1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-31 11:08:11 +00:00
serenity/Userland/DevTools/Profiler/Profile.h
Andreas Kling b91c49364d AK: Rename adopt() to adopt_ref()
This makes it more symmetrical with adopt_own() (which is used to
create a NonnullOwnPtr from the result of a naked new.)
2021-04-23 16:46:57 +02:00

260 lines
7.5 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Bitmap.h>
#include <AK/FlyString.h>
#include <AK/JsonArray.h>
#include <AK/JsonObject.h>
#include <AK/JsonValue.h>
#include <AK/MappedFile.h>
#include <AK/NonnullRefPtrVector.h>
#include <AK/OwnPtr.h>
#include <AK/Result.h>
#include <LibELF/Image.h>
#include <LibGUI/Forward.h>
#include <LibGUI/ModelIndex.h>
class DisassemblyModel;
class Profile;
class ProfileModel;
class SamplesModel;
struct MappedObject {
NonnullRefPtr<MappedFile> file;
ELF::Image elf;
};
extern HashMap<String, OwnPtr<MappedObject>> g_mapped_object_cache;
class LibraryMetadata {
public:
explicit LibraryMetadata(JsonArray regions);
struct Library {
FlatPtr base;
size_t size;
String name;
FlatPtr text_base;
MappedObject* object { nullptr };
String symbolicate(FlatPtr, u32* offset) const;
};
const Library* library_containing(FlatPtr) const;
private:
mutable HashMap<String, OwnPtr<Library>> m_libraries;
JsonArray m_regions;
};
struct Process {
pid_t pid {};
String executable;
HashTable<int> threads;
struct Region {
String name;
FlatPtr base {};
size_t size {};
};
Vector<Region> regions;
NonnullOwnPtr<LibraryMetadata> library_metadata;
};
class ProfileNode : public RefCounted<ProfileNode> {
public:
static NonnullRefPtr<ProfileNode> create(FlyString object_name, String symbol, u32 address, u32 offset, u64 timestamp, pid_t pid)
{
return adopt_ref(*new ProfileNode(move(object_name), move(symbol), address, offset, timestamp, pid));
}
// These functions are only relevant for root nodes
void will_track_seen_events(size_t profile_event_count)
{
if (m_seen_events.size() != profile_event_count)
m_seen_events = Bitmap { profile_event_count, false };
}
bool has_seen_event(size_t event_index) const { return m_seen_events.get(event_index); }
void did_see_event(size_t event_index) { m_seen_events.set(event_index, true); }
const FlyString& object_name() const { return m_object_name; }
const String& symbol() const { return m_symbol; }
u32 address() const { return m_address; }
u32 offset() const { return m_offset; }
u64 timestamp() const { return m_timestamp; }
u32 event_count() const { return m_event_count; }
u32 self_count() const { return m_self_count; }
int child_count() const { return m_children.size(); }
const Vector<NonnullRefPtr<ProfileNode>>& children() const { return m_children; }
void add_child(ProfileNode& child)
{
if (child.m_parent == this)
return;
VERIFY(!child.m_parent);
child.m_parent = this;
m_children.append(child);
}
ProfileNode& find_or_create_child(FlyString object_name, String symbol, u32 address, u32 offset, u64 timestamp, pid_t pid)
{
for (size_t i = 0; i < m_children.size(); ++i) {
auto& child = m_children[i];
if (child->symbol() == symbol) {
return child;
}
}
auto new_child = ProfileNode::create(move(object_name), move(symbol), address, offset, timestamp, pid);
add_child(new_child);
return new_child;
};
ProfileNode* parent() { return m_parent; }
const ProfileNode* parent() const { return m_parent; }
void increment_event_count() { ++m_event_count; }
void increment_self_count() { ++m_self_count; }
void sort_children();
const HashMap<FlatPtr, size_t>& events_per_address() const { return m_events_per_address; }
void add_event_address(FlatPtr address)
{
auto it = m_events_per_address.find(address);
if (it == m_events_per_address.end())
m_events_per_address.set(address, 1);
else
m_events_per_address.set(address, it->value + 1);
}
pid_t pid() const { return m_pid; }
const Process* process(Profile&) const;
private:
explicit ProfileNode(const String& object_name, String symbol, u32 address, u32 offset, u64 timestamp, pid_t);
ProfileNode* m_parent { nullptr };
FlyString m_object_name;
String m_symbol;
pid_t m_pid { 0 };
u32 m_address { 0 };
u32 m_offset { 0 };
u32 m_event_count { 0 };
u32 m_self_count { 0 };
u64 m_timestamp { 0 };
Vector<NonnullRefPtr<ProfileNode>> m_children;
HashMap<FlatPtr, size_t> m_events_per_address;
Bitmap m_seen_events;
};
class Profile {
public:
static Result<NonnullOwnPtr<Profile>, String> load_from_perfcore_file(const StringView& path);
~Profile();
GUI::Model& model();
GUI::Model& samples_model();
GUI::Model* disassembly_model();
const Process* find_process(pid_t pid) const
{
auto it = m_processes.find_if([&](auto& entry) {
return entry.pid == pid;
});
return it.is_end() ? nullptr : &(*it);
}
void set_disassembly_index(const GUI::ModelIndex&);
const Vector<NonnullRefPtr<ProfileNode>>& roots() const { return m_roots; }
struct Frame {
FlyString object_name;
String symbol;
u32 address { 0 };
u32 offset { 0 };
};
struct Event {
u64 timestamp { 0 };
String type;
FlatPtr ptr { 0 };
size_t size { 0 };
int tid { 0 };
bool in_kernel { false };
Vector<Frame> frames;
};
u32 first_filtered_event_index() const { return m_first_filtered_event_index; }
u32 filtered_event_count() const { return m_filtered_event_count; }
const Vector<Event>& events() const { return m_events; }
u64 length_in_ms() const { return m_last_timestamp - m_first_timestamp; }
u64 first_timestamp() const { return m_first_timestamp; }
u64 last_timestamp() const { return m_last_timestamp; }
u32 deepest_stack_depth() const { return m_deepest_stack_depth; }
void set_timestamp_filter_range(u64 start, u64 end);
void clear_timestamp_filter_range();
bool has_timestamp_filter_range() const { return m_has_timestamp_filter_range; }
bool is_inverted() const { return m_inverted; }
void set_inverted(bool);
void set_show_top_functions(bool);
bool show_percentages() const { return m_show_percentages; }
void set_show_percentages(bool);
template<typename Callback>
void for_each_event_in_filter_range(Callback callback)
{
for (auto& event : m_events) {
if (has_timestamp_filter_range()) {
auto timestamp = event.timestamp;
if (timestamp < m_timestamp_filter_range_start || timestamp > m_timestamp_filter_range_end)
continue;
}
callback(event);
}
}
private:
Profile(Vector<Process>, Vector<Event>);
void rebuild_tree();
RefPtr<ProfileModel> m_model;
RefPtr<SamplesModel> m_samples_model;
RefPtr<DisassemblyModel> m_disassembly_model;
GUI::ModelIndex m_disassembly_index;
Vector<NonnullRefPtr<ProfileNode>> m_roots;
u32 m_filtered_event_count { 0 };
size_t m_first_filtered_event_index { 0 };
u64 m_first_timestamp { 0 };
u64 m_last_timestamp { 0 };
Vector<Process> m_processes;
Vector<Event> m_events;
bool m_has_timestamp_filter_range { false };
u64 m_timestamp_filter_range_start { 0 };
u64 m_timestamp_filter_range_end { 0 };
u32 m_deepest_stack_depth { 0 };
bool m_inverted { false };
bool m_show_top_functions { false };
bool m_show_percentages { false };
};