1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-18 18:55:07 +00:00
serenity/Userland/Libraries/LibVideo/VP9/Parser.cpp
Zaggy1024 b37ea6b414 LibVideo: Allow bit stream reads to throw errors
Errors are propagated to the user of the decoder so that they can be
aware of specific places where a read failed.
2022-10-09 20:32:40 -06:00

1411 lines
48 KiB
C++

/*
* Copyright (c) 2021, Hunter Salyer <thefalsehonesty@gmail.com>
* Copyright (c) 2022, Gregory Bertilson <zaggy1024@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "Parser.h"
#include "Decoder.h"
#include "Utilities.h"
#include <AK/String.h>
namespace Video::VP9 {
Parser::Parser(Decoder& decoder)
: m_probability_tables(make<ProbabilityTables>())
, m_tree_parser(make<TreeParser>(*this))
, m_decoder(decoder)
{
}
Parser::~Parser()
{
cleanup_tile_allocations();
free(m_prev_segment_ids);
}
void Parser::cleanup_tile_allocations()
{
free(m_skips);
free(m_tx_sizes);
free(m_mi_sizes);
free(m_y_modes);
free(m_segment_ids);
free(m_ref_frames);
free(m_interp_filters);
free(m_mvs);
free(m_sub_mvs);
free(m_sub_modes);
}
/* (6.1) */
ErrorOr<void> Parser::parse_frame(ByteBuffer const& frame_data)
{
m_bit_stream = make<BitStream>(frame_data.data(), frame_data.size());
m_syntax_element_counter = make<SyntaxElementCounter>();
TRY(uncompressed_header());
dbgln("Finished reading uncompressed header");
if (!trailing_bits())
return Error::from_string_literal("parse_frame: Trailing bits were non-zero");
if (m_header_size_in_bytes == 0)
return Error::from_string_literal("parse_frame: Frame header is zero-sized");
m_probability_tables->load_probs(m_frame_context_idx);
m_probability_tables->load_probs2(m_frame_context_idx);
m_syntax_element_counter->clear_counts();
TRY(m_bit_stream->init_bool(m_header_size_in_bytes));
dbgln("Reading compressed header with size {}", m_header_size_in_bytes);
TRY(compressed_header());
dbgln("Finished reading compressed header");
TRY(m_bit_stream->exit_bool());
TRY(decode_tiles());
TRY(refresh_probs());
dbgln("Finished reading frame!");
return {};
}
bool Parser::trailing_bits()
{
while (m_bit_stream->bits_remaining() & 7u) {
if (MUST(m_bit_stream->read_bit()))
return false;
}
return true;
}
ErrorOr<void> Parser::refresh_probs()
{
if (!m_error_resilient_mode && !m_frame_parallel_decoding_mode) {
m_probability_tables->load_probs(m_frame_context_idx);
TRY(m_decoder.adapt_coef_probs());
if (!m_frame_is_intra) {
m_probability_tables->load_probs2(m_frame_context_idx);
TRY(m_decoder.adapt_non_coef_probs());
}
}
if (m_refresh_frame_context)
m_probability_tables->save_probs(m_frame_context_idx);
return {};
}
/* (6.2) */
ErrorOr<void> Parser::uncompressed_header()
{
auto frame_marker = TRY(m_bit_stream->read_f(2));
if (frame_marker != 2)
return Error::from_string_literal("uncompressed_header: Frame marker must be 2");
auto profile_low_bit = TRY(m_bit_stream->read_bit());
auto profile_high_bit = TRY(m_bit_stream->read_bit());
m_profile = (profile_high_bit << 1u) + profile_low_bit;
if (m_profile == 3 && TRY(m_bit_stream->read_bit()))
return Error::from_string_literal("uncompressed_header: Profile 3 reserved bit was non-zero");
auto show_existing_frame = TRY(m_bit_stream->read_bit());
if (show_existing_frame) {
m_frame_to_show_map_index = TRY(m_bit_stream->read_f(3));
m_header_size_in_bytes = 0;
m_refresh_frame_flags = 0;
m_loop_filter_level = 0;
return {};
}
m_last_frame_type = m_frame_type;
m_frame_type = TRY(read_frame_type());
m_show_frame = TRY(m_bit_stream->read_bit());
m_error_resilient_mode = TRY(m_bit_stream->read_bit());
if (m_frame_type == KeyFrame) {
TRY(frame_sync_code());
TRY(color_config());
TRY(frame_size());
TRY(render_size());
m_refresh_frame_flags = 0xFF;
m_frame_is_intra = true;
} else {
m_frame_is_intra = !m_show_frame && TRY(m_bit_stream->read_bit());
if (!m_error_resilient_mode) {
m_reset_frame_context = TRY(m_bit_stream->read_f(2));
} else {
m_reset_frame_context = 0;
}
if (m_frame_is_intra) {
TRY(frame_sync_code());
if (m_profile > 0) {
TRY(color_config());
} else {
m_color_space = Bt601;
m_subsampling_x = true;
m_subsampling_y = true;
m_bit_depth = 8;
}
m_refresh_frame_flags = TRY(m_bit_stream->read_f8());
TRY(frame_size());
TRY(render_size());
} else {
m_refresh_frame_flags = TRY(m_bit_stream->read_f8());
for (auto i = 0; i < 3; i++) {
m_ref_frame_idx[i] = TRY(m_bit_stream->read_f(3));
m_ref_frame_sign_bias[LastFrame + i] = TRY(m_bit_stream->read_bit());
}
TRY(frame_size_with_refs());
m_allow_high_precision_mv = TRY(m_bit_stream->read_bit());
TRY(read_interpolation_filter());
}
}
if (!m_error_resilient_mode) {
m_refresh_frame_context = TRY(m_bit_stream->read_bit());
m_frame_parallel_decoding_mode = TRY(m_bit_stream->read_bit());
} else {
m_refresh_frame_context = false;
m_frame_parallel_decoding_mode = true;
}
m_frame_context_idx = TRY(m_bit_stream->read_f(2));
if (m_frame_is_intra || m_error_resilient_mode) {
setup_past_independence();
if (m_frame_type == KeyFrame || m_error_resilient_mode || m_reset_frame_context == 3) {
for (auto i = 0; i < 4; i++) {
m_probability_tables->save_probs(i);
}
} else if (m_reset_frame_context == 2) {
m_probability_tables->save_probs(m_frame_context_idx);
}
m_frame_context_idx = 0;
}
TRY(loop_filter_params());
TRY(quantization_params());
TRY(segmentation_params());
TRY(tile_info());
m_header_size_in_bytes = TRY(m_bit_stream->read_f16());
return {};
}
ErrorOr<void> Parser::frame_sync_code()
{
if (TRY(m_bit_stream->read_f8()) != 0x49)
return Error::from_string_literal("frame_sync_code: Byte 0 was not 0x49.");
if (TRY(m_bit_stream->read_f8()) != 0x83)
return Error::from_string_literal("frame_sync_code: Byte 1 was not 0x83.");
if (TRY(m_bit_stream->read_f8()) != 0x42)
return Error::from_string_literal("frame_sync_code: Byte 2 was not 0x42.");
return {};
}
ErrorOr<void> Parser::color_config()
{
if (m_profile >= 2) {
m_bit_depth = TRY(m_bit_stream->read_bit()) ? 12 : 10;
} else {
m_bit_depth = 8;
}
auto color_space = TRY(m_bit_stream->read_f(3));
VERIFY(color_space <= RGB);
m_color_space = static_cast<ColorSpace>(color_space);
if (color_space != RGB) {
m_color_range = TRY(read_color_range());
if (m_profile == 1 || m_profile == 3) {
m_subsampling_x = TRY(m_bit_stream->read_bit());
m_subsampling_y = TRY(m_bit_stream->read_bit());
if (TRY(m_bit_stream->read_bit()))
return Error::from_string_literal("color_config: Subsampling reserved zero was set");
} else {
m_subsampling_x = true;
m_subsampling_y = true;
}
} else {
m_color_range = FullSwing;
if (m_profile == 1 || m_profile == 3) {
m_subsampling_x = false;
m_subsampling_y = false;
if (TRY(m_bit_stream->read_bit()))
return Error::from_string_literal("color_config: RGB reserved zero was set");
}
}
return {};
}
ErrorOr<void> Parser::frame_size()
{
m_frame_width = TRY(m_bit_stream->read_f16()) + 1;
m_frame_height = TRY(m_bit_stream->read_f16()) + 1;
compute_image_size();
return {};
}
ErrorOr<void> Parser::render_size()
{
if (TRY(m_bit_stream->read_bit())) {
m_render_width = TRY(m_bit_stream->read_f16()) + 1;
m_render_height = TRY(m_bit_stream->read_f16()) + 1;
} else {
m_render_width = m_frame_width;
m_render_height = m_frame_height;
}
return {};
}
ErrorOr<void> Parser::frame_size_with_refs()
{
bool found_ref;
for (auto frame_index : m_ref_frame_idx) {
found_ref = TRY(m_bit_stream->read_bit());
if (found_ref) {
dbgln("Reading size from ref frame {}", frame_index);
m_frame_width = m_ref_frame_width[frame_index];
m_frame_height = m_ref_frame_height[frame_index];
break;
}
}
if (!found_ref) {
TRY(frame_size());
} else {
compute_image_size();
}
return render_size();
}
void Parser::compute_image_size()
{
m_mi_cols = (m_frame_width + 7u) >> 3u;
m_mi_rows = (m_frame_height + 7u) >> 3u;
m_sb64_cols = (m_mi_cols + 7u) >> 3u;
m_sb64_rows = (m_mi_rows + 7u) >> 3u;
}
ErrorOr<void> Parser::read_interpolation_filter()
{
if (TRY(m_bit_stream->read_bit())) {
m_interpolation_filter = Switchable;
} else {
m_interpolation_filter = literal_to_type[TRY(m_bit_stream->read_f(2))];
}
return {};
}
ErrorOr<void> Parser::loop_filter_params()
{
m_loop_filter_level = TRY(m_bit_stream->read_f(6));
m_loop_filter_sharpness = TRY(m_bit_stream->read_f(3));
m_loop_filter_delta_enabled = TRY(m_bit_stream->read_bit());
if (m_loop_filter_delta_enabled) {
if (TRY(m_bit_stream->read_bit())) {
for (auto& loop_filter_ref_delta : m_loop_filter_ref_deltas) {
if (TRY(m_bit_stream->read_bit()))
loop_filter_ref_delta = TRY(m_bit_stream->read_s(6));
}
for (auto& loop_filter_mode_delta : m_loop_filter_mode_deltas) {
if (TRY(m_bit_stream->read_bit()))
loop_filter_mode_delta = TRY(m_bit_stream->read_s(6));
}
}
}
return {};
}
ErrorOr<void> Parser::quantization_params()
{
auto base_q_idx = TRY(m_bit_stream->read_f8());
auto delta_q_y_dc = TRY(read_delta_q());
auto delta_q_uv_dc = TRY(read_delta_q());
auto delta_q_uv_ac = TRY(read_delta_q());
m_lossless = base_q_idx == 0 && delta_q_y_dc == 0 && delta_q_uv_dc == 0 && delta_q_uv_ac == 0;
return {};
}
ErrorOr<i8> Parser::read_delta_q()
{
if (TRY(m_bit_stream->read_bit()))
return m_bit_stream->read_s(4);
return 0;
}
ErrorOr<void> Parser::segmentation_params()
{
m_segmentation_enabled = TRY(m_bit_stream->read_bit());
if (!m_segmentation_enabled)
return {};
m_segmentation_update_map = TRY(m_bit_stream->read_bit());
if (m_segmentation_update_map) {
for (auto& segmentation_tree_prob : m_segmentation_tree_probs)
segmentation_tree_prob = TRY(read_prob());
m_segmentation_temporal_update = TRY(m_bit_stream->read_bit());
for (auto& segmentation_pred_prob : m_segmentation_pred_prob)
segmentation_pred_prob = m_segmentation_temporal_update ? TRY(read_prob()) : 255;
}
auto segmentation_update_data = (TRY(m_bit_stream->read_bit()));
if (!segmentation_update_data)
return {};
m_segmentation_abs_or_delta_update = TRY(m_bit_stream->read_bit());
for (auto i = 0; i < MAX_SEGMENTS; i++) {
for (auto j = 0; j < SEG_LVL_MAX; j++) {
auto feature_value = 0;
auto feature_enabled = TRY(m_bit_stream->read_bit());
m_feature_enabled[i][j] = feature_enabled;
if (feature_enabled) {
auto bits_to_read = segmentation_feature_bits[j];
feature_value = TRY(m_bit_stream->read_f(bits_to_read));
if (segmentation_feature_signed[j]) {
if (TRY(m_bit_stream->read_bit()))
feature_value = -feature_value;
}
}
m_feature_data[i][j] = feature_value;
}
}
return {};
}
ErrorOr<u8> Parser::read_prob()
{
if (TRY(m_bit_stream->read_bit()))
return TRY(m_bit_stream->read_f8());
return 255;
}
ErrorOr<void> Parser::tile_info()
{
auto min_log2_tile_cols = calc_min_log2_tile_cols();
auto max_log2_tile_cols = calc_max_log2_tile_cols();
m_tile_cols_log2 = min_log2_tile_cols;
while (m_tile_cols_log2 < max_log2_tile_cols) {
if (TRY(m_bit_stream->read_bit()))
m_tile_cols_log2++;
else
break;
}
m_tile_rows_log2 = TRY(m_bit_stream->read_bit());
if (m_tile_rows_log2) {
m_tile_rows_log2 += TRY(m_bit_stream->read_bit());
}
return {};
}
u16 Parser::calc_min_log2_tile_cols()
{
auto min_log_2 = 0u;
while ((u32)(MAX_TILE_WIDTH_B64 << min_log_2) < m_sb64_cols)
min_log_2++;
return min_log_2;
}
u16 Parser::calc_max_log2_tile_cols()
{
u16 max_log_2 = 1;
while ((m_sb64_cols >> max_log_2) >= MIN_TILE_WIDTH_B64)
max_log_2++;
return max_log_2 - 1;
}
void Parser::setup_past_independence()
{
for (auto i = 0; i < 8; i++) {
for (auto j = 0; j < 4; j++) {
m_feature_data[i][j] = 0;
m_feature_enabled[i][j] = false;
}
}
m_segmentation_abs_or_delta_update = false;
if (m_prev_segment_ids)
free(m_prev_segment_ids);
m_prev_segment_ids = static_cast<u8*>(kmalloc_array(m_mi_rows, m_mi_cols));
m_loop_filter_delta_enabled = true;
m_loop_filter_ref_deltas[IntraFrame] = 1;
m_loop_filter_ref_deltas[LastFrame] = 0;
m_loop_filter_ref_deltas[GoldenFrame] = -1;
m_loop_filter_ref_deltas[AltRefFrame] = -1;
for (auto& loop_filter_mode_delta : m_loop_filter_mode_deltas)
loop_filter_mode_delta = 0;
m_probability_tables->reset_probs();
}
ErrorOr<void> Parser::compressed_header()
{
TRY(read_tx_mode());
if (m_tx_mode == TXModeSelect)
TRY(tx_mode_probs());
TRY(read_coef_probs());
TRY(read_skip_prob());
if (!m_frame_is_intra) {
TRY(read_inter_mode_probs());
if (m_interpolation_filter == Switchable)
TRY(read_interp_filter_probs());
TRY(read_is_inter_probs());
TRY(frame_reference_mode());
TRY(frame_reference_mode_probs());
TRY(read_y_mode_probs());
TRY(read_partition_probs());
TRY(mv_probs());
}
return {};
}
ErrorOr<void> Parser::read_tx_mode()
{
if (m_lossless) {
m_tx_mode = Only_4x4;
} else {
auto tx_mode = TRY(m_bit_stream->read_literal(2));
if (tx_mode == Allow_32x32)
tx_mode += TRY(m_bit_stream->read_literal(1));
m_tx_mode = static_cast<TXMode>(tx_mode);
}
return {};
}
ErrorOr<void> Parser::tx_mode_probs()
{
auto& tx_probs = m_probability_tables->tx_probs();
for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) {
for (auto j = 0; j < TX_SIZES - 3; j++)
tx_probs[TX_8x8][i][j] = TRY(diff_update_prob(tx_probs[TX_8x8][i][j]));
}
for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) {
for (auto j = 0; j < TX_SIZES - 2; j++)
tx_probs[TX_16x16][i][j] = TRY(diff_update_prob(tx_probs[TX_16x16][i][j]));
}
for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) {
for (auto j = 0; j < TX_SIZES - 1; j++)
tx_probs[TX_32x32][i][j] = TRY(diff_update_prob(tx_probs[TX_32x32][i][j]));
}
return {};
}
ErrorOr<u8> Parser::diff_update_prob(u8 prob)
{
auto update_prob = TRY(m_bit_stream->read_bool(252));
if (update_prob) {
auto delta_prob = TRY(decode_term_subexp());
prob = inv_remap_prob(delta_prob, prob);
}
return prob;
}
ErrorOr<u8> Parser::decode_term_subexp()
{
if (TRY(m_bit_stream->read_literal(1)) == 0)
return TRY(m_bit_stream->read_literal(4));
if (TRY(m_bit_stream->read_literal(1)) == 0)
return TRY(m_bit_stream->read_literal(4)) + 16;
if (TRY(m_bit_stream->read_literal(1)) == 0)
return TRY(m_bit_stream->read_literal(4)) + 32;
auto v = TRY(m_bit_stream->read_literal(7));
if (v < 65)
return v + 64;
return (v << 1u) - 1 + TRY(m_bit_stream->read_literal(1));
}
u8 Parser::inv_remap_prob(u8 delta_prob, u8 prob)
{
u8 m = prob - 1;
auto v = inv_map_table[delta_prob];
if ((m << 1u) <= 255)
return 1 + inv_recenter_nonneg(v, m);
return 255 - inv_recenter_nonneg(v, 254 - m);
}
u8 Parser::inv_recenter_nonneg(u8 v, u8 m)
{
if (v > 2 * m)
return v;
if (v & 1u)
return m - ((v + 1u) >> 1u);
return m + (v >> 1u);
}
ErrorOr<void> Parser::read_coef_probs()
{
m_max_tx_size = tx_mode_to_biggest_tx_size[m_tx_mode];
for (u8 tx_size = 0; tx_size <= m_max_tx_size; tx_size++) {
auto update_probs = TRY(m_bit_stream->read_literal(1));
if (update_probs == 1) {
for (auto i = 0; i < 2; i++) {
for (auto j = 0; j < 2; j++) {
for (auto k = 0; k < 6; k++) {
auto max_l = (k == 0) ? 3 : 6;
for (auto l = 0; l < max_l; l++) {
for (auto m = 0; m < 3; m++) {
auto& coef_probs = m_probability_tables->coef_probs()[tx_size];
coef_probs[i][j][k][l][m] = TRY(diff_update_prob(coef_probs[i][j][k][l][m]));
}
}
}
}
}
}
}
return {};
}
ErrorOr<void> Parser::read_skip_prob()
{
for (auto i = 0; i < SKIP_CONTEXTS; i++)
m_probability_tables->skip_prob()[i] = TRY(diff_update_prob(m_probability_tables->skip_prob()[i]));
return {};
}
ErrorOr<void> Parser::read_inter_mode_probs()
{
for (auto i = 0; i < INTER_MODE_CONTEXTS; i++) {
for (auto j = 0; j < INTER_MODES - 1; j++)
m_probability_tables->inter_mode_probs()[i][j] = TRY(diff_update_prob(m_probability_tables->inter_mode_probs()[i][j]));
}
return {};
}
ErrorOr<void> Parser::read_interp_filter_probs()
{
for (auto i = 0; i < INTERP_FILTER_CONTEXTS; i++) {
for (auto j = 0; j < SWITCHABLE_FILTERS - 1; j++)
m_probability_tables->interp_filter_probs()[i][j] = TRY(diff_update_prob(m_probability_tables->interp_filter_probs()[i][j]));
}
return {};
}
ErrorOr<void> Parser::read_is_inter_probs()
{
for (auto i = 0; i < IS_INTER_CONTEXTS; i++)
m_probability_tables->is_inter_prob()[i] = TRY(diff_update_prob(m_probability_tables->is_inter_prob()[i]));
return {};
}
ErrorOr<void> Parser::frame_reference_mode()
{
auto compound_reference_allowed = false;
for (size_t i = 2; i <= REFS_PER_FRAME; i++) {
if (m_ref_frame_sign_bias[i] != m_ref_frame_sign_bias[1])
compound_reference_allowed = true;
}
if (compound_reference_allowed) {
auto non_single_reference = TRY(m_bit_stream->read_literal(1));
if (non_single_reference == 0) {
m_reference_mode = SingleReference;
} else {
auto reference_select = TRY(m_bit_stream->read_literal(1));
if (reference_select == 0)
m_reference_mode = CompoundReference;
else
m_reference_mode = ReferenceModeSelect;
setup_compound_reference_mode();
}
} else {
m_reference_mode = SingleReference;
}
return {};
}
ErrorOr<void> Parser::frame_reference_mode_probs()
{
if (m_reference_mode == ReferenceModeSelect) {
for (auto i = 0; i < COMP_MODE_CONTEXTS; i++) {
auto& comp_mode_prob = m_probability_tables->comp_mode_prob();
comp_mode_prob[i] = TRY(diff_update_prob(comp_mode_prob[i]));
}
}
if (m_reference_mode != CompoundReference) {
for (auto i = 0; i < REF_CONTEXTS; i++) {
auto& single_ref_prob = m_probability_tables->single_ref_prob();
single_ref_prob[i][0] = TRY(diff_update_prob(single_ref_prob[i][0]));
single_ref_prob[i][1] = TRY(diff_update_prob(single_ref_prob[i][1]));
}
}
if (m_reference_mode != SingleReference) {
for (auto i = 0; i < REF_CONTEXTS; i++) {
auto& comp_ref_prob = m_probability_tables->comp_ref_prob();
comp_ref_prob[i] = TRY(diff_update_prob(comp_ref_prob[i]));
}
}
return {};
}
ErrorOr<void> Parser::read_y_mode_probs()
{
for (auto i = 0; i < BLOCK_SIZE_GROUPS; i++) {
for (auto j = 0; j < INTRA_MODES - 1; j++) {
auto& y_mode_probs = m_probability_tables->y_mode_probs();
y_mode_probs[i][j] = TRY(diff_update_prob(y_mode_probs[i][j]));
}
}
return {};
}
ErrorOr<void> Parser::read_partition_probs()
{
for (auto i = 0; i < PARTITION_CONTEXTS; i++) {
for (auto j = 0; j < PARTITION_TYPES - 1; j++) {
auto& partition_probs = m_probability_tables->partition_probs();
partition_probs[i][j] = TRY(diff_update_prob(partition_probs[i][j]));
}
}
return {};
}
ErrorOr<void> Parser::mv_probs()
{
for (auto j = 0; j < MV_JOINTS - 1; j++) {
auto& mv_joint_probs = m_probability_tables->mv_joint_probs();
mv_joint_probs[j] = TRY(update_mv_prob(mv_joint_probs[j]));
}
for (auto i = 0; i < 2; i++) {
auto& mv_sign_prob = m_probability_tables->mv_sign_prob();
mv_sign_prob[i] = TRY(update_mv_prob(mv_sign_prob[i]));
for (auto j = 0; j < MV_CLASSES - 1; j++) {
auto& mv_class_probs = m_probability_tables->mv_class_probs();
mv_class_probs[i][j] = TRY(update_mv_prob(mv_class_probs[i][j]));
}
auto& mv_class0_bit_prob = m_probability_tables->mv_class0_bit_prob();
mv_class0_bit_prob[i] = TRY(update_mv_prob(mv_class0_bit_prob[i]));
for (auto j = 0; j < MV_OFFSET_BITS; j++) {
auto& mv_bits_prob = m_probability_tables->mv_bits_prob();
mv_bits_prob[i][j] = TRY(update_mv_prob(mv_bits_prob[i][j]));
}
}
for (auto i = 0; i < 2; i++) {
for (auto j = 0; j < CLASS0_SIZE; j++) {
for (auto k = 0; k < MV_FR_SIZE - 1; k++) {
auto& mv_class0_fr_probs = m_probability_tables->mv_class0_fr_probs();
mv_class0_fr_probs[i][j][k] = TRY(update_mv_prob(mv_class0_fr_probs[i][j][k]));
}
}
for (auto k = 0; k < MV_FR_SIZE - 1; k++) {
auto& mv_fr_probs = m_probability_tables->mv_fr_probs();
mv_fr_probs[i][k] = TRY(update_mv_prob(mv_fr_probs[i][k]));
}
}
if (m_allow_high_precision_mv) {
for (auto i = 0; i < 2; i++) {
auto& mv_class0_hp_prob = m_probability_tables->mv_class0_hp_prob();
auto& mv_hp_prob = m_probability_tables->mv_hp_prob();
mv_class0_hp_prob[i] = TRY(update_mv_prob(mv_class0_hp_prob[i]));
mv_hp_prob[i] = TRY(update_mv_prob(mv_hp_prob[i]));
}
}
return {};
}
ErrorOr<u8> Parser::update_mv_prob(u8 prob)
{
if (TRY(m_bit_stream->read_bool(252))) {
return (TRY(m_bit_stream->read_literal(7)) << 1u) | 1u;
}
return prob;
}
void Parser::setup_compound_reference_mode()
{
if (m_ref_frame_sign_bias[LastFrame] == m_ref_frame_sign_bias[GoldenFrame]) {
m_comp_fixed_ref = AltRefFrame;
m_comp_var_ref[0] = LastFrame;
m_comp_var_ref[1] = GoldenFrame;
} else if (m_ref_frame_sign_bias[LastFrame] == m_ref_frame_sign_bias[AltRefFrame]) {
m_comp_fixed_ref = GoldenFrame;
m_comp_var_ref[0] = LastFrame;
m_comp_var_ref[1] = AltRefFrame;
} else {
m_comp_fixed_ref = LastFrame;
m_comp_var_ref[0] = GoldenFrame;
m_comp_var_ref[1] = AltRefFrame;
}
}
void Parser::allocate_tile_data()
{
auto dimensions = m_mi_rows * m_mi_cols;
if (dimensions == m_allocated_dimensions)
return;
cleanup_tile_allocations();
m_skips = static_cast<bool*>(kmalloc_array(dimensions, sizeof(bool)));
m_tx_sizes = static_cast<TXSize*>(kmalloc_array(dimensions, sizeof(TXSize)));
m_mi_sizes = static_cast<u32*>(kmalloc_array(dimensions, sizeof(u32)));
m_y_modes = static_cast<u8*>(kmalloc_array(dimensions, sizeof(u8)));
m_segment_ids = static_cast<u8*>(kmalloc_array(dimensions, sizeof(u8)));
m_ref_frames = static_cast<ReferenceFrame*>(kmalloc_array(dimensions, 2, sizeof(ReferenceFrame)));
m_interp_filters = static_cast<InterpolationFilter*>(kmalloc_array(dimensions, sizeof(InterpolationFilter)));
m_mvs = static_cast<MV*>(kmalloc_array(dimensions, 2, sizeof(MV)));
m_sub_mvs = static_cast<MV*>(kmalloc_array(dimensions, 8, sizeof(MV)));
m_sub_modes = static_cast<IntraMode*>(kmalloc_array(dimensions, 4, sizeof(IntraMode)));
m_allocated_dimensions = dimensions;
}
ErrorOr<void> Parser::decode_tiles()
{
auto tile_cols = 1 << m_tile_cols_log2;
auto tile_rows = 1 << m_tile_rows_log2;
allocate_tile_data();
clear_above_context();
for (auto tile_row = 0; tile_row < tile_rows; tile_row++) {
for (auto tile_col = 0; tile_col < tile_cols; tile_col++) {
auto last_tile = (tile_row == tile_rows - 1) && (tile_col == tile_cols - 1);
u64 tile_size;
if (last_tile)
tile_size = m_bit_stream->bytes_remaining();
else
tile_size = TRY(m_bit_stream->read_f(32));
m_mi_row_start = get_tile_offset(tile_row, m_mi_rows, m_tile_rows_log2);
m_mi_row_end = get_tile_offset(tile_row + 1, m_mi_rows, m_tile_rows_log2);
m_mi_col_start = get_tile_offset(tile_col, m_mi_cols, m_tile_cols_log2);
m_mi_col_end = get_tile_offset(tile_col + 1, m_mi_cols, m_tile_cols_log2);
TRY(m_bit_stream->init_bool(tile_size));
TRY(decode_tile());
TRY(m_bit_stream->exit_bool());
}
}
return {};
}
void Parser::clear_context(Vector<u8>& context, size_t size)
{
context.resize_and_keep_capacity(size);
__builtin_memset(context.data(), 0, sizeof(u8) * size);
}
void Parser::clear_context(Vector<Vector<u8>>& context, size_t outer_size, size_t inner_size)
{
if (context.size() < outer_size)
context.resize(outer_size);
for (auto& sub_vector : context)
clear_context(sub_vector, inner_size);
}
void Parser::clear_above_context()
{
clear_context(m_above_nonzero_context, 3, 2 * m_mi_cols);
clear_context(m_above_seg_pred_context, m_mi_cols);
clear_context(m_above_partition_context, m_sb64_cols * 8);
}
u32 Parser::get_tile_offset(u32 tile_num, u32 mis, u32 tile_size_log2)
{
u32 super_blocks = (mis + 7) >> 3u;
u32 offset = ((tile_num * super_blocks) >> tile_size_log2) << 3u;
return min(offset, mis);
}
ErrorOr<void> Parser::decode_tile()
{
for (auto row = m_mi_row_start; row < m_mi_row_end; row += 8) {
clear_left_context();
m_row = row;
for (auto col = m_mi_col_start; col < m_mi_col_end; col += 8) {
m_col = col;
TRY(decode_partition(row, col, Block_64x64));
}
}
return {};
}
void Parser::clear_left_context()
{
clear_context(m_left_nonzero_context, 3, 2 * m_mi_rows);
clear_context(m_left_seg_pred_context, m_mi_rows);
clear_context(m_left_partition_context, m_sb64_rows * 8);
}
ErrorOr<void> Parser::decode_partition(u32 row, u32 col, u8 block_subsize)
{
if (row >= m_mi_rows || col >= m_mi_cols)
return Error::from_string_literal("decode_partition: Row or column were outside valid ranges");
m_block_subsize = block_subsize;
m_num_8x8 = num_8x8_blocks_wide_lookup[block_subsize];
auto half_block_8x8 = m_num_8x8 >> 1;
m_has_rows = (row + half_block_8x8) < m_mi_rows;
m_has_cols = (col + half_block_8x8) < m_mi_cols;
auto partition = TRY(m_tree_parser->parse_tree(SyntaxElementType::Partition));
auto subsize = subsize_lookup[partition][block_subsize];
if (subsize < Block_8x8 || partition == PartitionNone) {
TRY(decode_block(row, col, subsize));
} else if (partition == PartitionHorizontal) {
TRY(decode_block(row, col, subsize));
if (m_has_rows)
TRY(decode_block(row + half_block_8x8, col, subsize));
} else if (partition == PartitionVertical) {
TRY(decode_block(row, col, subsize));
if (m_has_cols)
TRY(decode_block(row, col + half_block_8x8, subsize));
} else {
TRY(decode_partition(row, col, subsize));
TRY(decode_partition(row, col + half_block_8x8, subsize));
TRY(decode_partition(row + half_block_8x8, col, subsize));
TRY(decode_partition(row + half_block_8x8, col + half_block_8x8, subsize));
}
if (block_subsize == Block_8x8 || partition != PartitionSplit) {
for (size_t i = 0; i < m_num_8x8; i++) {
m_above_partition_context[col + i] = 15 >> b_width_log2_lookup[subsize];
m_left_partition_context[row + i] = 15 >> b_width_log2_lookup[subsize];
}
}
return {};
}
ErrorOr<void> Parser::decode_block(u32 row, u32 col, u8 subsize)
{
m_mi_row = row;
m_mi_col = col;
m_mi_size = subsize;
m_available_u = row > 0;
m_available_l = col > m_mi_col_start;
TRY(mode_info());
m_eob_total = 0;
TRY(residual());
if (m_is_inter && subsize >= Block_8x8 && m_eob_total == 0)
m_skip = true;
for (size_t y = 0; y < num_8x8_blocks_high_lookup[subsize]; y++) {
for (size_t x = 0; x < num_8x8_blocks_wide_lookup[subsize]; x++) {
auto pos = (row + y) * m_mi_cols + (col + x);
m_skips[pos] = m_skip;
m_tx_sizes[pos] = m_tx_size;
m_mi_sizes[pos] = m_mi_size;
m_y_modes[pos] = m_y_mode;
m_segment_ids[pos] = m_segment_id;
for (size_t ref_list = 0; ref_list < 2; ref_list++)
m_ref_frames[(pos * 2) + ref_list] = m_ref_frame[ref_list];
if (m_is_inter) {
m_interp_filters[pos] = m_interp_filter;
for (size_t ref_list = 0; ref_list < 2; ref_list++) {
auto pos_with_ref_list = (pos * 2 + ref_list) * sizeof(MV);
m_mvs[pos_with_ref_list] = m_block_mvs[ref_list][3];
for (size_t b = 0; b < 4; b++)
m_sub_mvs[pos_with_ref_list * 4 + b * sizeof(MV)] = m_block_mvs[ref_list][b];
}
} else {
for (size_t b = 0; b < 4; b++)
m_sub_modes[pos * 4 + b] = static_cast<IntraMode>(m_block_sub_modes[b]);
}
}
}
return {};
}
ErrorOr<void> Parser::mode_info()
{
if (m_frame_is_intra)
TRY(intra_frame_mode_info());
else
TRY(inter_frame_mode_info());
return {};
}
ErrorOr<void> Parser::intra_frame_mode_info()
{
TRY(intra_segment_id());
TRY(read_skip());
TRY(read_tx_size(true));
m_ref_frame[0] = IntraFrame;
m_ref_frame[1] = None;
m_is_inter = false;
if (m_mi_size >= Block_8x8) {
m_default_intra_mode = TRY(m_tree_parser->parse_tree<IntraMode>(SyntaxElementType::DefaultIntraMode));
m_y_mode = m_default_intra_mode;
for (auto& block_sub_mode : m_block_sub_modes)
block_sub_mode = m_y_mode;
} else {
m_num_4x4_w = num_4x4_blocks_wide_lookup[m_mi_size];
m_num_4x4_h = num_4x4_blocks_high_lookup[m_mi_size];
for (auto idy = 0; idy < 2; idy += m_num_4x4_h) {
for (auto idx = 0; idx < 2; idx += m_num_4x4_w) {
m_tree_parser->set_default_intra_mode_variables(idx, idy);
m_default_intra_mode = TRY(m_tree_parser->parse_tree<IntraMode>(SyntaxElementType::DefaultIntraMode));
for (auto y = 0; y < m_num_4x4_h; y++) {
for (auto x = 0; x < m_num_4x4_w; x++) {
auto index = (idy + y) * 2 + idx + x;
if (index > 3)
dbgln("Trying to access index {} on m_sub_modes", index);
m_block_sub_modes[index] = m_default_intra_mode;
}
}
}
}
m_y_mode = m_default_intra_mode;
}
m_uv_mode = TRY(m_tree_parser->parse_tree<u8>(SyntaxElementType::DefaultUVMode));
return {};
}
ErrorOr<void> Parser::intra_segment_id()
{
if (m_segmentation_enabled && m_segmentation_update_map)
m_segment_id = TRY(m_tree_parser->parse_tree<u8>(SyntaxElementType::SegmentID));
else
m_segment_id = 0;
return {};
}
ErrorOr<void> Parser::read_skip()
{
if (seg_feature_active(SEG_LVL_SKIP))
m_skip = true;
else
m_skip = TRY(m_tree_parser->parse_tree<bool>(SyntaxElementType::Skip));
return {};
}
bool Parser::seg_feature_active(u8 feature)
{
return m_segmentation_enabled && m_feature_enabled[m_segment_id][feature];
}
ErrorOr<void> Parser::read_tx_size(bool allow_select)
{
m_max_tx_size = max_txsize_lookup[m_mi_size];
if (allow_select && m_tx_mode == TXModeSelect && m_mi_size >= Block_8x8)
m_tx_size = TRY(m_tree_parser->parse_tree<TXSize>(SyntaxElementType::TXSize));
else
m_tx_size = min(m_max_tx_size, tx_mode_to_biggest_tx_size[m_tx_mode]);
return {};
}
ErrorOr<void> Parser::inter_frame_mode_info()
{
m_left_ref_frame[0] = m_available_l ? m_ref_frames[m_mi_row * m_mi_cols + (m_mi_col - 1)] : IntraFrame;
m_above_ref_frame[0] = m_available_u ? m_ref_frames[(m_mi_row - 1) * m_mi_cols + m_mi_col] : IntraFrame;
m_left_ref_frame[1] = m_available_l ? m_ref_frames[m_mi_row * m_mi_cols + (m_mi_col - 1) + 1] : None;
m_above_ref_frame[1] = m_available_u ? m_ref_frames[(m_mi_row - 1) * m_mi_cols + m_mi_col + 1] : None;
m_left_intra = m_left_ref_frame[0] <= IntraFrame;
m_above_intra = m_above_ref_frame[0] <= IntraFrame;
m_left_single = m_left_ref_frame[1] <= None;
m_above_single = m_above_ref_frame[1] <= None;
TRY(inter_segment_id());
TRY(read_skip());
TRY(read_is_inter());
TRY(read_tx_size(!m_skip || !m_is_inter));
if (m_is_inter) {
TRY(inter_block_mode_info());
} else {
TRY(intra_block_mode_info());
}
return {};
}
ErrorOr<void> Parser::inter_segment_id()
{
if (!m_segmentation_enabled) {
m_segment_id = 0;
return {};
}
auto predicted_segment_id = get_segment_id();
if (!m_segmentation_update_map) {
m_segment_id = predicted_segment_id;
return {};
}
if (!m_segmentation_temporal_update) {
m_segment_id = TRY(m_tree_parser->parse_tree<u8>(SyntaxElementType::SegmentID));
return {};
}
auto seg_id_predicted = TRY(m_tree_parser->parse_tree<bool>(SyntaxElementType::SegIDPredicted));
if (seg_id_predicted)
m_segment_id = predicted_segment_id;
else
m_segment_id = TRY(m_tree_parser->parse_tree<u8>(SyntaxElementType::SegmentID));
for (size_t i = 0; i < num_8x8_blocks_wide_lookup[m_mi_size]; i++)
m_above_seg_pred_context[m_mi_col + i] = seg_id_predicted;
for (size_t i = 0; i < num_8x8_blocks_high_lookup[m_mi_size]; i++)
m_left_seg_pred_context[m_mi_row + i] = seg_id_predicted;
return {};
}
u8 Parser::get_segment_id()
{
auto bw = num_8x8_blocks_wide_lookup[m_mi_size];
auto bh = num_8x8_blocks_high_lookup[m_mi_size];
auto xmis = min(m_mi_cols - m_mi_col, (u32)bw);
auto ymis = min(m_mi_rows - m_mi_row, (u32)bh);
u8 segment = 7;
for (size_t y = 0; y < ymis; y++) {
for (size_t x = 0; x < xmis; x++) {
segment = min(segment, m_prev_segment_ids[(m_mi_row + y) + (m_mi_col + x)]);
}
}
return segment;
}
ErrorOr<void> Parser::read_is_inter()
{
if (seg_feature_active(SEG_LVL_REF_FRAME))
m_is_inter = m_feature_data[m_segment_id][SEG_LVL_REF_FRAME] != IntraFrame;
else
m_is_inter = TRY(m_tree_parser->parse_tree<bool>(SyntaxElementType::IsInter));
return {};
}
ErrorOr<void> Parser::intra_block_mode_info()
{
m_ref_frame[0] = IntraFrame;
m_ref_frame[1] = None;
if (m_mi_size >= Block_8x8) {
m_y_mode = TRY(m_tree_parser->parse_tree<u8>(SyntaxElementType::IntraMode));
for (auto& block_sub_mode : m_block_sub_modes)
block_sub_mode = m_y_mode;
} else {
m_num_4x4_w = num_4x4_blocks_wide_lookup[m_mi_size];
m_num_4x4_h = num_4x4_blocks_high_lookup[m_mi_size];
u8 sub_intra_mode;
for (auto idy = 0; idy < 2; idy += m_num_4x4_h) {
for (auto idx = 0; idx < 2; idx += m_num_4x4_w) {
sub_intra_mode = TRY(m_tree_parser->parse_tree<u8>(SyntaxElementType::SubIntraMode));
for (auto y = 0; y < m_num_4x4_h; y++) {
for (auto x = 0; x < m_num_4x4_w; x++)
m_block_sub_modes[(idy + y) * 2 + idx + x] = sub_intra_mode;
}
}
}
m_y_mode = sub_intra_mode;
}
m_uv_mode = TRY(m_tree_parser->parse_tree<u8>(SyntaxElementType::UVMode));
return {};
}
ErrorOr<void> Parser::inter_block_mode_info()
{
TRY(read_ref_frames());
for (auto j = 0; j < 2; j++) {
if (m_ref_frame[j] > IntraFrame) {
TRY(find_mv_refs(m_ref_frame[j], -1));
TRY(find_best_ref_mvs(j));
}
}
auto is_compound = m_ref_frame[1] > IntraFrame;
if (seg_feature_active(SEG_LVL_SKIP)) {
m_y_mode = ZeroMv;
} else if (m_mi_size >= Block_8x8) {
auto inter_mode = TRY(m_tree_parser->parse_tree(SyntaxElementType::InterMode));
m_y_mode = NearestMv + inter_mode;
}
if (m_interpolation_filter == Switchable)
m_interp_filter = TRY(m_tree_parser->parse_tree<InterpolationFilter>(SyntaxElementType::InterpFilter));
else
m_interp_filter = m_interpolation_filter;
if (m_mi_size < Block_8x8) {
m_num_4x4_w = num_4x4_blocks_wide_lookup[m_mi_size];
m_num_4x4_h = num_4x4_blocks_high_lookup[m_mi_size];
for (auto idy = 0; idy < 2; idy += m_num_4x4_h) {
for (auto idx = 0; idx < 2; idx += m_num_4x4_w) {
auto inter_mode = TRY(m_tree_parser->parse_tree(SyntaxElementType::InterMode));
m_y_mode = NearestMv + inter_mode;
if (m_y_mode == NearestMv || m_y_mode == NearMv) {
for (auto j = 0; j < 1 + is_compound; j++)
TRY(append_sub8x8_mvs(idy * 2 + idx, j));
}
TRY(assign_mv(is_compound));
for (auto y = 0; y < m_num_4x4_h; y++) {
for (auto x = 0; x < m_num_4x4_w; x++) {
auto block = (idy + y) * 2 + idx + x;
for (auto ref_list = 0; ref_list < 1 + is_compound; ref_list++) {
m_block_mvs[ref_list][block] = m_mv[ref_list];
}
}
}
}
}
return {};
}
TRY(assign_mv(is_compound));
for (auto ref_list = 0; ref_list < 1 + is_compound; ref_list++) {
for (auto block = 0; block < 4; block++) {
m_block_mvs[ref_list][block] = m_mv[ref_list];
}
}
return {};
}
ErrorOr<void> Parser::read_ref_frames()
{
if (seg_feature_active(SEG_LVL_REF_FRAME)) {
m_ref_frame[0] = static_cast<ReferenceFrame>(m_feature_data[m_segment_id][SEG_LVL_REF_FRAME]);
m_ref_frame[1] = None;
return {};
}
ReferenceMode comp_mode;
if (m_reference_mode == ReferenceModeSelect)
comp_mode = TRY(m_tree_parser->parse_tree<ReferenceMode>(SyntaxElementType::CompMode));
else
comp_mode = m_reference_mode;
if (comp_mode == CompoundReference) {
auto idx = m_ref_frame_sign_bias[m_comp_fixed_ref];
auto comp_ref = TRY(m_tree_parser->parse_tree(SyntaxElementType::CompRef));
m_ref_frame[idx] = m_comp_fixed_ref;
m_ref_frame[!idx] = m_comp_var_ref[comp_ref];
return {};
}
auto single_ref_p1 = TRY(m_tree_parser->parse_tree<bool>(SyntaxElementType::SingleRefP1));
if (single_ref_p1) {
auto single_ref_p2 = TRY(m_tree_parser->parse_tree<bool>(SyntaxElementType::SingleRefP2));
m_ref_frame[0] = single_ref_p2 ? AltRefFrame : GoldenFrame;
} else {
m_ref_frame[0] = LastFrame;
}
m_ref_frame[1] = None;
return {};
}
ErrorOr<void> Parser::assign_mv(bool is_compound)
{
m_mv[1] = 0;
for (auto i = 0; i < 1 + is_compound; i++) {
if (m_y_mode == NewMv) {
TRY(read_mv(i));
} else if (m_y_mode == NearestMv) {
m_mv[i] = m_nearest_mv[i];
} else if (m_y_mode == NearMv) {
m_mv[i] = m_near_mv[i];
} else {
m_mv[i] = 0;
}
}
return {};
}
ErrorOr<void> Parser::read_mv(u8 ref)
{
m_use_hp = m_allow_high_precision_mv && use_mv_hp(m_best_mv[ref]);
MV diff_mv;
auto mv_joint = TRY(m_tree_parser->parse_tree<MvJoint>(SyntaxElementType::MVJoint));
if (mv_joint == MvJointHzvnz || mv_joint == MvJointHnzvnz)
diff_mv.set_row(TRY(read_mv_component(0)));
if (mv_joint == MvJointHnzvz || mv_joint == MvJointHnzvnz)
diff_mv.set_col(TRY(read_mv_component(1)));
m_mv[ref] = m_best_mv[ref] + diff_mv;
return {};
}
ErrorOr<i32> Parser::read_mv_component(u8)
{
auto mv_sign = TRY(m_tree_parser->parse_tree<bool>(SyntaxElementType::MVSign));
auto mv_class = TRY(m_tree_parser->parse_tree<MvClass>(SyntaxElementType::MVClass));
u32 mag;
if (mv_class == MvClass0) {
auto mv_class0_bit = TRY(m_tree_parser->parse_tree<u32>(SyntaxElementType::MVClass0Bit));
auto mv_class0_fr = TRY(m_tree_parser->parse_tree<u32>(SyntaxElementType::MVClass0FR));
auto mv_class0_hp = TRY(m_tree_parser->parse_tree<u32>(SyntaxElementType::MVClass0HP));
mag = ((mv_class0_bit << 3) | (mv_class0_fr << 1) | mv_class0_hp) + 1;
} else {
auto d = 0;
for (size_t i = 0; i < mv_class; i++) {
auto mv_bit = TRY(m_tree_parser->parse_tree<bool>(SyntaxElementType::MVBit));
d |= mv_bit << i;
}
mag = CLASS0_SIZE << (mv_class + 2);
auto mv_fr = TRY(m_tree_parser->parse_tree<u32>(SyntaxElementType::MVFR));
auto mv_hp = TRY(m_tree_parser->parse_tree<u32>(SyntaxElementType::MVHP));
mag += ((d << 3) | (mv_fr << 1) | mv_hp) + 1;
}
return (mv_sign ? -1 : 1) * static_cast<i32>(mag);
}
ErrorOr<void> Parser::residual()
{
auto block_size = m_mi_size < Block_8x8 ? Block_8x8 : static_cast<BlockSubsize>(m_mi_size);
for (size_t plane = 0; plane < 3; plane++) {
auto tx_size = (plane > 0) ? get_uv_tx_size() : m_tx_size;
auto step = 1 << tx_size;
auto plane_size = get_plane_block_size(block_size, plane);
auto num_4x4_w = num_4x4_blocks_wide_lookup[plane_size];
auto num_4x4_h = num_4x4_blocks_high_lookup[plane_size];
auto sub_x = (plane > 0) ? m_subsampling_x : 0;
auto sub_y = (plane > 0) ? m_subsampling_y : 0;
auto base_x = (m_mi_col * 8) >> sub_x;
auto base_y = (m_mi_row * 8) >> sub_y;
if (m_is_inter) {
if (m_mi_size < Block_8x8) {
for (auto y = 0; y < num_4x4_h; y++) {
for (auto x = 0; x < num_4x4_w; x++) {
TRY(m_decoder.predict_inter(plane, base_x + (4 * x), base_y + (4 * y), 4, 4, (y * num_4x4_w) + x));
}
}
} else {
TRY(m_decoder.predict_inter(plane, base_x, base_y, num_4x4_w * 4, num_4x4_h * 4, 0));
}
}
auto max_x = (m_mi_cols * 8) >> sub_x;
auto max_y = (m_mi_rows * 8) >> sub_y;
auto block_index = 0;
for (auto y = 0; y < num_4x4_h; y += step) {
for (auto x = 0; x < num_4x4_w; x += step) {
auto start_x = base_x + (4 * x);
auto start_y = base_y + (4 * y);
auto non_zero = false;
if (start_x < max_x && start_y < max_y) {
if (!m_is_inter)
TRY(m_decoder.predict_intra(plane, start_x, start_y, m_available_l || x > 0, m_available_u || y > 0, (x + step) < num_4x4_w, tx_size, block_index));
if (!m_skip) {
non_zero = TRY(tokens(plane, start_x, start_y, tx_size, block_index));
TRY(m_decoder.reconstruct(plane, start_x, start_y, tx_size));
}
}
auto above_sub_context = m_above_nonzero_context[plane];
auto left_sub_context = m_left_nonzero_context[plane];
above_sub_context.resize_and_keep_capacity((start_x >> 2) + step);
left_sub_context.resize_and_keep_capacity((start_y >> 2) + step);
for (auto i = 0; i < step; i++) {
above_sub_context[(start_x >> 2) + i] = non_zero;
left_sub_context[(start_y >> 2) + i] = non_zero;
}
block_index++;
}
}
}
return {};
}
TXSize Parser::get_uv_tx_size()
{
if (m_mi_size < Block_8x8)
return TX_4x4;
return min(m_tx_size, max_txsize_lookup[get_plane_block_size(m_mi_size, 1)]);
}
BlockSubsize Parser::get_plane_block_size(u32 subsize, u8 plane)
{
auto sub_x = (plane > 0) ? m_subsampling_x : 0;
auto sub_y = (plane > 0) ? m_subsampling_y : 0;
return ss_size_lookup[subsize][sub_x][sub_y];
}
ErrorOr<bool> Parser::tokens(size_t plane, u32 start_x, u32 start_y, TXSize tx_size, u32 block_index)
{
m_tree_parser->set_start_x_and_y(start_x, start_y);
size_t segment_eob = 16 << (tx_size << 1);
auto scan = get_scan(plane, tx_size, block_index);
auto check_eob = true;
size_t c = 0;
for (; c < segment_eob; c++) {
auto pos = scan[c];
auto band = (tx_size == TX_4x4) ? coefband_4x4[c] : coefband_8x8plus[c];
m_tree_parser->set_tokens_variables(band, c, plane, tx_size, pos);
if (check_eob) {
auto more_coefs = TRY(m_tree_parser->parse_tree<bool>(SyntaxElementType::MoreCoefs));
if (!more_coefs)
break;
}
auto token = TRY(m_tree_parser->parse_tree<Token>(SyntaxElementType::Token));
m_token_cache[pos] = energy_class[token];
if (token == ZeroToken) {
m_tokens[pos] = 0;
check_eob = false;
} else {
i32 coef = TRY(read_coef(token));
auto sign_bit = TRY(m_bit_stream->read_literal(1));
m_tokens[pos] = sign_bit ? -coef : coef;
check_eob = true;
}
}
auto non_zero = c > 0;
m_eob_total += non_zero;
for (size_t i = c; i < segment_eob; i++)
m_tokens[scan[i]] = 0;
return non_zero;
}
u32 const* Parser::get_scan(size_t plane, TXSize tx_size, u32 block_index)
{
if (plane > 0 || tx_size == TX_32x32) {
m_tx_type = DCT_DCT;
} else if (tx_size == TX_4x4) {
if (m_lossless || m_is_inter)
m_tx_type = DCT_DCT;
else
m_tx_type = mode_to_txfm_map[m_mi_size < Block_8x8 ? m_block_sub_modes[block_index] : m_y_mode];
} else {
m_tx_type = mode_to_txfm_map[m_y_mode];
}
if (tx_size == TX_4x4) {
if (m_tx_type == ADST_DCT)
return row_scan_4x4;
if (m_tx_type == DCT_ADST)
return col_scan_4x4;
return default_scan_4x4;
}
if (tx_size == TX_8x8) {
if (m_tx_type == ADST_DCT)
return row_scan_8x8;
if (m_tx_type == DCT_ADST)
return col_scan_8x8;
return default_scan_8x8;
}
if (tx_size == TX_16x16) {
if (m_tx_type == ADST_DCT)
return row_scan_16x16;
if (m_tx_type == DCT_ADST)
return col_scan_16x16;
return default_scan_16x16;
}
return default_scan_32x32;
}
ErrorOr<i32> Parser::read_coef(Token token)
{
auto cat = extra_bits[token][0];
auto num_extra = extra_bits[token][1];
auto coef = extra_bits[token][2];
if (token == DctValCat6) {
for (size_t e = 0; e < (u8)(m_bit_depth - 8); e++) {
auto high_bit = TRY(m_bit_stream->read_bool(255));
coef += high_bit << (5 + m_bit_depth - e);
}
}
for (size_t e = 0; e < num_extra; e++) {
auto coef_bit = TRY(m_bit_stream->read_bool(cat_probs[cat][e]));
coef += coef_bit << (num_extra - 1 - e);
}
return coef;
}
ErrorOr<void> Parser::find_mv_refs(ReferenceFrame, int)
{
// TODO: Implement
return Error::from_string_literal("find_mv_refs: Not implemented");
}
ErrorOr<void> Parser::find_best_ref_mvs(int)
{
// TODO: Implement
return Error::from_string_literal("find_best_ref_mvs: Not implemented");
}
ErrorOr<void> Parser::append_sub8x8_mvs(u8, u8)
{
// TODO: Implement
return Error::from_string_literal("append_sub8x8_mvs: Not implemented");
}
bool Parser::use_mv_hp(const MV&)
{
// TODO: Implement
VERIFY(false);
return true;
}
void Parser::dump_info()
{
outln("Frame dimensions: {}x{}", m_frame_width, m_frame_height);
outln("Render dimensions: {}x{}", m_render_width, m_render_height);
outln("Bit depth: {}", m_bit_depth);
}
}