3>();
 | |
|     taylor_series_numerator *= exponent;
 | |
|     taylor_series_result += taylor_series_numerator / factorial<4>();
 | |
|     taylor_series_numerator *= exponent;
 | |
|     taylor_series_result += taylor_series_numerator / factorial<5>();
 | |
|     return result * taylor_series_result;
 | |
| }
 | |
| 
 | |
| double cosh(double x)
 | |
| {
 | |
|     if (x < 0) {
 | |
|         double exponentiated = exp(-x);
 | |
|         return (1 + exponentiated * exponentiated) / 2 / exponentiated;
 | |
|     }
 | |
|     return (exp(x) + exp(-x)) / 2;
 | |
| }
 | |
| 
 | |
| double atan2(double, double)
 | |
| {
 | |
|     ASSERT_NOT_REACHED();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| double atan(double)
 | |
| {
 | |
|     ASSERT_NOT_REACHED();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| double asin(double)
 | |
| {
 | |
|     ASSERT_NOT_REACHED();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| double acos(double)
 | |
| {
 | |
|     ASSERT_NOT_REACHED();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| double fabs(double value)
 | |
| {
 | |
|     return value < 0 ? -value : value;
 | |
| }
 | |
| 
 | |
| double log2(double)
 | |
| {
 | |
|     ASSERT_NOT_REACHED();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| float log2f(float)
 | |
| {
 | |
|     ASSERT_NOT_REACHED();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| long double log2l(long double)
 | |
| {
 | |
|     ASSERT_NOT_REACHED();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| double frexp(double, int*)
 | |
| {
 | |
|     ASSERT_NOT_REACHED();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| float frexpf(float, int*)
 | |
| {
 | |
|     ASSERT_NOT_REACHED();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| long double frexpl(long double, int*)
 | |
| {
 | |
|     ASSERT_NOT_REACHED();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| }
 |