mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 08:32:43 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			360 lines
		
	
	
	
		
			8.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			360 lines
		
	
	
	
		
			8.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2022, stelar7 <dudedbz@gmail.com>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/Endian.h>
 | |
| #include <AK/Types.h>
 | |
| #include <LibCrypto/Curves/Curve25519.h>
 | |
| 
 | |
| namespace Crypto::Curves {
 | |
| 
 | |
| void Curve25519::set(u32* state, u32 value)
 | |
| {
 | |
|     state[0] = value;
 | |
| 
 | |
|     for (auto i = 1; i < WORDS; i++) {
 | |
|         state[i] = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Curve25519::modular_square(u32* state, u32 const* value)
 | |
| {
 | |
|     // Compute R = (A ^ 2) mod p
 | |
|     modular_multiply(state, value, value);
 | |
| }
 | |
| 
 | |
| void Curve25519::modular_subtract(u32* state, u32 const* first, u32 const* second)
 | |
| {
 | |
|     // R = (A - B) mod p
 | |
|     i64 temp = -19;
 | |
|     for (auto i = 0; i < WORDS; i++) {
 | |
|         temp += first[i];
 | |
|         temp -= second[i];
 | |
|         state[i] = temp & 0xFFFFFFFF;
 | |
|         temp >>= 32;
 | |
|     }
 | |
| 
 | |
|     // Compute R = A + (2^255 - 19) - B
 | |
|     state[7] += 0x80000000;
 | |
| 
 | |
|     modular_reduce(state, state);
 | |
| }
 | |
| 
 | |
| void Curve25519::modular_add(u32* state, u32 const* first, u32 const* second)
 | |
| {
 | |
|     // R = (A + B) mod p
 | |
|     u64 temp = 0;
 | |
|     for (auto i = 0; i < WORDS; i++) {
 | |
|         temp += first[i];
 | |
|         temp += second[i];
 | |
|         state[i] = temp & 0xFFFFFFFF;
 | |
|         temp >>= 32;
 | |
|     }
 | |
| 
 | |
|     modular_reduce(state, state);
 | |
| }
 | |
| 
 | |
| void Curve25519::modular_multiply(u32* state, u32 const* first, u32 const* second)
 | |
| {
 | |
|     // Compute R = (A * B) mod p
 | |
|     u64 temp = 0;
 | |
|     u64 carry = 0;
 | |
|     u32 output[WORDS * 2];
 | |
| 
 | |
|     // Comba's method
 | |
|     for (auto i = 0; i < 16; i++) {
 | |
|         if (i < WORDS) {
 | |
|             for (auto j = 0; j <= i; j++) {
 | |
|                 temp += (u64)first[j] * second[i - j];
 | |
|                 carry += temp >> 32;
 | |
|                 temp &= 0xFFFFFFFF;
 | |
|             }
 | |
|         } else {
 | |
|             for (auto j = i - 7; j < WORDS; j++) {
 | |
|                 temp += (u64)first[j] * second[i - j];
 | |
|                 carry += temp >> 32;
 | |
|                 temp &= 0xFFFFFFFF;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         output[i] = temp & 0xFFFFFFFF;
 | |
|         temp = carry & 0xFFFFFFFF;
 | |
|         carry >>= 32;
 | |
|     }
 | |
| 
 | |
|     // Reduce bit 255 (2^255 = 19 mod p)
 | |
|     temp = (output[7] >> 31) * 19;
 | |
|     // Mask the most significant bit
 | |
|     output[7] &= 0x7FFFFFFF;
 | |
| 
 | |
|     // Fast modular reduction 1st pass
 | |
|     for (auto i = 0; i < WORDS; i++) {
 | |
|         temp += output[i];
 | |
|         temp += (u64)output[i + 8] * 38;
 | |
|         output[i] = temp & 0xFFFFFFFF;
 | |
|         temp >>= 32;
 | |
|     }
 | |
| 
 | |
|     // Reduce bit 256 (2^256 = 38 mod p)
 | |
|     temp *= 38;
 | |
|     // Reduce bit 255 (2^255 = 19 mod p)
 | |
|     temp += (output[7] >> 31) * 19;
 | |
|     // Mask the most significant bit
 | |
|     output[7] &= 0x7FFFFFFF;
 | |
| 
 | |
|     // Fast modular reduction 2nd pass
 | |
|     for (auto i = 0; i < WORDS; i++) {
 | |
|         temp += output[i];
 | |
|         output[i] = temp & 0xFFFFFFFF;
 | |
|         temp >>= 32;
 | |
|     }
 | |
| 
 | |
|     modular_reduce(state, output);
 | |
| }
 | |
| 
 | |
| void Curve25519::export_state(u32* state, u8* output)
 | |
| {
 | |
|     for (u32 i = 0; i < WORDS; i++) {
 | |
|         state[i] = AK::convert_between_host_and_little_endian(state[i]);
 | |
|     }
 | |
| 
 | |
|     memcpy(output, state, BYTES);
 | |
| }
 | |
| 
 | |
| void Curve25519::import_state(u32* state, u8 const* data)
 | |
| {
 | |
|     memcpy(state, data, BYTES);
 | |
|     for (u32 i = 0; i < WORDS; i++) {
 | |
|         state[i] = AK::convert_between_host_and_little_endian(state[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Curve25519::modular_subtract_single(u32* r, u32 const* a, u32 b)
 | |
| {
 | |
|     i64 temp = -19;
 | |
|     temp -= b;
 | |
| 
 | |
|     // Compute R = A - 19 - B
 | |
|     for (u32 i = 0; i < 8; i++) {
 | |
|         temp += a[i];
 | |
|         r[i] = temp & 0xFFFFFFFF;
 | |
|         temp >>= 32;
 | |
|     }
 | |
| 
 | |
|     // Compute R = A + (2^255 - 19) - B
 | |
|     r[7] += 0x80000000;
 | |
|     modular_reduce(r, r);
 | |
| }
 | |
| 
 | |
| void Curve25519::modular_add_single(u32* state, u32 const* first, u32 second)
 | |
| {
 | |
|     u64 temp = second;
 | |
| 
 | |
|     // Compute R = A + B
 | |
|     for (u32 i = 0; i < 8; i++) {
 | |
|         temp += first[i];
 | |
|         state[i] = temp & 0xFFFFFFFF;
 | |
|         temp >>= 32;
 | |
|     }
 | |
| 
 | |
|     modular_reduce(state, state);
 | |
| }
 | |
| 
 | |
| u32 Curve25519::modular_square_root(u32* r, u32 const* a, u32 const* b)
 | |
| {
 | |
|     u32 c[8];
 | |
|     u32 u[8];
 | |
|     u32 v[8];
 | |
| 
 | |
|     // To compute the square root of (A / B), the first step is to compute the candidate root x = (A / B)^((p+3)/8)
 | |
|     modular_square(v, b);
 | |
|     modular_multiply(v, v, b);
 | |
|     modular_square(v, v);
 | |
|     modular_multiply(v, v, b);
 | |
|     modular_multiply(c, a, v);
 | |
|     modular_square(u, c);
 | |
|     modular_multiply(u, u, c);
 | |
|     modular_square(u, u);
 | |
|     modular_multiply(v, u, c);
 | |
|     to_power_of_2n(u, v, 3);
 | |
|     modular_multiply(u, u, v);
 | |
|     modular_square(u, u);
 | |
|     modular_multiply(v, u, c);
 | |
|     to_power_of_2n(u, v, 7);
 | |
|     modular_multiply(u, u, v);
 | |
|     modular_square(u, u);
 | |
|     modular_multiply(v, u, c);
 | |
|     to_power_of_2n(u, v, 15);
 | |
|     modular_multiply(u, u, v);
 | |
|     modular_square(u, u);
 | |
|     modular_multiply(v, u, c);
 | |
|     to_power_of_2n(u, v, 31);
 | |
|     modular_multiply(v, u, v);
 | |
|     to_power_of_2n(u, v, 62);
 | |
|     modular_multiply(u, u, v);
 | |
|     modular_square(u, u);
 | |
|     modular_multiply(v, u, c);
 | |
|     to_power_of_2n(u, v, 125);
 | |
|     modular_multiply(u, u, v);
 | |
|     modular_square(u, u);
 | |
|     modular_square(u, u);
 | |
|     modular_multiply(u, u, c);
 | |
| 
 | |
|     // The first candidate root is U = A * B^3 * (A * B^7)^((p - 5) / 8)
 | |
|     modular_multiply(u, u, a);
 | |
|     modular_square(v, b);
 | |
|     modular_multiply(v, v, b);
 | |
|     modular_multiply(u, u, v);
 | |
| 
 | |
|     // The second candidate root is V = U * sqrt(-1)
 | |
|     modular_multiply(v, u, SQRT_MINUS_1);
 | |
| 
 | |
|     modular_square(c, u);
 | |
|     modular_multiply(c, c, b);
 | |
| 
 | |
|     // Check whether B * U^2 = A
 | |
|     u32 first_comparison = compare(c, a);
 | |
| 
 | |
|     modular_square(c, v);
 | |
|     modular_multiply(c, c, b);
 | |
| 
 | |
|     // Check whether B * V^2 = A
 | |
|     u32 second_comparison = compare(c, a);
 | |
| 
 | |
|     // Select the first or the second candidate root
 | |
|     select(r, u, v, first_comparison);
 | |
| 
 | |
|     // Return 0 if the square root exists
 | |
|     return first_comparison & second_comparison;
 | |
| }
 | |
| 
 | |
| u32 Curve25519::compare(u32 const* a, u32 const* b)
 | |
| {
 | |
|     u32 mask = 0;
 | |
|     for (u32 i = 0; i < 8; i++) {
 | |
|         mask |= a[i] ^ b[i];
 | |
|     }
 | |
| 
 | |
|     // Return 0 if A = B, else 1
 | |
|     return ((u32)(mask | (~mask + 1))) >> 31;
 | |
| }
 | |
| 
 | |
| void Curve25519::modular_reduce(u32* state, u32 const* data)
 | |
| {
 | |
|     // R = A mod p
 | |
|     u64 temp = 19;
 | |
|     u32 other[WORDS];
 | |
| 
 | |
|     for (auto i = 0; i < WORDS; i++) {
 | |
|         temp += data[i];
 | |
|         other[i] = temp & 0xFFFFFFFF;
 | |
|         temp >>= 32;
 | |
|     }
 | |
| 
 | |
|     // Compute B = A - (2^255 - 19)
 | |
|     other[7] -= 0x80000000;
 | |
| 
 | |
|     u32 mask = (other[7] & 0x80000000) >> 31;
 | |
|     select(state, other, data, mask);
 | |
| }
 | |
| 
 | |
| void Curve25519::to_power_of_2n(u32* state, u32 const* value, u8 n)
 | |
| {
 | |
|     // Pre-compute (A ^ 2) mod p
 | |
|     modular_square(state, value);
 | |
| 
 | |
|     // Compute R = (A ^ (2^n)) mod p
 | |
|     for (u32 i = 1; i < n; i++) {
 | |
|         modular_square(state, state);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Curve25519::select(u32* state, u32 const* a, u32 const* b, u32 condition)
 | |
| {
 | |
|     // If B < (2^255 - 19) then R = B, else R = A
 | |
|     u32 mask = condition - 1;
 | |
| 
 | |
|     for (auto i = 0; i < WORDS; i++) {
 | |
|         state[i] = (a[i] & mask) | (b[i] & ~mask);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Curve25519::copy(u32* state, u32 const* value)
 | |
| {
 | |
|     for (auto i = 0; i < WORDS; i++) {
 | |
|         state[i] = value[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Curve25519::modular_multiply_inverse(u32* state, u32 const* value)
 | |
| {
 | |
|     // Compute R = A^-1 mod p
 | |
|     u32 u[WORDS];
 | |
|     u32 v[WORDS];
 | |
| 
 | |
|     // Fermat's little theorem
 | |
|     modular_square(u, value);
 | |
|     modular_multiply(u, u, value);
 | |
|     modular_square(u, u);
 | |
|     modular_multiply(v, u, value);
 | |
|     to_power_of_2n(u, v, 3);
 | |
|     modular_multiply(u, u, v);
 | |
|     modular_square(u, u);
 | |
|     modular_multiply(v, u, value);
 | |
|     to_power_of_2n(u, v, 7);
 | |
|     modular_multiply(u, u, v);
 | |
|     modular_square(u, u);
 | |
|     modular_multiply(v, u, value);
 | |
|     to_power_of_2n(u, v, 15);
 | |
|     modular_multiply(u, u, v);
 | |
|     modular_square(u, u);
 | |
|     modular_multiply(v, u, value);
 | |
|     to_power_of_2n(u, v, 31);
 | |
|     modular_multiply(v, u, v);
 | |
|     to_power_of_2n(u, v, 62);
 | |
|     modular_multiply(u, u, v);
 | |
|     modular_square(u, u);
 | |
|     modular_multiply(v, u, value);
 | |
|     to_power_of_2n(u, v, 125);
 | |
|     modular_multiply(u, u, v);
 | |
|     modular_square(u, u);
 | |
|     modular_square(u, u);
 | |
|     modular_multiply(u, u, value);
 | |
|     modular_square(u, u);
 | |
|     modular_square(u, u);
 | |
|     modular_multiply(u, u, value);
 | |
|     modular_square(u, u);
 | |
|     modular_multiply(state, u, value);
 | |
| }
 | |
| 
 | |
| void Curve25519::modular_multiply_single(u32* state, u32 const* first, u32 second)
 | |
| {
 | |
|     // Compute R = (A * B) mod p
 | |
|     u64 temp = 0;
 | |
|     u32 output[WORDS];
 | |
| 
 | |
|     for (auto i = 0; i < WORDS; i++) {
 | |
|         temp += (u64)first[i] * second;
 | |
|         output[i] = temp & 0xFFFFFFFF;
 | |
|         temp >>= 32;
 | |
|     }
 | |
| 
 | |
|     // Reduce bit 256 (2^256 = 38 mod p)
 | |
|     temp *= 38;
 | |
|     // Reduce bit 255 (2^255 = 19 mod p)
 | |
|     temp += (output[7] >> 31) * 19;
 | |
|     // Mask the most significant bit
 | |
|     output[7] &= 0x7FFFFFFF;
 | |
| 
 | |
|     // Fast modular reduction
 | |
|     for (auto i = 0; i < WORDS; i++) {
 | |
|         temp += output[i];
 | |
|         output[i] = temp & 0xFFFFFFFF;
 | |
|         temp >>= 32;
 | |
|     }
 | |
| 
 | |
|     modular_reduce(state, output);
 | |
| }
 | |
| }
 | 
