mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 11:02:43 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			122 lines
		
	
	
	
		
			3.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			122 lines
		
	
	
	
		
			3.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2020, Stephan Unverwerth <s.unverwerth@gmx.de>
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright notice, this
 | |
|  *    list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright notice,
 | |
|  *    this list of conditions and the following disclaimer in the documentation
 | |
|  *    and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
|  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 | |
|  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | |
|  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | |
|  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | |
|  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
|  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <LibGfx/Matrix.h>
 | |
| #include <LibGfx/Vector3.h>
 | |
| #include <math.h>
 | |
| 
 | |
| namespace Gfx {
 | |
| 
 | |
| template<typename T>
 | |
| class Matrix4x4 final : public Matrix<4, T> {
 | |
| public:
 | |
|     Matrix4x4() = default;
 | |
|     Matrix4x4(T _11, T _12, T _13, T _14,
 | |
|         T _21, T _22, T _23, T _24,
 | |
|         T _31, T _32, T _33, T _34,
 | |
|         T _41, T _42, T _43, T _44)
 | |
|         : m_elements {
 | |
|             _11, _12, _13, _14,
 | |
|             _21, _22, _23, _24,
 | |
|             _31, _32, _33, _34,
 | |
|             _41, _42, _43, _44
 | |
|         }
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     auto elements() const { return m_elements; }
 | |
|     auto elements() { return m_elements; }
 | |
| 
 | |
|     Matrix4x4 operator*(const Matrix4x4& other) const
 | |
|     {
 | |
|         Matrix4x4 product;
 | |
|         for (int i = 0; i < 4; ++i) {
 | |
|             for (int j = 0; j < 4; ++j) {
 | |
|                 product.m_elements[i][j] = m_elements[0][j] * other.m_elements[i][0]
 | |
|                     + m_elements[1][j] * other.m_elements[i][1]
 | |
|                     + m_elements[2][j] * other.m_elements[i][2]
 | |
|                     + m_elements[3][j] * other.m_elements[i][3];
 | |
|             }
 | |
|         }
 | |
|         return product;
 | |
|     }
 | |
| 
 | |
|     Vector3<T> transform_point(const Vector3<T>& p) const
 | |
|     {
 | |
|         return Vector3<T>(
 | |
|             p.x() * m_elements[0][0] + p.y() * m_elements[1][0] + p.z() * m_elements[2][0] + m_elements[3][0],
 | |
|             p.x() * m_elements[0][1] + p.y() * m_elements[1][1] + p.z() * m_elements[2][1] + m_elements[3][1],
 | |
|             p.x() * m_elements[0][2] + p.y() * m_elements[1][2] + p.z() * m_elements[2][2] + m_elements[3][2]);
 | |
|     }
 | |
| 
 | |
|     static Matrix4x4 translate(const Vector3<T>& p)
 | |
|     {
 | |
|         return Matrix4x4(
 | |
|             1, 0, 0, 0,
 | |
|             0, 1, 0, 0,
 | |
|             0, 0, 1, 0,
 | |
|             p.x(), p.y(), p.z(), 1);
 | |
|     }
 | |
| 
 | |
|     static Matrix4x4 scale(const Vector3<T>& s)
 | |
|     {
 | |
|         return Matrix4x4(
 | |
|             s.x(), 0, 0, 0,
 | |
|             0, s.y(), 0, 0,
 | |
|             0, 0, s.z(), 0,
 | |
|             0, 0, 0, 1);
 | |
|     }
 | |
| 
 | |
|     static Matrix4x4 rotate(const Vector3<T>& axis, T angle)
 | |
|     {
 | |
|         T c = cos(angle);
 | |
|         T s = sin(angle);
 | |
|         T t = 1 - c;
 | |
|         T x = axis.x();
 | |
|         T y = axis.y();
 | |
|         T z = axis.z();
 | |
| 
 | |
|         return Matrix4x4(
 | |
|             t * x * x + c, t * x * y - z * s, t * x * z + y * s, 0,
 | |
|             t * x * y + z * s, t * y * y + c, t * y * z - x * s, 0,
 | |
|             t * x * z - y * s, t * y * z + x * s, t * z * z + c, 0,
 | |
|             0, 0, 0, 1);
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     T m_elements[4][4];
 | |
| };
 | |
| 
 | |
| typedef Matrix4x4<float> FloatMatrix4x4;
 | |
| typedef Matrix4x4<double> DoubleMatrix4x4;
 | |
| 
 | |
| }
 | |
| 
 | |
| using Gfx::DoubleMatrix4x4;
 | |
| using Gfx::FloatMatrix4x4;
 | |
| using Gfx::Matrix4x4;
 | 
