1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-20 04:45:06 +00:00
serenity/Kernel/Arch/x86/Time/APICTimer.cpp
Gunnar Beutner 2a840a538c Kernel: Decrease number of captured variables for lambda
This decreases the number of bytes necessary to capture the variables
for this lambda. The next step will be to remove dynamic allocations
from AK::Function which depends on this change to keep the size of
AK::Function objects reasonable.
2022-11-01 12:07:15 +00:00

179 lines
5.8 KiB
C++

/*
* Copyright (c) 2020, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/Arch/x86/Time/APICTimer.h>
#include <Kernel/Arch/x86/common/Interrupts/APIC.h>
#include <Kernel/Panic.h>
#include <Kernel/Sections.h>
#include <Kernel/Time/TimeManagement.h>
namespace Kernel {
#define APIC_TIMER_MEASURE_CPU_CLOCK
UNMAP_AFTER_INIT APICTimer* APICTimer::initialize(u8 interrupt_number, HardwareTimerBase& calibration_source)
{
auto timer = adopt_lock_ref(*new APICTimer(interrupt_number, nullptr));
timer->register_interrupt_handler();
if (!timer->calibrate(calibration_source)) {
return nullptr;
}
return &timer.leak_ref();
}
UNMAP_AFTER_INIT APICTimer::APICTimer(u8 interrupt_number, Function<void(RegisterState const&)> callback)
: HardwareTimer<GenericInterruptHandler>(interrupt_number, move(callback))
{
disable_remap();
}
UNMAP_AFTER_INIT bool APICTimer::calibrate(HardwareTimerBase& calibration_source)
{
VERIFY_INTERRUPTS_DISABLED();
dmesgln("APICTimer: Using {} as calibration source", calibration_source.model());
struct {
#ifdef APIC_TIMER_MEASURE_CPU_CLOCK
bool supports_tsc { Processor::current().has_feature(CPUFeature::TSC) };
#endif
APIC& apic { APIC::the() };
size_t ticks_in_100ms { 0 };
Atomic<size_t, AK::memory_order_relaxed> calibration_ticks { 0 };
#ifdef APIC_TIMER_MEASURE_CPU_CLOCK
volatile u64 start_tsc { 0 }, end_tsc { 0 };
#endif
volatile u64 start_reference { 0 }, end_reference { 0 };
volatile u32 start_apic_count { 0 }, end_apic_count { 0 };
bool query_reference { false };
} state;
state.ticks_in_100ms = calibration_source.ticks_per_second() / 10;
state.query_reference = calibration_source.can_query_raw();
// temporarily replace the timer callbacks
auto original_source_callback = calibration_source.set_callback([&state, &calibration_source](RegisterState const&) {
u32 current_timer_count = state.apic.get_timer_current_count();
#ifdef APIC_TIMER_MEASURE_CPU_CLOCK
u64 current_tsc = state.supports_tsc ? read_tsc() : 0;
#endif
u64 current_reference = state.query_reference ? calibration_source.current_raw() : 0;
auto prev_tick = state.calibration_ticks.fetch_add(1);
if (prev_tick == 0) {
#ifdef APIC_TIMER_MEASURE_CPU_CLOCK
state.start_tsc = current_tsc;
#endif
state.start_apic_count = current_timer_count;
state.start_reference = current_reference;
} else if (prev_tick + 1 == state.ticks_in_100ms + 1) {
#ifdef APIC_TIMER_MEASURE_CPU_CLOCK
state.end_tsc = current_tsc;
#endif
state.end_apic_count = current_timer_count;
state.end_reference = current_reference;
}
});
// Setup a counter that should be much longer than our calibration time.
// We don't want the APIC timer to actually fire. We do however want the
// calbibration_source timer to fire so that we can read the current
// tick count from the APIC timer
auto original_callback = set_callback([&](RegisterState const&) {
// TODO: How should we handle this?
PANIC("APICTimer: Timer fired during calibration!");
});
state.apic.setup_local_timer(0xffffffff, APIC::TimerMode::Periodic, true);
sti();
// Loop for about 100 ms
while (state.calibration_ticks.load() <= state.ticks_in_100ms)
;
cli();
// Restore timer callbacks
calibration_source.set_callback(move(original_source_callback));
set_callback(move(original_callback));
disable_local_timer();
if (state.query_reference) {
u64 one_tick_ns = calibration_source.raw_to_ns((state.end_reference - state.start_reference) / state.ticks_in_100ms);
m_frequency = (u32)(1000000000ull / one_tick_ns);
dmesgln("APICTimer: Ticks per second: {} ({}.{}ms)", m_frequency, one_tick_ns / 1000000, one_tick_ns % 1000000);
} else {
// For now, assume the frequency is exactly the same
m_frequency = calibration_source.ticks_per_second();
dmesgln("APICTimer: Ticks per second: {} (assume same frequency as reference clock)", m_frequency);
}
auto delta_apic_count = state.start_apic_count - state.end_apic_count; // The APIC current count register decrements!
m_timer_period = (delta_apic_count * state.apic.get_timer_divisor()) / state.ticks_in_100ms;
u64 apic_freq = delta_apic_count * state.apic.get_timer_divisor() * 10;
dmesgln("APICTimer: Bus clock speed: {}.{} MHz", apic_freq / 1000000, apic_freq % 1000000);
if (apic_freq < 1000000) {
dmesgln("APICTimer: Frequency too slow!");
return false;
}
#ifdef APIC_TIMER_MEASURE_CPU_CLOCK
if (state.supports_tsc) {
auto delta_tsc = (state.end_tsc - state.start_tsc) * 10;
dmesgln("APICTimer: CPU clock speed: {}.{} MHz", delta_tsc / 1000000, delta_tsc % 1000000);
}
#endif
enable_local_timer();
return true;
}
void APICTimer::enable_local_timer()
{
APIC::the().setup_local_timer(m_timer_period, m_timer_mode, true);
}
void APICTimer::disable_local_timer()
{
APIC::the().setup_local_timer(0, APIC::TimerMode::OneShot, false);
}
size_t APICTimer::ticks_per_second() const
{
return m_frequency;
}
void APICTimer::set_periodic()
{
// FIXME: Implement it...
VERIFY_NOT_REACHED();
}
void APICTimer::set_non_periodic()
{
// FIXME: Implement it...
VERIFY_NOT_REACHED();
}
void APICTimer::reset_to_default_ticks_per_second()
{
}
bool APICTimer::try_to_set_frequency([[maybe_unused]] size_t frequency)
{
return true;
}
bool APICTimer::is_capable_of_frequency([[maybe_unused]] size_t frequency) const
{
return false;
}
size_t APICTimer::calculate_nearest_possible_frequency([[maybe_unused]] size_t frequency) const
{
return 0;
}
}