1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-14 10:54:57 +00:00
serenity/Kernel/Prekernel/init.cpp
Gunnar Beutner b10a86d463 Prekernel: Export some multiboot parameters in our own BootInfo struct
This allows us to specify virtual addresses for things the kernel should
access via virtual addresses later on. By doing this we can make the
kernel independent from specific physical addresses.
2021-07-27 13:15:16 +02:00

205 lines
7.5 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Gunnar Beutner <gbeutner@serenityos.org>
* Copyright (c) 2021, Liav A. <liavalb@hotmail.co.il>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Types.h>
#include <Kernel/Multiboot.h>
#include <Kernel/PhysicalAddress.h>
#include <Kernel/Prekernel/Prekernel.h>
#include <Kernel/VirtualAddress.h>
#include <LibC/elf.h>
// Defined in the linker script
extern size_t __stack_chk_guard;
size_t __stack_chk_guard;
extern "C" [[noreturn]] void __stack_chk_fail();
extern "C" u8 start_of_prekernel_image[];
extern "C" u8 end_of_prekernel_image[];
extern "C" u8 gdt64ptr[];
extern "C" u16 code64_sel;
extern "C" u64 boot_pml4t[512];
extern "C" u64 boot_pdpt[512];
extern "C" u64 boot_pd0[512];
extern "C" u64 boot_pd0_pts[512 * (MAX_KERNEL_SIZE >> 21 & 0x1ff)];
extern "C" u64 boot_pd_kernel[512];
extern "C" u64 boot_pd_kernel_pts[512 * (MAX_KERNEL_SIZE >> 21 & 0x1ff)];
extern "C" u64 boot_pd_kernel_pt1023[512];
extern "C" char const kernel_cmdline[4096];
extern "C" void reload_cr3();
extern "C" {
multiboot_info_t* multiboot_info_ptr;
}
void __stack_chk_fail()
{
asm("ud2");
__builtin_unreachable();
}
namespace Kernel {
// boot.S expects these functions to exactly have the following signatures.
// We declare them here to ensure their signatures don't accidentally change.
extern "C" [[noreturn]] void init();
static void halt()
{
asm volatile("hlt");
}
// SerenityOS Pre-Kernel Environment C++ entry point :^)
//
// This is where C++ execution begins, after boot.S transfers control here.
//
extern "C" [[noreturn]] void init()
{
if (multiboot_info_ptr->mods_count < 1)
halt();
multiboot_module_entry_t* kernel_module = (multiboot_module_entry_t*)(FlatPtr)multiboot_info_ptr->mods_addr;
u8* kernel_image = (u8*)(FlatPtr)kernel_module->start;
// copy the ELF header and program headers because we might end up overwriting them
ElfW(Ehdr) kernel_elf_header = *(ElfW(Ehdr)*)kernel_image;
ElfW(Phdr) kernel_program_headers[16];
if (kernel_elf_header.e_phnum > array_size(kernel_program_headers))
halt();
__builtin_memcpy(kernel_program_headers, kernel_image + kernel_elf_header.e_phoff, sizeof(ElfW(Phdr)) * kernel_elf_header.e_phnum);
FlatPtr kernel_load_base = 0;
FlatPtr kernel_load_end = 0;
for (size_t i = 0; i < kernel_elf_header.e_phnum; i++) {
auto& kernel_program_header = kernel_program_headers[i];
if (kernel_program_header.p_type != PT_LOAD)
continue;
auto start = kernel_program_header.p_vaddr;
auto end = start + kernel_program_header.p_memsz;
if (start < (FlatPtr)end_of_prekernel_image)
halt();
if (kernel_program_header.p_paddr < (FlatPtr)end_of_prekernel_image)
halt();
if (kernel_load_base == 0 || start < kernel_load_base)
kernel_load_base = start;
if (end > kernel_load_end)
kernel_load_end = end;
}
// align to 1GB
kernel_load_base &= ~(FlatPtr)0x3fffffff;
#if ARCH(I386)
int pdpt_flags = 0x1;
#else
int pdpt_flags = 0x3;
#endif
boot_pdpt[(kernel_load_base >> 30) & 0x1ffu] = (FlatPtr)boot_pd_kernel | pdpt_flags;
for (size_t i = 0; i <= (kernel_load_end - kernel_load_base) >> 21; i++)
boot_pd_kernel[i] = (FlatPtr)&boot_pd_kernel_pts[i * 512] | 0x3;
__builtin_memset(boot_pd_kernel_pts, 0, sizeof(boot_pd_kernel_pts));
/* pseudo-identity map 0M - end_of_prekernel_image */
for (size_t i = 0; i < (FlatPtr)end_of_prekernel_image / PAGE_SIZE; i++)
boot_pd_kernel_pts[i] = i * PAGE_SIZE | 0x3;
for (size_t i = 0; i < kernel_elf_header.e_phnum; i++) {
auto& kernel_program_header = kernel_program_headers[i];
if (kernel_program_header.p_type != PT_LOAD)
continue;
for (FlatPtr offset = 0; offset < kernel_program_header.p_memsz; offset += PAGE_SIZE) {
auto pte_index = (kernel_program_header.p_vaddr + offset - kernel_load_base) >> 12;
boot_pd_kernel_pts[pte_index] = (kernel_program_header.p_paddr + offset) | 0x3;
}
}
boot_pd_kernel[511] = (FlatPtr)boot_pd_kernel_pt1023 | 0x3;
reload_cr3();
for (ssize_t i = kernel_elf_header.e_phnum - 1; i >= 0; i--) {
auto& kernel_program_header = kernel_program_headers[i];
if (kernel_program_header.p_type != PT_LOAD)
continue;
__builtin_memmove((u8*)kernel_program_header.p_vaddr, kernel_image + kernel_program_header.p_offset, kernel_program_header.p_filesz);
}
for (ssize_t i = kernel_elf_header.e_phnum - 1; i >= 0; i--) {
auto& kernel_program_header = kernel_program_headers[i];
if (kernel_program_header.p_type != PT_LOAD)
continue;
__builtin_memset((u8*)kernel_program_header.p_vaddr + kernel_program_header.p_filesz, 0, kernel_program_header.p_memsz - kernel_program_header.p_filesz);
}
multiboot_info_ptr->mods_count--;
multiboot_info_ptr->mods_addr += sizeof(multiboot_module_entry_t);
auto adjust_by_load_base = [kernel_load_base](auto ptr) {
return (decltype(ptr))((FlatPtr)ptr + kernel_load_base);
};
BootInfo info;
info.start_of_prekernel_image = (PhysicalPtr)start_of_prekernel_image;
info.end_of_prekernel_image = (PhysicalPtr)end_of_prekernel_image;
info.physical_to_virtual_offset = kernel_load_base;
info.kernel_base = kernel_load_base;
#if ARCH(X86_64)
info.gdt64ptr = (PhysicalPtr)gdt64ptr;
info.code64_sel = code64_sel;
info.boot_pml4t = (PhysicalPtr)boot_pml4t;
#endif
info.boot_pdpt = (PhysicalPtr)boot_pdpt;
info.boot_pd0 = (PhysicalPtr)boot_pd0;
info.boot_pd_kernel = (PhysicalPtr)boot_pd_kernel;
info.boot_pd_kernel_pt1023 = (FlatPtr)adjust_by_load_base(boot_pd_kernel_pt1023);
info.kernel_cmdline = (FlatPtr)adjust_by_load_base(kernel_cmdline);
info.multiboot_flags = multiboot_info_ptr->flags;
info.multiboot_memory_map = adjust_by_load_base((FlatPtr)multiboot_info_ptr->mmap_addr);
info.multiboot_memory_map_count = multiboot_info_ptr->mmap_length / sizeof(multiboot_memory_map_t);
info.multiboot_modules = adjust_by_load_base((FlatPtr)multiboot_info_ptr->mods_addr);
info.multiboot_modules_count = multiboot_info_ptr->mods_count;
info.multiboot_framebuffer_addr = multiboot_info_ptr->framebuffer_addr;
info.multiboot_framebuffer_pitch = multiboot_info_ptr->framebuffer_pitch;
info.multiboot_framebuffer_width = multiboot_info_ptr->framebuffer_width;
info.multiboot_framebuffer_height = multiboot_info_ptr->framebuffer_height;
info.multiboot_framebuffer_bpp = multiboot_info_ptr->framebuffer_bpp;
info.multiboot_framebuffer_type = multiboot_info_ptr->framebuffer_type;
asm(
#if ARCH(I386)
"add %0, %%esp"
#else
"add %0, %%rsp"
#endif
::"g"(kernel_load_base));
// unmap the 0-1MB region
for (size_t i = 0; i < 256; i++)
boot_pd0_pts[i] = 0;
// unmap the end_of_prekernel_image - MAX_KERNEL_SIZE region
for (FlatPtr vaddr = (FlatPtr)end_of_prekernel_image; vaddr < MAX_KERNEL_SIZE; vaddr += PAGE_SIZE)
boot_pd0_pts[vaddr >> 12] = 0;
reload_cr3();
void (*entry)(BootInfo const&) = (void (*)(BootInfo const&))kernel_elf_header.e_entry;
entry(*adjust_by_load_base(&info));
__builtin_unreachable();
}
// Define some Itanium C++ ABI methods to stop the linker from complaining.
// If we actually call these something has gone horribly wrong
void* __dso_handle __attribute__((visibility("hidden")));
}