mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-30 07:42:07 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1298 lines
		
	
	
	
		
			47 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1298 lines
		
	
	
	
		
			47 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2020, the SerenityOS developers.
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/Debug.h>
 | |
| #include <AK/HashMap.h>
 | |
| #include <AK/Math.h>
 | |
| #include <AK/MemoryStream.h>
 | |
| #include <AK/Vector.h>
 | |
| #include <LibGfx/JPGLoader.h>
 | |
| 
 | |
| #define JPG_INVALID 0X0000
 | |
| 
 | |
| #define JPG_APPN0 0XFFE0
 | |
| #define JPG_APPN1 0XFFE1
 | |
| #define JPG_APPN2 0XFFE2
 | |
| #define JPG_APPN3 0XFFE3
 | |
| #define JPG_APPN4 0XFFE4
 | |
| #define JPG_APPN5 0XFFE5
 | |
| #define JPG_APPN6 0XFFE6
 | |
| #define JPG_APPN7 0XFFE7
 | |
| #define JPG_APPN8 0XFFE8
 | |
| #define JPG_APPN9 0XFFE9
 | |
| #define JPG_APPNA 0XFFEA
 | |
| #define JPG_APPNB 0XFFEB
 | |
| #define JPG_APPNC 0XFFEC
 | |
| #define JPG_APPND 0XFFED
 | |
| #define JPG_APPNE 0xFFEE
 | |
| #define JPG_APPNF 0xFFEF
 | |
| 
 | |
| #define JPG_RESERVED1 0xFFF1
 | |
| #define JPG_RESERVED2 0xFFF2
 | |
| #define JPG_RESERVED3 0xFFF3
 | |
| #define JPG_RESERVED4 0xFFF4
 | |
| #define JPG_RESERVED5 0xFFF5
 | |
| #define JPG_RESERVED6 0xFFF6
 | |
| #define JPG_RESERVED7 0xFFF7
 | |
| #define JPG_RESERVED8 0xFFF8
 | |
| #define JPG_RESERVED9 0xFFF9
 | |
| #define JPG_RESERVEDA 0xFFFA
 | |
| #define JPG_RESERVEDB 0xFFFB
 | |
| #define JPG_RESERVEDC 0xFFFC
 | |
| #define JPG_RESERVEDD 0xFFFD
 | |
| 
 | |
| #define JPG_RST0 0xFFD0
 | |
| #define JPG_RST1 0xFFD1
 | |
| #define JPG_RST2 0xFFD2
 | |
| #define JPG_RST3 0xFFD3
 | |
| #define JPG_RST4 0xFFD4
 | |
| #define JPG_RST5 0xFFD5
 | |
| #define JPG_RST6 0xFFD6
 | |
| #define JPG_RST7 0xFFD7
 | |
| 
 | |
| #define JPG_DHP 0xFFDE
 | |
| #define JPG_EXP 0xFFDF
 | |
| 
 | |
| #define JPG_DHT 0XFFC4
 | |
| #define JPG_DQT 0XFFDB
 | |
| #define JPG_EOI 0xFFD9
 | |
| #define JPG_RST 0XFFDD
 | |
| #define JPG_SOF0 0XFFC0
 | |
| #define JPG_SOF2 0xFFC2
 | |
| #define JPG_SOI 0XFFD8
 | |
| #define JPG_SOS 0XFFDA
 | |
| #define JPG_COM 0xFFFE
 | |
| 
 | |
| namespace Gfx {
 | |
| 
 | |
| constexpr static u8 zigzag_map[64] {
 | |
|     0, 1, 8, 16, 9, 2, 3, 10,
 | |
|     17, 24, 32, 25, 18, 11, 4, 5,
 | |
|     12, 19, 26, 33, 40, 48, 41, 34,
 | |
|     27, 20, 13, 6, 7, 14, 21, 28,
 | |
|     35, 42, 49, 56, 57, 50, 43, 36,
 | |
|     29, 22, 15, 23, 30, 37, 44, 51,
 | |
|     58, 59, 52, 45, 38, 31, 39, 46,
 | |
|     53, 60, 61, 54, 47, 55, 62, 63
 | |
| };
 | |
| 
 | |
| using Marker = u16;
 | |
| 
 | |
| /**
 | |
|  * MCU means group of data units that are coded together. A data unit is an 8x8
 | |
|  * block of component data. In interleaved scans, number of non-interleaved data
 | |
|  * units of a component C is Ch * Cv, where Ch and Cv represent the horizontal &
 | |
|  * vertical subsampling factors of the component, respectively. A MacroBlock is
 | |
|  * an 8x8 block of RGB values before encoding, and 8x8 block of YCbCr values when
 | |
|  * we're done decoding the huffman stream.
 | |
|  */
 | |
| struct Macroblock {
 | |
|     union {
 | |
|         i32 y[64] = { 0 };
 | |
|         i32 r[64];
 | |
|     };
 | |
| 
 | |
|     union {
 | |
|         i32 cb[64] = { 0 };
 | |
|         i32 g[64];
 | |
|     };
 | |
| 
 | |
|     union {
 | |
|         i32 cr[64] = { 0 };
 | |
|         i32 b[64];
 | |
|     };
 | |
| };
 | |
| 
 | |
| struct MacroblockMeta {
 | |
|     u32 total { 0 };
 | |
|     u32 padded_total { 0 };
 | |
|     u32 hcount { 0 };
 | |
|     u32 vcount { 0 };
 | |
|     u32 hpadded_count { 0 };
 | |
|     u32 vpadded_count { 0 };
 | |
| };
 | |
| 
 | |
| struct ComponentSpec {
 | |
|     u8 id { 0 };
 | |
|     u8 hsample_factor { 1 }; // Horizontal sampling factor.
 | |
|     u8 vsample_factor { 1 }; // Vertical sampling factor.
 | |
|     u8 ac_destination_id { 0 };
 | |
|     u8 dc_destination_id { 0 };
 | |
|     u8 qtable_id { 0 }; // Quantization table id.
 | |
| };
 | |
| 
 | |
| struct StartOfFrame {
 | |
| 
 | |
|     // Of these, only the first 3 are in mainstream use, and refers to SOF0-2.
 | |
|     enum class FrameType {
 | |
|         Baseline_DCT = 0,
 | |
|         Extended_Sequential_DCT = 1,
 | |
|         Progressive_DCT = 2,
 | |
|         Sequential_Lossless = 3,
 | |
|         Differential_Sequential_DCT = 5,
 | |
|         Differential_Progressive_DCT = 6,
 | |
|         Differential_Sequential_Lossless = 7,
 | |
|         Extended_Sequential_DCT_Arithmetic = 9,
 | |
|         Progressive_DCT_Arithmetic = 10,
 | |
|         Sequential_Lossless_Arithmetic = 11,
 | |
|         Differential_Sequential_DCT_Arithmetic = 13,
 | |
|         Differential_Progressive_DCT_Arithmetic = 14,
 | |
|         Differential_Sequential_Lossless_Arithmetic = 15,
 | |
|     };
 | |
| 
 | |
|     FrameType type { FrameType::Baseline_DCT };
 | |
|     u8 precision { 0 };
 | |
|     u16 height { 0 };
 | |
|     u16 width { 0 };
 | |
| };
 | |
| 
 | |
| struct HuffmanTableSpec {
 | |
|     u8 type { 0 };
 | |
|     u8 destination_id { 0 };
 | |
|     u8 code_counts[16] = { 0 };
 | |
|     Vector<u8> symbols;
 | |
|     Vector<u16> codes;
 | |
| };
 | |
| 
 | |
| struct HuffmanStreamState {
 | |
|     Vector<u8> stream;
 | |
|     u8 bit_offset { 0 };
 | |
|     size_t byte_offset { 0 };
 | |
| };
 | |
| 
 | |
| struct JPGLoadingContext {
 | |
|     enum State {
 | |
|         NotDecoded = 0,
 | |
|         Error,
 | |
|         FrameDecoded,
 | |
|         BitmapDecoded
 | |
|     };
 | |
| 
 | |
|     State state { State::NotDecoded };
 | |
|     const u8* data { nullptr };
 | |
|     size_t data_size { 0 };
 | |
|     u32 luma_table[64] = { 0 };
 | |
|     u32 chroma_table[64] = { 0 };
 | |
|     StartOfFrame frame;
 | |
|     u8 hsample_factor { 0 };
 | |
|     u8 vsample_factor { 0 };
 | |
|     u8 component_count { 0 };
 | |
|     Vector<ComponentSpec, 3> components;
 | |
|     RefPtr<Gfx::Bitmap> bitmap;
 | |
|     u16 dc_reset_interval { 0 };
 | |
|     HashMap<u8, HuffmanTableSpec> dc_tables;
 | |
|     HashMap<u8, HuffmanTableSpec> ac_tables;
 | |
|     HuffmanStreamState huffman_stream;
 | |
|     i32 previous_dc_values[3] = { 0 };
 | |
|     MacroblockMeta mblock_meta;
 | |
| };
 | |
| 
 | |
| static void generate_huffman_codes(HuffmanTableSpec& table)
 | |
| {
 | |
|     unsigned code = 0;
 | |
|     for (auto number_of_codes : table.code_counts) {
 | |
|         for (int i = 0; i < number_of_codes; i++)
 | |
|             table.codes.append(code++);
 | |
|         code <<= 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static Optional<size_t> read_huffman_bits(HuffmanStreamState& hstream, size_t count = 1)
 | |
| {
 | |
|     if (count > (8 * sizeof(size_t))) {
 | |
|         dbgln_if(JPG_DEBUG, "Can't read {} bits at once!", count);
 | |
|         return {};
 | |
|     }
 | |
|     size_t value = 0;
 | |
|     while (count--) {
 | |
|         if (hstream.byte_offset >= hstream.stream.size()) {
 | |
|             dbgln_if(JPG_DEBUG, "Huffman stream exhausted. This could be an error!");
 | |
|             return {};
 | |
|         }
 | |
|         u8 current_byte = hstream.stream[hstream.byte_offset];
 | |
|         u8 current_bit = 1u & (u32)(current_byte >> (7 - hstream.bit_offset)); // MSB first.
 | |
|         hstream.bit_offset++;
 | |
|         value = (value << 1) | (size_t)current_bit;
 | |
|         if (hstream.bit_offset == 8) {
 | |
|             hstream.byte_offset++;
 | |
|             hstream.bit_offset = 0;
 | |
|         }
 | |
|     }
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static Optional<u8> get_next_symbol(HuffmanStreamState& hstream, const HuffmanTableSpec& table)
 | |
| {
 | |
|     unsigned code = 0;
 | |
|     size_t code_cursor = 0;
 | |
|     for (int i = 0; i < 16; i++) { // Codes can't be longer than 16 bits.
 | |
|         auto result = read_huffman_bits(hstream);
 | |
|         if (!result.has_value())
 | |
|             return {};
 | |
|         code = (code << 1) | (i32)result.release_value();
 | |
|         for (int j = 0; j < table.code_counts[i]; j++) {
 | |
|             if (code == table.codes[code_cursor])
 | |
|                 return table.symbols[code_cursor];
 | |
|             code_cursor++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     dbgln_if(JPG_DEBUG, "If you're seeing this...the jpeg decoder needs to support more kinds of JPEGs!");
 | |
|     return {};
 | |
| }
 | |
| 
 | |
| static inline i32* get_component(Macroblock& block, unsigned component)
 | |
| {
 | |
|     switch (component) {
 | |
|     case 0:
 | |
|         return block.y;
 | |
|     case 1:
 | |
|         return block.cb;
 | |
|     default:
 | |
|         return block.cr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Build the macroblocks possible by reading single (MCU) subsampled pair of CbCr.
 | |
|  * Depending on the sampling factors, we may not see triples of y, cb, cr in that
 | |
|  * order. If sample factors differ from one, we'll read more than one block of y-
 | |
|  * coefficients before we get to read a cb-cr block.
 | |
| 
 | |
|  * In the function below, `hcursor` and `vcursor` denote the location of the block
 | |
|  * we're building in the macroblock matrix. `vfactor_i` and `hfactor_i` are cursors
 | |
|  * that iterate over the vertical and horizontal subsampling factors, respectively.
 | |
|  * When we finish one iteration of the innermost loop, we'll have the coefficients
 | |
|  * of one of the components of block at position `mb_index`. When the outermost loop
 | |
|  * finishes first iteration, we'll have all the luminance coefficients for all the
 | |
|  * macroblocks that share the chrominance data. Next two iterations (assuming that
 | |
|  * we are dealing with three components) will fill up the blocks with chroma data.
 | |
|  */
 | |
| static bool build_macroblocks(JPGLoadingContext& context, Vector<Macroblock>& macroblocks, u32 hcursor, u32 vcursor)
 | |
| {
 | |
|     for (unsigned component_i = 0; component_i < context.component_count; component_i++) {
 | |
|         auto& component = context.components[component_i];
 | |
| 
 | |
|         if (component.dc_destination_id >= context.dc_tables.size())
 | |
|             return false;
 | |
|         if (component.ac_destination_id >= context.ac_tables.size())
 | |
|             return false;
 | |
| 
 | |
|         for (u8 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) {
 | |
|             for (u8 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) {
 | |
|                 u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
 | |
|                 Macroblock& block = macroblocks[mb_index];
 | |
| 
 | |
|                 auto& dc_table = context.dc_tables.find(component.dc_destination_id)->value;
 | |
|                 auto& ac_table = context.ac_tables.find(component.ac_destination_id)->value;
 | |
| 
 | |
|                 auto symbol_or_error = get_next_symbol(context.huffman_stream, dc_table);
 | |
|                 if (!symbol_or_error.has_value())
 | |
|                     return false;
 | |
| 
 | |
|                 // For DC coefficients, symbol encodes the length of the coefficient.
 | |
|                 auto dc_length = symbol_or_error.release_value();
 | |
|                 if (dc_length > 11) {
 | |
|                     dbgln_if(JPG_DEBUG, "DC coefficient too long: {}!", dc_length);
 | |
|                     return false;
 | |
|                 }
 | |
| 
 | |
|                 auto coeff_or_error = read_huffman_bits(context.huffman_stream, dc_length);
 | |
|                 if (!coeff_or_error.has_value())
 | |
|                     return false;
 | |
| 
 | |
|                 // DC coefficients are encoded as the difference between previous and current DC values.
 | |
|                 i32 dc_diff = coeff_or_error.release_value();
 | |
| 
 | |
|                 // If MSB in diff is 0, the difference is -ve. Otherwise +ve.
 | |
|                 if (dc_length != 0 && dc_diff < (1 << (dc_length - 1)))
 | |
|                     dc_diff -= (1 << dc_length) - 1;
 | |
| 
 | |
|                 auto select_component = get_component(block, component_i);
 | |
|                 auto& previous_dc = context.previous_dc_values[component_i];
 | |
|                 select_component[0] = previous_dc += dc_diff;
 | |
| 
 | |
|                 // Compute the AC coefficients.
 | |
|                 for (int j = 1; j < 64;) {
 | |
|                     symbol_or_error = get_next_symbol(context.huffman_stream, ac_table);
 | |
|                     if (!symbol_or_error.has_value())
 | |
|                         return false;
 | |
| 
 | |
|                     // AC symbols encode 2 pieces of information, the high 4 bits represent
 | |
|                     // number of zeroes to be stuffed before reading the coefficient. Low 4
 | |
|                     // bits represent the magnitude of the coefficient.
 | |
|                     auto ac_symbol = symbol_or_error.release_value();
 | |
|                     if (ac_symbol == 0)
 | |
|                         break;
 | |
| 
 | |
|                     // ac_symbol = 0xF0 means we need to skip 16 zeroes.
 | |
|                     u8 run_length = ac_symbol == 0xF0 ? 16 : ac_symbol >> 4;
 | |
|                     j += run_length;
 | |
| 
 | |
|                     if (j >= 64) {
 | |
|                         dbgln_if(JPG_DEBUG, "Run-length exceeded boundaries. Cursor: {}, Skipping: {}!", j, run_length);
 | |
|                         return false;
 | |
|                     }
 | |
| 
 | |
|                     u8 coeff_length = ac_symbol & 0x0F;
 | |
|                     if (coeff_length > 10) {
 | |
|                         dbgln_if(JPG_DEBUG, "AC coefficient too long: {}!", coeff_length);
 | |
|                         return false;
 | |
|                     }
 | |
| 
 | |
|                     if (coeff_length != 0) {
 | |
|                         coeff_or_error = read_huffman_bits(context.huffman_stream, coeff_length);
 | |
|                         if (!coeff_or_error.has_value())
 | |
|                             return false;
 | |
|                         i32 ac_coefficient = coeff_or_error.release_value();
 | |
|                         if (ac_coefficient < (1 << (coeff_length - 1)))
 | |
|                             ac_coefficient -= (1 << coeff_length) - 1;
 | |
| 
 | |
|                         select_component[zigzag_map[j++]] = ac_coefficient;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static Optional<Vector<Macroblock>> decode_huffman_stream(JPGLoadingContext& context)
 | |
| {
 | |
|     Vector<Macroblock> macroblocks;
 | |
|     macroblocks.resize(context.mblock_meta.padded_total);
 | |
| 
 | |
|     if constexpr (JPG_DEBUG) {
 | |
|         dbgln("Image width: {}", context.frame.width);
 | |
|         dbgln("Image height: {}", context.frame.height);
 | |
|         dbgln("Macroblocks in a row: {}", context.mblock_meta.hpadded_count);
 | |
|         dbgln("Macroblocks in a column: {}", context.mblock_meta.vpadded_count);
 | |
|         dbgln("Macroblock meta padded total: {}", context.mblock_meta.padded_total);
 | |
|     }
 | |
| 
 | |
|     // Compute huffman codes for DC and AC tables.
 | |
|     for (auto it = context.dc_tables.begin(); it != context.dc_tables.end(); ++it)
 | |
|         generate_huffman_codes(it->value);
 | |
| 
 | |
|     for (auto it = context.ac_tables.begin(); it != context.ac_tables.end(); ++it)
 | |
|         generate_huffman_codes(it->value);
 | |
| 
 | |
|     for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
 | |
|         for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
 | |
|             u32 i = vcursor * context.mblock_meta.hpadded_count + hcursor;
 | |
|             if (context.dc_reset_interval > 0) {
 | |
|                 if (i % context.dc_reset_interval == 0) {
 | |
|                     context.previous_dc_values[0] = 0;
 | |
|                     context.previous_dc_values[1] = 0;
 | |
|                     context.previous_dc_values[2] = 0;
 | |
| 
 | |
|                     // Restart markers are stored in byte boundaries. Advance the huffman stream cursor to
 | |
|                     //  the 0th bit of the next byte.
 | |
|                     if (context.huffman_stream.byte_offset < context.huffman_stream.stream.size()) {
 | |
|                         if (context.huffman_stream.bit_offset > 0) {
 | |
|                             context.huffman_stream.bit_offset = 0;
 | |
|                             context.huffman_stream.byte_offset++;
 | |
|                         }
 | |
| 
 | |
|                         // Skip the restart marker (RSTn).
 | |
|                         context.huffman_stream.byte_offset++;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (!build_macroblocks(context, macroblocks, hcursor, vcursor)) {
 | |
|                 if constexpr (JPG_DEBUG) {
 | |
|                     dbgln("Failed to build Macroblock {}", i);
 | |
|                     dbgln("Huffman stream byte offset {}", context.huffman_stream.byte_offset);
 | |
|                     dbgln("Huffman stream bit offset {}", context.huffman_stream.bit_offset);
 | |
|                 }
 | |
|                 return {};
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return macroblocks;
 | |
| }
 | |
| 
 | |
| static inline bool bounds_okay(const size_t cursor, const size_t delta, const size_t bound)
 | |
| {
 | |
|     return (delta + cursor) < bound;
 | |
| }
 | |
| 
 | |
| static inline bool is_valid_marker(const Marker marker)
 | |
| {
 | |
|     if (marker >= JPG_APPN0 && marker <= JPG_APPNF) {
 | |
| 
 | |
|         if (marker != JPG_APPN0)
 | |
|             dbgln_if(JPG_DEBUG, "{:#04x} not supported yet. The decoder may fail!", marker);
 | |
|         return true;
 | |
|     }
 | |
|     if (marker >= JPG_RESERVED1 && marker <= JPG_RESERVEDD)
 | |
|         return true;
 | |
|     if (marker >= JPG_RST0 && marker <= JPG_RST7)
 | |
|         return true;
 | |
|     switch (marker) {
 | |
|     case JPG_COM:
 | |
|     case JPG_DHP:
 | |
|     case JPG_EXP:
 | |
|     case JPG_DHT:
 | |
|     case JPG_DQT:
 | |
|     case JPG_RST:
 | |
|     case JPG_SOF0:
 | |
|     case JPG_SOI:
 | |
|     case JPG_SOS:
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     if (marker >= 0xFFC0 && marker <= 0xFFCF) {
 | |
|         if (marker != 0xFFC4 && marker != 0xFFC8 && marker != 0xFFCC) {
 | |
|             dbgln_if(JPG_DEBUG, "Decoding this frame-type (SOF{}) is not currently supported. Decoder will fail!", marker & 0xf);
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static inline u16 read_be_word(InputMemoryStream& stream)
 | |
| {
 | |
|     BigEndian<u16> tmp;
 | |
|     stream >> tmp;
 | |
|     return tmp;
 | |
| }
 | |
| 
 | |
| static inline Marker read_marker_at_cursor(InputMemoryStream& stream)
 | |
| {
 | |
|     u16 marker = read_be_word(stream);
 | |
|     if (stream.handle_any_error())
 | |
|         return JPG_INVALID;
 | |
|     if (is_valid_marker(marker))
 | |
|         return marker;
 | |
|     if (marker != 0xFFFF)
 | |
|         return JPG_INVALID;
 | |
|     u8 next;
 | |
|     do {
 | |
|         stream >> next;
 | |
|         if (stream.handle_any_error() || next == 0x00)
 | |
|             return JPG_INVALID;
 | |
|     } while (next == 0xFF);
 | |
|     marker = 0xFF00 | (u16)next;
 | |
|     return is_valid_marker(marker) ? marker : JPG_INVALID;
 | |
| }
 | |
| 
 | |
| static bool read_start_of_scan(InputMemoryStream& stream, JPGLoadingContext& context)
 | |
| {
 | |
|     if (context.state < JPGLoadingContext::State::FrameDecoded) {
 | |
|         dbgln_if(JPG_DEBUG, "{}: SOS found before reading a SOF!", stream.offset());
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     u16 bytes_to_read = read_be_word(stream);
 | |
|     if (stream.handle_any_error())
 | |
|         return false;
 | |
|     bytes_to_read -= 2;
 | |
|     if (!bounds_okay(stream.offset(), bytes_to_read, context.data_size))
 | |
|         return false;
 | |
|     u8 component_count = 0;
 | |
|     stream >> component_count;
 | |
|     if (stream.handle_any_error())
 | |
|         return false;
 | |
|     if (component_count != context.component_count) {
 | |
|         dbgln_if(JPG_DEBUG, "{}: Unsupported number of components: {}!", stream.offset(), component_count);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < component_count; i++) {
 | |
|         u8 component_id = 0;
 | |
|         stream >> component_id;
 | |
|         if (stream.handle_any_error())
 | |
|             return false;
 | |
| 
 | |
|         auto& component = context.components[i];
 | |
|         if (component.id != component_id) {
 | |
|             dbgln("JPEG decode failed (component.id != component_id)");
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         u8 table_ids = 0;
 | |
|         stream >> table_ids;
 | |
|         if (stream.handle_any_error())
 | |
|             return false;
 | |
| 
 | |
|         component.dc_destination_id = table_ids >> 4;
 | |
|         component.ac_destination_id = table_ids & 0x0F;
 | |
| 
 | |
|         if (context.dc_tables.size() != context.ac_tables.size()) {
 | |
|             dbgln_if(JPG_DEBUG, "{}: DC & AC table count mismatch!", stream.offset());
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         if (!context.dc_tables.contains(component.dc_destination_id)) {
 | |
|             dbgln_if(JPG_DEBUG, "DC table (id: {}) does not exist!", component.dc_destination_id);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         if (!context.ac_tables.contains(component.ac_destination_id)) {
 | |
|             dbgln_if(JPG_DEBUG, "AC table (id: {}) does not exist!", component.ac_destination_id);
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     u8 spectral_selection_start = 0;
 | |
|     stream >> spectral_selection_start;
 | |
|     if (stream.handle_any_error())
 | |
|         return false;
 | |
|     u8 spectral_selection_end = 0;
 | |
|     stream >> spectral_selection_end;
 | |
|     if (stream.handle_any_error())
 | |
|         return false;
 | |
|     u8 successive_approximation = 0;
 | |
|     stream >> successive_approximation;
 | |
|     if (stream.handle_any_error())
 | |
|         return false;
 | |
|     // The three values should be fixed for baseline JPEGs utilizing sequential DCT.
 | |
|     if (spectral_selection_start != 0 || spectral_selection_end != 63 || successive_approximation != 0) {
 | |
|         dbgln_if(JPG_DEBUG, "{}: ERROR! Start of Selection: {}, End of Selection: {}, Successive Approximation: {}!",
 | |
|             stream.offset(),
 | |
|             spectral_selection_start,
 | |
|             spectral_selection_end,
 | |
|             successive_approximation);
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool read_reset_marker(InputMemoryStream& stream, JPGLoadingContext& context)
 | |
| {
 | |
|     u16 bytes_to_read = read_be_word(stream);
 | |
|     if (stream.handle_any_error())
 | |
|         return false;
 | |
|     bytes_to_read -= 2;
 | |
|     if (bytes_to_read != 2) {
 | |
|         dbgln_if(JPG_DEBUG, "{}: Malformed reset marker found!", stream.offset());
 | |
|         return false;
 | |
|     }
 | |
|     context.dc_reset_interval = read_be_word(stream);
 | |
|     if (stream.handle_any_error())
 | |
|         return false;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool read_huffman_table(InputMemoryStream& stream, JPGLoadingContext& context)
 | |
| {
 | |
|     i32 bytes_to_read = read_be_word(stream);
 | |
|     if (stream.handle_any_error())
 | |
|         return false;
 | |
|     if (!bounds_okay(stream.offset(), bytes_to_read, context.data_size))
 | |
|         return false;
 | |
|     bytes_to_read -= 2;
 | |
|     while (bytes_to_read > 0) {
 | |
|         HuffmanTableSpec table;
 | |
|         u8 table_info = 0;
 | |
|         stream >> table_info;
 | |
|         if (stream.handle_any_error())
 | |
|             return false;
 | |
|         u8 table_type = table_info >> 4;
 | |
|         u8 table_destination_id = table_info & 0x0F;
 | |
|         if (table_type > 1) {
 | |
|             dbgln_if(JPG_DEBUG, "{}: Unrecognized huffman table: {}!", stream.offset(), table_type);
 | |
|             return false;
 | |
|         }
 | |
|         if (table_destination_id > 1) {
 | |
|             dbgln_if(JPG_DEBUG, "{}: Invalid huffman table destination id: {}!", stream.offset(), table_destination_id);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         table.type = table_type;
 | |
|         table.destination_id = table_destination_id;
 | |
|         u32 total_codes = 0;
 | |
| 
 | |
|         // Read code counts. At each index K, the value represents the number of K+1 bit codes in this header.
 | |
|         for (int i = 0; i < 16; i++) {
 | |
|             u8 count = 0;
 | |
|             stream >> count;
 | |
|             if (stream.handle_any_error())
 | |
|                 return false;
 | |
|             total_codes += count;
 | |
|             table.code_counts[i] = count;
 | |
|         }
 | |
| 
 | |
|         table.codes.ensure_capacity(total_codes);
 | |
| 
 | |
|         // Read symbols. Read X bytes, where X is the sum of the counts of codes read in the previous step.
 | |
|         for (u32 i = 0; i < total_codes; i++) {
 | |
|             u8 symbol = 0;
 | |
|             stream >> symbol;
 | |
|             if (stream.handle_any_error())
 | |
|                 return false;
 | |
|             table.symbols.append(symbol);
 | |
|         }
 | |
| 
 | |
|         if (stream.handle_any_error())
 | |
|             return false;
 | |
| 
 | |
|         auto& huffman_table = table.type == 0 ? context.dc_tables : context.ac_tables;
 | |
|         huffman_table.set(table.destination_id, table);
 | |
|         VERIFY(huffman_table.size() <= 2);
 | |
| 
 | |
|         bytes_to_read -= 1 + 16 + total_codes;
 | |
|     }
 | |
| 
 | |
|     if (bytes_to_read != 0) {
 | |
|         dbgln_if(JPG_DEBUG, "{}: Extra bytes detected in huffman header!", stream.offset());
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static inline bool validate_luma_and_modify_context(const ComponentSpec& luma, JPGLoadingContext& context)
 | |
| {
 | |
|     if ((luma.hsample_factor == 1 || luma.hsample_factor == 2) && (luma.vsample_factor == 1 || luma.vsample_factor == 2)) {
 | |
|         context.mblock_meta.hpadded_count += luma.hsample_factor == 1 ? 0 : context.mblock_meta.hcount % 2;
 | |
|         context.mblock_meta.vpadded_count += luma.vsample_factor == 1 ? 0 : context.mblock_meta.vcount % 2;
 | |
|         context.mblock_meta.padded_total = context.mblock_meta.hpadded_count * context.mblock_meta.vpadded_count;
 | |
|         // For easy reference to relevant sample factors.
 | |
|         context.hsample_factor = luma.hsample_factor;
 | |
|         context.vsample_factor = luma.vsample_factor;
 | |
| 
 | |
|         if constexpr (JPG_DEBUG) {
 | |
|             dbgln("Horizontal Subsampling Factor: {}", luma.hsample_factor);
 | |
|             dbgln("Vertical Subsampling Factor: {}", luma.vsample_factor);
 | |
|         }
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static inline void set_macroblock_metadata(JPGLoadingContext& context)
 | |
| {
 | |
|     context.mblock_meta.hcount = (context.frame.width + 7) / 8;
 | |
|     context.mblock_meta.vcount = (context.frame.height + 7) / 8;
 | |
|     context.mblock_meta.hpadded_count = context.mblock_meta.hcount;
 | |
|     context.mblock_meta.vpadded_count = context.mblock_meta.vcount;
 | |
|     context.mblock_meta.total = context.mblock_meta.hcount * context.mblock_meta.vcount;
 | |
| }
 | |
| 
 | |
| static bool read_start_of_frame(InputMemoryStream& stream, JPGLoadingContext& context)
 | |
| {
 | |
|     if (context.state == JPGLoadingContext::FrameDecoded) {
 | |
|         dbgln_if(JPG_DEBUG, "{}: SOF repeated!", stream.offset());
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     i32 bytes_to_read = read_be_word(stream);
 | |
|     if (stream.handle_any_error())
 | |
|         return false;
 | |
| 
 | |
|     bytes_to_read -= 2;
 | |
|     if (!bounds_okay(stream.offset(), bytes_to_read, context.data_size))
 | |
|         return false;
 | |
| 
 | |
|     stream >> context.frame.precision;
 | |
|     if (stream.handle_any_error())
 | |
|         return false;
 | |
|     if (context.frame.precision != 8) {
 | |
|         dbgln_if(JPG_DEBUG, "{}: SOF precision != 8!", stream.offset());
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     context.frame.height = read_be_word(stream);
 | |
|     if (stream.handle_any_error())
 | |
|         return false;
 | |
|     context.frame.width = read_be_word(stream);
 | |
|     if (stream.handle_any_error())
 | |
|         return false;
 | |
|     if (!context.frame.width || !context.frame.height) {
 | |
|         dbgln_if(JPG_DEBUG, "{}: ERROR! Image height: {}, Image width: {}!", stream.offset(), context.frame.height, context.frame.width);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (context.frame.width > maximum_width_for_decoded_images || context.frame.height > maximum_height_for_decoded_images) {
 | |
|         dbgln("This JPEG is too large for comfort: {}x{}", context.frame.width, context.frame.height);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     set_macroblock_metadata(context);
 | |
| 
 | |
|     stream >> context.component_count;
 | |
|     if (stream.handle_any_error())
 | |
|         return false;
 | |
|     if (context.component_count != 1 && context.component_count != 3) {
 | |
|         dbgln_if(JPG_DEBUG, "{}: Unsupported number of components in SOF: {}!", stream.offset(), context.component_count);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     for (u8 i = 0; i < context.component_count; i++) {
 | |
|         ComponentSpec component;
 | |
| 
 | |
|         stream >> component.id;
 | |
|         if (stream.handle_any_error())
 | |
|             return false;
 | |
| 
 | |
|         u8 subsample_factors = 0;
 | |
|         stream >> subsample_factors;
 | |
|         if (stream.handle_any_error())
 | |
|             return false;
 | |
|         component.hsample_factor = subsample_factors >> 4;
 | |
|         component.vsample_factor = subsample_factors & 0x0F;
 | |
| 
 | |
|         if (i == 0) {
 | |
|             // By convention, downsampling is applied only on chroma components. So we should
 | |
|             //  hope to see the maximum sampling factor in the luma component.
 | |
|             if (!validate_luma_and_modify_context(component, context)) {
 | |
|                 dbgln_if(JPG_DEBUG, "{}: Unsupported luma subsampling factors: horizontal: {}, vertical: {}",
 | |
|                     stream.offset(),
 | |
|                     component.hsample_factor,
 | |
|                     component.vsample_factor);
 | |
|                 return false;
 | |
|             }
 | |
|         } else {
 | |
|             if (component.hsample_factor != 1 || component.vsample_factor != 1) {
 | |
|                 dbgln_if(JPG_DEBUG, "{}: Unsupported chroma subsampling factors: horizontal: {}, vertical: {}",
 | |
|                     stream.offset(),
 | |
|                     component.hsample_factor,
 | |
|                     component.vsample_factor);
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         stream >> component.qtable_id;
 | |
|         if (stream.handle_any_error())
 | |
|             return false;
 | |
|         if (component.qtable_id > 1) {
 | |
|             dbgln_if(JPG_DEBUG, "{}: Unsupported quantization table id: {}!", stream.offset(), component.qtable_id);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         context.components.append(move(component));
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool read_quantization_table(InputMemoryStream& stream, JPGLoadingContext& context)
 | |
| {
 | |
|     i32 bytes_to_read = read_be_word(stream);
 | |
|     if (stream.handle_any_error())
 | |
|         return false;
 | |
|     bytes_to_read -= 2;
 | |
|     if (!bounds_okay(stream.offset(), bytes_to_read, context.data_size))
 | |
|         return false;
 | |
|     while (bytes_to_read > 0) {
 | |
|         u8 info_byte = 0;
 | |
|         stream >> info_byte;
 | |
|         if (stream.handle_any_error())
 | |
|             return false;
 | |
|         u8 element_unit_hint = info_byte >> 4;
 | |
|         if (element_unit_hint > 1) {
 | |
|             dbgln_if(JPG_DEBUG, "{}: Unsupported unit hint in quantization table: {}!", stream.offset(), element_unit_hint);
 | |
|             return false;
 | |
|         }
 | |
|         u8 table_id = info_byte & 0x0F;
 | |
|         if (table_id > 1) {
 | |
|             dbgln_if(JPG_DEBUG, "{}: Unsupported quantization table id: {}!", stream.offset(), table_id);
 | |
|             return false;
 | |
|         }
 | |
|         u32* table = table_id == 0 ? context.luma_table : context.chroma_table;
 | |
|         for (int i = 0; i < 64; i++) {
 | |
|             if (element_unit_hint == 0) {
 | |
|                 u8 tmp = 0;
 | |
|                 stream >> tmp;
 | |
|                 if (stream.handle_any_error())
 | |
|                     return false;
 | |
|                 table[zigzag_map[i]] = tmp;
 | |
|             } else {
 | |
|                 table[zigzag_map[i]] = read_be_word(stream);
 | |
|                 if (stream.handle_any_error())
 | |
|                     return false;
 | |
|             }
 | |
|         }
 | |
|         if (stream.handle_any_error())
 | |
|             return false;
 | |
| 
 | |
|         bytes_to_read -= 1 + (element_unit_hint == 0 ? 64 : 128);
 | |
|     }
 | |
|     if (bytes_to_read != 0) {
 | |
|         dbgln_if(JPG_DEBUG, "{}: Invalid length for one or more quantization tables!", stream.offset());
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool skip_marker_with_length(InputMemoryStream& stream)
 | |
| {
 | |
|     u16 bytes_to_skip = read_be_word(stream);
 | |
|     bytes_to_skip -= 2;
 | |
|     if (stream.handle_any_error())
 | |
|         return false;
 | |
|     stream.discard_or_error(bytes_to_skip);
 | |
|     return !stream.handle_any_error();
 | |
| }
 | |
| 
 | |
| static void dequantize(JPGLoadingContext& context, Vector<Macroblock>& macroblocks)
 | |
| {
 | |
|     for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
 | |
|         for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
 | |
|             for (u32 i = 0; i < context.component_count; i++) {
 | |
|                 auto& component = context.components[i];
 | |
|                 const u32* table = component.qtable_id == 0 ? context.luma_table : context.chroma_table;
 | |
|                 for (u32 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) {
 | |
|                     for (u32 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) {
 | |
|                         u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
 | |
|                         Macroblock& block = macroblocks[mb_index];
 | |
|                         int* block_component = get_component(block, i);
 | |
|                         for (u32 k = 0; k < 64; k++)
 | |
|                             block_component[k] *= table[k];
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void inverse_dct(const JPGLoadingContext& context, Vector<Macroblock>& macroblocks)
 | |
| {
 | |
|     static const float m0 = 2.0 * AK::cos(1.0 / 16.0 * 2.0 * AK::Pi<double>);
 | |
|     static const float m1 = 2.0 * AK::cos(2.0 / 16.0 * 2.0 * AK::Pi<double>);
 | |
|     static const float m3 = 2.0 * AK::cos(2.0 / 16.0 * 2.0 * AK::Pi<double>);
 | |
|     static const float m5 = 2.0 * AK::cos(3.0 / 16.0 * 2.0 * AK::Pi<double>);
 | |
|     static const float m2 = m0 - m5;
 | |
|     static const float m4 = m0 + m5;
 | |
|     static const float s0 = AK::cos(0.0 / 16.0 * AK::Pi<double>) / sqrt(8);
 | |
|     static const float s1 = AK::cos(1.0 / 16.0 * AK::Pi<double>) / 2.0;
 | |
|     static const float s2 = AK::cos(2.0 / 16.0 * AK::Pi<double>) / 2.0;
 | |
|     static const float s3 = AK::cos(3.0 / 16.0 * AK::Pi<double>) / 2.0;
 | |
|     static const float s4 = AK::cos(4.0 / 16.0 * AK::Pi<double>) / 2.0;
 | |
|     static const float s5 = AK::cos(5.0 / 16.0 * AK::Pi<double>) / 2.0;
 | |
|     static const float s6 = AK::cos(6.0 / 16.0 * AK::Pi<double>) / 2.0;
 | |
|     static const float s7 = AK::cos(7.0 / 16.0 * AK::Pi<double>) / 2.0;
 | |
| 
 | |
|     for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
 | |
|         for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
 | |
|             for (u32 component_i = 0; component_i < context.component_count; component_i++) {
 | |
|                 auto& component = context.components[component_i];
 | |
|                 for (u8 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) {
 | |
|                     for (u8 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) {
 | |
|                         u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
 | |
|                         Macroblock& block = macroblocks[mb_index];
 | |
|                         i32* block_component = get_component(block, component_i);
 | |
|                         for (u32 k = 0; k < 8; ++k) {
 | |
|                             const float g0 = block_component[0 * 8 + k] * s0;
 | |
|                             const float g1 = block_component[4 * 8 + k] * s4;
 | |
|                             const float g2 = block_component[2 * 8 + k] * s2;
 | |
|                             const float g3 = block_component[6 * 8 + k] * s6;
 | |
|                             const float g4 = block_component[5 * 8 + k] * s5;
 | |
|                             const float g5 = block_component[1 * 8 + k] * s1;
 | |
|                             const float g6 = block_component[7 * 8 + k] * s7;
 | |
|                             const float g7 = block_component[3 * 8 + k] * s3;
 | |
| 
 | |
|                             const float f0 = g0;
 | |
|                             const float f1 = g1;
 | |
|                             const float f2 = g2;
 | |
|                             const float f3 = g3;
 | |
|                             const float f4 = g4 - g7;
 | |
|                             const float f5 = g5 + g6;
 | |
|                             const float f6 = g5 - g6;
 | |
|                             const float f7 = g4 + g7;
 | |
| 
 | |
|                             const float e0 = f0;
 | |
|                             const float e1 = f1;
 | |
|                             const float e2 = f2 - f3;
 | |
|                             const float e3 = f2 + f3;
 | |
|                             const float e4 = f4;
 | |
|                             const float e5 = f5 - f7;
 | |
|                             const float e6 = f6;
 | |
|                             const float e7 = f5 + f7;
 | |
|                             const float e8 = f4 + f6;
 | |
| 
 | |
|                             const float d0 = e0;
 | |
|                             const float d1 = e1;
 | |
|                             const float d2 = e2 * m1;
 | |
|                             const float d3 = e3;
 | |
|                             const float d4 = e4 * m2;
 | |
|                             const float d5 = e5 * m3;
 | |
|                             const float d6 = e6 * m4;
 | |
|                             const float d7 = e7;
 | |
|                             const float d8 = e8 * m5;
 | |
| 
 | |
|                             const float c0 = d0 + d1;
 | |
|                             const float c1 = d0 - d1;
 | |
|                             const float c2 = d2 - d3;
 | |
|                             const float c3 = d3;
 | |
|                             const float c4 = d4 + d8;
 | |
|                             const float c5 = d5 + d7;
 | |
|                             const float c6 = d6 - d8;
 | |
|                             const float c7 = d7;
 | |
|                             const float c8 = c5 - c6;
 | |
| 
 | |
|                             const float b0 = c0 + c3;
 | |
|                             const float b1 = c1 + c2;
 | |
|                             const float b2 = c1 - c2;
 | |
|                             const float b3 = c0 - c3;
 | |
|                             const float b4 = c4 - c8;
 | |
|                             const float b5 = c8;
 | |
|                             const float b6 = c6 - c7;
 | |
|                             const float b7 = c7;
 | |
| 
 | |
|                             block_component[0 * 8 + k] = b0 + b7;
 | |
|                             block_component[1 * 8 + k] = b1 + b6;
 | |
|                             block_component[2 * 8 + k] = b2 + b5;
 | |
|                             block_component[3 * 8 + k] = b3 + b4;
 | |
|                             block_component[4 * 8 + k] = b3 - b4;
 | |
|                             block_component[5 * 8 + k] = b2 - b5;
 | |
|                             block_component[6 * 8 + k] = b1 - b6;
 | |
|                             block_component[7 * 8 + k] = b0 - b7;
 | |
|                         }
 | |
|                         for (u32 l = 0; l < 8; ++l) {
 | |
|                             const float g0 = block_component[l * 8 + 0] * s0;
 | |
|                             const float g1 = block_component[l * 8 + 4] * s4;
 | |
|                             const float g2 = block_component[l * 8 + 2] * s2;
 | |
|                             const float g3 = block_component[l * 8 + 6] * s6;
 | |
|                             const float g4 = block_component[l * 8 + 5] * s5;
 | |
|                             const float g5 = block_component[l * 8 + 1] * s1;
 | |
|                             const float g6 = block_component[l * 8 + 7] * s7;
 | |
|                             const float g7 = block_component[l * 8 + 3] * s3;
 | |
| 
 | |
|                             const float f0 = g0;
 | |
|                             const float f1 = g1;
 | |
|                             const float f2 = g2;
 | |
|                             const float f3 = g3;
 | |
|                             const float f4 = g4 - g7;
 | |
|                             const float f5 = g5 + g6;
 | |
|                             const float f6 = g5 - g6;
 | |
|                             const float f7 = g4 + g7;
 | |
| 
 | |
|                             const float e0 = f0;
 | |
|                             const float e1 = f1;
 | |
|                             const float e2 = f2 - f3;
 | |
|                             const float e3 = f2 + f3;
 | |
|                             const float e4 = f4;
 | |
|                             const float e5 = f5 - f7;
 | |
|                             const float e6 = f6;
 | |
|                             const float e7 = f5 + f7;
 | |
|                             const float e8 = f4 + f6;
 | |
| 
 | |
|                             const float d0 = e0;
 | |
|                             const float d1 = e1;
 | |
|                             const float d2 = e2 * m1;
 | |
|                             const float d3 = e3;
 | |
|                             const float d4 = e4 * m2;
 | |
|                             const float d5 = e5 * m3;
 | |
|                             const float d6 = e6 * m4;
 | |
|                             const float d7 = e7;
 | |
|                             const float d8 = e8 * m5;
 | |
| 
 | |
|                             const float c0 = d0 + d1;
 | |
|                             const float c1 = d0 - d1;
 | |
|                             const float c2 = d2 - d3;
 | |
|                             const float c3 = d3;
 | |
|                             const float c4 = d4 + d8;
 | |
|                             const float c5 = d5 + d7;
 | |
|                             const float c6 = d6 - d8;
 | |
|                             const float c7 = d7;
 | |
|                             const float c8 = c5 - c6;
 | |
| 
 | |
|                             const float b0 = c0 + c3;
 | |
|                             const float b1 = c1 + c2;
 | |
|                             const float b2 = c1 - c2;
 | |
|                             const float b3 = c0 - c3;
 | |
|                             const float b4 = c4 - c8;
 | |
|                             const float b5 = c8;
 | |
|                             const float b6 = c6 - c7;
 | |
|                             const float b7 = c7;
 | |
| 
 | |
|                             block_component[l * 8 + 0] = b0 + b7;
 | |
|                             block_component[l * 8 + 1] = b1 + b6;
 | |
|                             block_component[l * 8 + 2] = b2 + b5;
 | |
|                             block_component[l * 8 + 3] = b3 + b4;
 | |
|                             block_component[l * 8 + 4] = b3 - b4;
 | |
|                             block_component[l * 8 + 5] = b2 - b5;
 | |
|                             block_component[l * 8 + 6] = b1 - b6;
 | |
|                             block_component[l * 8 + 7] = b0 - b7;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ycbcr_to_rgb(const JPGLoadingContext& context, Vector<Macroblock>& macroblocks)
 | |
| {
 | |
|     for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
 | |
|         for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
 | |
|             const u32 chroma_block_index = vcursor * context.mblock_meta.hpadded_count + hcursor;
 | |
|             const Macroblock& chroma = macroblocks[chroma_block_index];
 | |
|             // Overflows are intentional.
 | |
|             for (u8 vfactor_i = context.vsample_factor - 1; vfactor_i < context.vsample_factor; --vfactor_i) {
 | |
|                 for (u8 hfactor_i = context.hsample_factor - 1; hfactor_i < context.hsample_factor; --hfactor_i) {
 | |
|                     u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hcursor + hfactor_i);
 | |
|                     i32* y = macroblocks[mb_index].y;
 | |
|                     i32* cb = macroblocks[mb_index].cb;
 | |
|                     i32* cr = macroblocks[mb_index].cr;
 | |
|                     for (u8 i = 7; i < 8; --i) {
 | |
|                         for (u8 j = 7; j < 8; --j) {
 | |
|                             const u8 pixel = i * 8 + j;
 | |
|                             const u32 chroma_pxrow = (i / context.vsample_factor) + 4 * vfactor_i;
 | |
|                             const u32 chroma_pxcol = (j / context.hsample_factor) + 4 * hfactor_i;
 | |
|                             const u32 chroma_pixel = chroma_pxrow * 8 + chroma_pxcol;
 | |
|                             int r = y[pixel] + 1.402f * chroma.cr[chroma_pixel] + 128;
 | |
|                             int g = y[pixel] - 0.344f * chroma.cb[chroma_pixel] - 0.714f * chroma.cr[chroma_pixel] + 128;
 | |
|                             int b = y[pixel] + 1.772f * chroma.cb[chroma_pixel] + 128;
 | |
|                             y[pixel] = r < 0 ? 0 : (r > 255 ? 255 : r);
 | |
|                             cb[pixel] = g < 0 ? 0 : (g > 255 ? 255 : g);
 | |
|                             cr[pixel] = b < 0 ? 0 : (b > 255 ? 255 : b);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static bool compose_bitmap(JPGLoadingContext& context, const Vector<Macroblock>& macroblocks)
 | |
| {
 | |
|     auto bitmap_or_error = Bitmap::try_create(BitmapFormat::BGRx8888, { context.frame.width, context.frame.height });
 | |
|     if (bitmap_or_error.is_error())
 | |
|         return false;
 | |
|     context.bitmap = bitmap_or_error.release_value_but_fixme_should_propagate_errors();
 | |
|     if (bitmap_or_error.is_error())
 | |
|         return false;
 | |
| 
 | |
|     for (u32 y = context.frame.height - 1; y < context.frame.height; y--) {
 | |
|         const u32 block_row = y / 8;
 | |
|         const u32 pixel_row = y % 8;
 | |
|         for (u32 x = 0; x < context.frame.width; x++) {
 | |
|             const u32 block_column = x / 8;
 | |
|             auto& block = macroblocks[block_row * context.mblock_meta.hpadded_count + block_column];
 | |
|             const u32 pixel_column = x % 8;
 | |
|             const u32 pixel_index = pixel_row * 8 + pixel_column;
 | |
|             const Color color { (u8)block.y[pixel_index], (u8)block.cb[pixel_index], (u8)block.cr[pixel_index] };
 | |
|             context.bitmap->set_pixel(x, y, color);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool parse_header(InputMemoryStream& stream, JPGLoadingContext& context)
 | |
| {
 | |
|     auto marker = read_marker_at_cursor(stream);
 | |
|     if (stream.handle_any_error())
 | |
|         return false;
 | |
|     if (marker != JPG_SOI) {
 | |
|         dbgln_if(JPG_DEBUG, "{}: SOI not found: {:x}!", stream.offset(), marker);
 | |
|         return false;
 | |
|     }
 | |
|     for (;;) {
 | |
|         marker = read_marker_at_cursor(stream);
 | |
|         if (stream.handle_any_error())
 | |
|             return false;
 | |
| 
 | |
|         // Set frame type if the marker marks a new frame.
 | |
|         if (marker >= 0xFFC0 && marker <= 0xFFCF) {
 | |
|             // Ignore interleaved markers.
 | |
|             if (marker != 0xFFC4 && marker != 0xFFC8 && marker != 0xFFCC) {
 | |
|                 context.frame.type = static_cast<StartOfFrame::FrameType>(marker & 0xF);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         switch (marker) {
 | |
|         case JPG_INVALID:
 | |
|         case JPG_RST0:
 | |
|         case JPG_RST1:
 | |
|         case JPG_RST2:
 | |
|         case JPG_RST3:
 | |
|         case JPG_RST4:
 | |
|         case JPG_RST5:
 | |
|         case JPG_RST6:
 | |
|         case JPG_RST7:
 | |
|         case JPG_SOI:
 | |
|         case JPG_EOI:
 | |
|             dbgln_if(JPG_DEBUG, "{}: Unexpected marker {:x}!", stream.offset(), marker);
 | |
|             return false;
 | |
|         case JPG_SOF0:
 | |
|             if (!read_start_of_frame(stream, context))
 | |
|                 return false;
 | |
|             context.state = JPGLoadingContext::FrameDecoded;
 | |
|             break;
 | |
|         case JPG_DQT:
 | |
|             if (!read_quantization_table(stream, context))
 | |
|                 return false;
 | |
|             break;
 | |
|         case JPG_RST:
 | |
|             if (!read_reset_marker(stream, context))
 | |
|                 return false;
 | |
|             break;
 | |
|         case JPG_DHT:
 | |
|             if (!read_huffman_table(stream, context))
 | |
|                 return false;
 | |
|             break;
 | |
|         case JPG_SOS:
 | |
|             return read_start_of_scan(stream, context);
 | |
|         default:
 | |
|             if (!skip_marker_with_length(stream)) {
 | |
|                 dbgln_if(JPG_DEBUG, "{}: Error skipping marker: {:x}!", stream.offset(), marker);
 | |
|                 return false;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| static bool scan_huffman_stream(InputMemoryStream& stream, JPGLoadingContext& context)
 | |
| {
 | |
|     u8 last_byte;
 | |
|     u8 current_byte = 0;
 | |
|     stream >> current_byte;
 | |
|     if (stream.handle_any_error())
 | |
|         return false;
 | |
| 
 | |
|     for (;;) {
 | |
|         last_byte = current_byte;
 | |
|         stream >> current_byte;
 | |
|         if (stream.handle_any_error()) {
 | |
|             dbgln_if(JPG_DEBUG, "{}: EOI not found!", stream.offset());
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         if (last_byte == 0xFF) {
 | |
|             if (current_byte == 0xFF)
 | |
|                 continue;
 | |
|             if (current_byte == 0x00) {
 | |
|                 stream >> current_byte;
 | |
|                 if (stream.handle_any_error())
 | |
|                     return false;
 | |
|                 context.huffman_stream.stream.append(last_byte);
 | |
|                 continue;
 | |
|             }
 | |
|             Marker marker = 0xFF00 | current_byte;
 | |
|             if (marker == JPG_EOI)
 | |
|                 return true;
 | |
|             if (marker >= JPG_RST0 && marker <= JPG_RST7) {
 | |
|                 context.huffman_stream.stream.append(marker);
 | |
|                 stream >> current_byte;
 | |
|                 if (stream.handle_any_error())
 | |
|                     return false;
 | |
|                 continue;
 | |
|             }
 | |
|             dbgln_if(JPG_DEBUG, "{}: Invalid marker: {:x}!", stream.offset(), marker);
 | |
|             return false;
 | |
|         } else {
 | |
|             context.huffman_stream.stream.append(last_byte);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| static bool decode_jpg(JPGLoadingContext& context)
 | |
| {
 | |
|     InputMemoryStream stream { { context.data, context.data_size } };
 | |
| 
 | |
|     if (!parse_header(stream, context))
 | |
|         return false;
 | |
|     if (!scan_huffman_stream(stream, context))
 | |
|         return false;
 | |
| 
 | |
|     auto result = decode_huffman_stream(context);
 | |
|     if (!result.has_value()) {
 | |
|         dbgln_if(JPG_DEBUG, "{}: Failed to decode Macroblocks!", stream.offset());
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     auto macroblocks = result.release_value();
 | |
|     dequantize(context, macroblocks);
 | |
|     inverse_dct(context, macroblocks);
 | |
|     ycbcr_to_rgb(context, macroblocks);
 | |
|     if (!compose_bitmap(context, macroblocks))
 | |
|         return false;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| JPGImageDecoderPlugin::JPGImageDecoderPlugin(const u8* data, size_t size)
 | |
| {
 | |
|     m_context = make<JPGLoadingContext>();
 | |
|     m_context->data = data;
 | |
|     m_context->data_size = size;
 | |
|     m_context->huffman_stream.stream.ensure_capacity(50 * KiB);
 | |
| }
 | |
| 
 | |
| JPGImageDecoderPlugin::~JPGImageDecoderPlugin()
 | |
| {
 | |
| }
 | |
| 
 | |
| IntSize JPGImageDecoderPlugin::size()
 | |
| {
 | |
|     if (m_context->state == JPGLoadingContext::State::Error)
 | |
|         return {};
 | |
|     if (m_context->state >= JPGLoadingContext::State::FrameDecoded)
 | |
|         return { m_context->frame.width, m_context->frame.height };
 | |
| 
 | |
|     return {};
 | |
| }
 | |
| 
 | |
| void JPGImageDecoderPlugin::set_volatile()
 | |
| {
 | |
|     if (m_context->bitmap)
 | |
|         m_context->bitmap->set_volatile();
 | |
| }
 | |
| 
 | |
| bool JPGImageDecoderPlugin::set_nonvolatile(bool& was_purged)
 | |
| {
 | |
|     if (!m_context->bitmap)
 | |
|         return false;
 | |
|     return m_context->bitmap->set_nonvolatile(was_purged);
 | |
| }
 | |
| 
 | |
| bool JPGImageDecoderPlugin::sniff()
 | |
| {
 | |
|     return m_context->data_size > 3
 | |
|         && m_context->data[0] == 0xFF
 | |
|         && m_context->data[1] == 0xD8
 | |
|         && m_context->data[2] == 0xFF;
 | |
| }
 | |
| 
 | |
| bool JPGImageDecoderPlugin::is_animated()
 | |
| {
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| size_t JPGImageDecoderPlugin::loop_count()
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| size_t JPGImageDecoderPlugin::frame_count()
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| ErrorOr<ImageFrameDescriptor> JPGImageDecoderPlugin::frame(size_t index)
 | |
| {
 | |
|     if (index > 0)
 | |
|         return Error::from_string_literal("JPGImageDecoderPlugin: Invalid frame index"sv);
 | |
| 
 | |
|     if (m_context->state == JPGLoadingContext::State::Error)
 | |
|         return Error::from_string_literal("JPGImageDecoderPlugin: Decoding failed"sv);
 | |
| 
 | |
|     if (m_context->state < JPGLoadingContext::State::BitmapDecoded) {
 | |
|         if (!decode_jpg(*m_context)) {
 | |
|             m_context->state = JPGLoadingContext::State::Error;
 | |
|             return Error::from_string_literal("JPGImageDecoderPlugin: Decoding failed"sv);
 | |
|         }
 | |
|         m_context->state = JPGLoadingContext::State::BitmapDecoded;
 | |
|     }
 | |
| 
 | |
|     return ImageFrameDescriptor { m_context->bitmap, 0 };
 | |
| }
 | |
| 
 | |
| }
 | 
