mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 07:32:44 +00:00 
			
		
		
		
	 953573565c
			
		
	
	
		953573565c
		
	
	
	
	
		
			
			Instead of looking these up in the VM execution context stack whenever we need them, we now just cache them in the interpreter when entering a new call frame.
		
			
				
	
	
		
			872 lines
		
	
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			872 lines
		
	
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | ||
|  * Copyright (c) 2021-2024, Andreas Kling <kling@serenityos.org>
 | ||
|  *
 | ||
|  * SPDX-License-Identifier: BSD-2-Clause
 | ||
|  */
 | ||
| 
 | ||
| #pragma once
 | ||
| 
 | ||
| #include <LibJS/Bytecode/CommonImplementations.h>
 | ||
| #include <LibJS/Bytecode/Interpreter.h>
 | ||
| #include <LibJS/Bytecode/Op.h>
 | ||
| #include <LibJS/Runtime/Array.h>
 | ||
| #include <LibJS/Runtime/DeclarativeEnvironment.h>
 | ||
| #include <LibJS/Runtime/ECMAScriptFunctionObject.h>
 | ||
| #include <LibJS/Runtime/FunctionEnvironment.h>
 | ||
| #include <LibJS/Runtime/GlobalEnvironment.h>
 | ||
| #include <LibJS/Runtime/NativeFunction.h>
 | ||
| #include <LibJS/Runtime/ObjectEnvironment.h>
 | ||
| #include <LibJS/Runtime/RegExpObject.h>
 | ||
| #include <LibJS/Runtime/TypedArray.h>
 | ||
| #include <LibJS/Runtime/ValueInlines.h>
 | ||
| 
 | ||
| namespace JS::Bytecode {
 | ||
| 
 | ||
| // NOTE: This function assumes that the index is valid within the TypedArray,
 | ||
| //       and that the TypedArray is not detached.
 | ||
| template<typename T>
 | ||
| inline Value fast_typed_array_get_element(TypedArrayBase& typed_array, u32 index)
 | ||
| {
 | ||
|     Checked<u32> offset_into_array_buffer = index;
 | ||
|     offset_into_array_buffer *= sizeof(T);
 | ||
|     offset_into_array_buffer += typed_array.byte_offset();
 | ||
| 
 | ||
|     if (offset_into_array_buffer.has_overflow()) [[unlikely]] {
 | ||
|         return js_undefined();
 | ||
|     }
 | ||
| 
 | ||
|     auto const& array_buffer = *typed_array.viewed_array_buffer();
 | ||
|     auto const* slot = reinterpret_cast<T const*>(array_buffer.buffer().offset_pointer(offset_into_array_buffer.value()));
 | ||
|     return Value { *slot };
 | ||
| }
 | ||
| 
 | ||
| // NOTE: This function assumes that the index is valid within the TypedArray,
 | ||
| //       and that the TypedArray is not detached.
 | ||
| template<typename T>
 | ||
| inline void fast_typed_array_set_element(TypedArrayBase& typed_array, u32 index, T value)
 | ||
| {
 | ||
|     Checked<u32> offset_into_array_buffer = index;
 | ||
|     offset_into_array_buffer *= sizeof(T);
 | ||
|     offset_into_array_buffer += typed_array.byte_offset();
 | ||
| 
 | ||
|     if (offset_into_array_buffer.has_overflow()) [[unlikely]] {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     auto& array_buffer = *typed_array.viewed_array_buffer();
 | ||
|     auto* slot = reinterpret_cast<T*>(array_buffer.buffer().offset_pointer(offset_into_array_buffer.value()));
 | ||
|     *slot = value;
 | ||
| }
 | ||
| 
 | ||
| ALWAYS_INLINE ThrowCompletionOr<NonnullGCPtr<Object>> base_object_for_get(VM& vm, Value base_value)
 | ||
| {
 | ||
|     if (base_value.is_object()) [[likely]]
 | ||
|         return base_value.as_object();
 | ||
| 
 | ||
|     // OPTIMIZATION: For various primitives we can avoid actually creating a new object for them.
 | ||
|     auto& realm = *vm.current_realm();
 | ||
|     if (base_value.is_string())
 | ||
|         return realm.intrinsics().string_prototype();
 | ||
|     if (base_value.is_number())
 | ||
|         return realm.intrinsics().number_prototype();
 | ||
|     if (base_value.is_boolean())
 | ||
|         return realm.intrinsics().boolean_prototype();
 | ||
|     if (base_value.is_bigint())
 | ||
|         return realm.intrinsics().bigint_prototype();
 | ||
|     if (base_value.is_symbol())
 | ||
|         return realm.intrinsics().symbol_prototype();
 | ||
| 
 | ||
|     // NOTE: At this point this is guaranteed to throw (null or undefined).
 | ||
|     return base_value.to_object(vm);
 | ||
| }
 | ||
| 
 | ||
| inline ThrowCompletionOr<Value> get_by_id(VM& vm, DeprecatedFlyString const& property, Value base_value, Value this_value, PropertyLookupCache& cache)
 | ||
| {
 | ||
|     if (base_value.is_string()) {
 | ||
|         auto string_value = TRY(base_value.as_string().get(vm, property));
 | ||
|         if (string_value.has_value())
 | ||
|             return *string_value;
 | ||
|     }
 | ||
| 
 | ||
|     auto base_obj = TRY(base_object_for_get(vm, base_value));
 | ||
| 
 | ||
|     // OPTIMIZATION: Fast path for the magical "length" property on Array objects.
 | ||
|     if (base_obj->has_magical_length_property() && property == vm.names.length.as_string()) {
 | ||
|         return Value { base_obj->indexed_properties().array_like_size() };
 | ||
|     }
 | ||
| 
 | ||
|     // OPTIMIZATION: If the shape of the object hasn't changed, we can use the cached property offset.
 | ||
|     auto& shape = base_obj->shape();
 | ||
|     if (&shape == cache.shape) {
 | ||
|         return base_obj->get_direct(cache.property_offset.value());
 | ||
|     }
 | ||
| 
 | ||
|     CacheablePropertyMetadata cacheable_metadata;
 | ||
|     auto value = TRY(base_obj->internal_get(property, this_value, &cacheable_metadata));
 | ||
| 
 | ||
|     if (cacheable_metadata.type == CacheablePropertyMetadata::Type::OwnProperty) {
 | ||
|         cache.shape = shape;
 | ||
|         cache.property_offset = cacheable_metadata.property_offset.value();
 | ||
|     }
 | ||
| 
 | ||
|     return value;
 | ||
| }
 | ||
| 
 | ||
| inline ThrowCompletionOr<Value> get_by_value(VM& vm, Value base_value, Value property_key_value)
 | ||
| {
 | ||
|     // OPTIMIZATION: Fast path for simple Int32 indexes in array-like objects.
 | ||
|     if (base_value.is_object() && property_key_value.is_int32() && property_key_value.as_i32() >= 0) {
 | ||
|         auto& object = base_value.as_object();
 | ||
|         auto index = static_cast<u32>(property_key_value.as_i32());
 | ||
| 
 | ||
|         auto const* object_storage = object.indexed_properties().storage();
 | ||
| 
 | ||
|         // For "non-typed arrays":
 | ||
|         if (!object.may_interfere_with_indexed_property_access()
 | ||
|             && object_storage
 | ||
|             && object_storage->has_index(index)) {
 | ||
|             auto value = object_storage->get(index)->value;
 | ||
|             if (!value.is_accessor())
 | ||
|                 return value;
 | ||
|         }
 | ||
| 
 | ||
|         // For typed arrays:
 | ||
|         if (object.is_typed_array()) {
 | ||
|             auto& typed_array = static_cast<TypedArrayBase&>(object);
 | ||
|             auto canonical_index = CanonicalIndex { CanonicalIndex::Type::Index, index };
 | ||
| 
 | ||
|             if (is_valid_integer_index(typed_array, canonical_index)) {
 | ||
|                 switch (typed_array.kind()) {
 | ||
|                 case TypedArrayBase::Kind::Uint8Array:
 | ||
|                     return fast_typed_array_get_element<u8>(typed_array, index);
 | ||
|                 case TypedArrayBase::Kind::Uint16Array:
 | ||
|                     return fast_typed_array_get_element<u16>(typed_array, index);
 | ||
|                 case TypedArrayBase::Kind::Uint32Array:
 | ||
|                     return fast_typed_array_get_element<u32>(typed_array, index);
 | ||
|                 case TypedArrayBase::Kind::Int8Array:
 | ||
|                     return fast_typed_array_get_element<i8>(typed_array, index);
 | ||
|                 case TypedArrayBase::Kind::Int16Array:
 | ||
|                     return fast_typed_array_get_element<i16>(typed_array, index);
 | ||
|                 case TypedArrayBase::Kind::Int32Array:
 | ||
|                     return fast_typed_array_get_element<i32>(typed_array, index);
 | ||
|                 case TypedArrayBase::Kind::Uint8ClampedArray:
 | ||
|                     return fast_typed_array_get_element<u8>(typed_array, index);
 | ||
|                 default:
 | ||
|                     // FIXME: Support more TypedArray kinds.
 | ||
|                     break;
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             switch (typed_array.kind()) {
 | ||
| #define __JS_ENUMERATE(ClassName, snake_name, PrototypeName, ConstructorName, Type) \
 | ||
|     case TypedArrayBase::Kind::ClassName:                                           \
 | ||
|         return typed_array_get_element<Type>(typed_array, canonical_index);
 | ||
|                 JS_ENUMERATE_TYPED_ARRAYS
 | ||
| #undef __JS_ENUMERATE
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     auto object = TRY(base_object_for_get(vm, base_value));
 | ||
| 
 | ||
|     auto property_key = TRY(property_key_value.to_property_key(vm));
 | ||
| 
 | ||
|     if (base_value.is_string()) {
 | ||
|         auto string_value = TRY(base_value.as_string().get(vm, property_key));
 | ||
|         if (string_value.has_value())
 | ||
|             return *string_value;
 | ||
|     }
 | ||
| 
 | ||
|     return TRY(object->internal_get(property_key, base_value));
 | ||
| }
 | ||
| 
 | ||
| inline ThrowCompletionOr<Value> get_global(Bytecode::Interpreter& interpreter, DeprecatedFlyString const& identifier, GlobalVariableCache& cache)
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
|     auto& binding_object = interpreter.global_object();
 | ||
|     auto& declarative_record = interpreter.global_declarative_environment();
 | ||
| 
 | ||
|     // OPTIMIZATION: If the shape of the object hasn't changed, we can use the cached property offset.
 | ||
|     auto& shape = binding_object.shape();
 | ||
|     if (cache.environment_serial_number == declarative_record.environment_serial_number()
 | ||
|         && &shape == cache.shape) {
 | ||
|         return binding_object.get_direct(cache.property_offset.value());
 | ||
|     }
 | ||
| 
 | ||
|     cache.environment_serial_number = declarative_record.environment_serial_number();
 | ||
| 
 | ||
|     if (vm.running_execution_context().script_or_module.has<NonnullGCPtr<Module>>()) {
 | ||
|         // NOTE: GetGlobal is used to access variables stored in the module environment and global environment.
 | ||
|         //       The module environment is checked first since it precedes the global environment in the environment chain.
 | ||
|         auto& module_environment = *vm.running_execution_context().script_or_module.get<NonnullGCPtr<Module>>()->environment();
 | ||
|         if (TRY(module_environment.has_binding(identifier))) {
 | ||
|             // TODO: Cache offset of binding value
 | ||
|             return TRY(module_environment.get_binding_value(vm, identifier, vm.in_strict_mode()));
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     if (TRY(declarative_record.has_binding(identifier))) {
 | ||
|         // TODO: Cache offset of binding value
 | ||
|         return TRY(declarative_record.get_binding_value(vm, identifier, vm.in_strict_mode()));
 | ||
|     }
 | ||
| 
 | ||
|     if (TRY(binding_object.has_property(identifier))) {
 | ||
|         CacheablePropertyMetadata cacheable_metadata;
 | ||
|         auto value = TRY(binding_object.internal_get(identifier, js_undefined(), &cacheable_metadata));
 | ||
|         if (cacheable_metadata.type == CacheablePropertyMetadata::Type::OwnProperty) {
 | ||
|             cache.shape = shape;
 | ||
|             cache.property_offset = cacheable_metadata.property_offset.value();
 | ||
|         }
 | ||
|         return value;
 | ||
|     }
 | ||
| 
 | ||
|     return vm.throw_completion<ReferenceError>(ErrorType::UnknownIdentifier, identifier);
 | ||
| }
 | ||
| 
 | ||
| inline ThrowCompletionOr<void> put_by_property_key(VM& vm, Value base, Value this_value, Value value, PropertyKey name, Op::PropertyKind kind, PropertyLookupCache* cache = nullptr)
 | ||
| {
 | ||
|     // Better error message than to_object would give
 | ||
|     if (vm.in_strict_mode() && base.is_nullish())
 | ||
|         return vm.throw_completion<TypeError>(ErrorType::ReferenceNullishSetProperty, name, base.to_string_without_side_effects());
 | ||
| 
 | ||
|     // a. Let baseObj be ? ToObject(V.[[Base]]).
 | ||
|     auto object = TRY(base.to_object(vm));
 | ||
|     if (kind == Op::PropertyKind::Getter || kind == Op::PropertyKind::Setter) {
 | ||
|         // The generator should only pass us functions for getters and setters.
 | ||
|         VERIFY(value.is_function());
 | ||
|     }
 | ||
|     switch (kind) {
 | ||
|     case Op::PropertyKind::Getter: {
 | ||
|         auto& function = value.as_function();
 | ||
|         if (function.name().is_empty() && is<ECMAScriptFunctionObject>(function))
 | ||
|             static_cast<ECMAScriptFunctionObject*>(&function)->set_name(ByteString::formatted("get {}", name));
 | ||
|         object->define_direct_accessor(name, &function, nullptr, Attribute::Configurable | Attribute::Enumerable);
 | ||
|         break;
 | ||
|     }
 | ||
|     case Op::PropertyKind::Setter: {
 | ||
|         auto& function = value.as_function();
 | ||
|         if (function.name().is_empty() && is<ECMAScriptFunctionObject>(function))
 | ||
|             static_cast<ECMAScriptFunctionObject*>(&function)->set_name(ByteString::formatted("set {}", name));
 | ||
|         object->define_direct_accessor(name, nullptr, &function, Attribute::Configurable | Attribute::Enumerable);
 | ||
|         break;
 | ||
|     }
 | ||
|     case Op::PropertyKind::KeyValue: {
 | ||
|         if (cache && cache->shape == &object->shape()) {
 | ||
|             object->put_direct(*cache->property_offset, value);
 | ||
|             return {};
 | ||
|         }
 | ||
| 
 | ||
|         CacheablePropertyMetadata cacheable_metadata;
 | ||
|         bool succeeded = TRY(object->internal_set(name, value, this_value, &cacheable_metadata));
 | ||
| 
 | ||
|         if (succeeded && cache && cacheable_metadata.type == CacheablePropertyMetadata::Type::OwnProperty) {
 | ||
|             cache->shape = object->shape();
 | ||
|             cache->property_offset = cacheable_metadata.property_offset.value();
 | ||
|         }
 | ||
| 
 | ||
|         if (!succeeded && vm.in_strict_mode()) {
 | ||
|             if (base.is_object())
 | ||
|                 return vm.throw_completion<TypeError>(ErrorType::ReferenceNullishSetProperty, name, base.to_string_without_side_effects());
 | ||
|             return vm.throw_completion<TypeError>(ErrorType::ReferencePrimitiveSetProperty, name, base.typeof(), base.to_string_without_side_effects());
 | ||
|         }
 | ||
|         break;
 | ||
|     }
 | ||
|     case Op::PropertyKind::DirectKeyValue:
 | ||
|         object->define_direct_property(name, value, Attribute::Enumerable | Attribute::Writable | Attribute::Configurable);
 | ||
|         break;
 | ||
|     case Op::PropertyKind::Spread:
 | ||
|         TRY(object->copy_data_properties(vm, value, {}));
 | ||
|         break;
 | ||
|     case Op::PropertyKind::ProtoSetter:
 | ||
|         if (value.is_object() || value.is_null())
 | ||
|             MUST(object->internal_set_prototype_of(value.is_object() ? &value.as_object() : nullptr));
 | ||
|         break;
 | ||
|     }
 | ||
| 
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| inline ThrowCompletionOr<Value> perform_call(Interpreter& interpreter, Value this_value, Op::CallType call_type, Value callee, ReadonlySpan<Value> argument_values)
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
|     auto& function = callee.as_function();
 | ||
|     Value return_value;
 | ||
|     if (call_type == Op::CallType::DirectEval) {
 | ||
|         if (callee == interpreter.realm().intrinsics().eval_function())
 | ||
|             return_value = TRY(perform_eval(vm, !argument_values.is_empty() ? argument_values[0].value_or(JS::js_undefined()) : js_undefined(), vm.in_strict_mode() ? CallerMode::Strict : CallerMode::NonStrict, EvalMode::Direct));
 | ||
|         else
 | ||
|             return_value = TRY(JS::call(vm, function, this_value, argument_values));
 | ||
|     } else if (call_type == Op::CallType::Call)
 | ||
|         return_value = TRY(JS::call(vm, function, this_value, argument_values));
 | ||
|     else
 | ||
|         return_value = TRY(construct(vm, function, argument_values));
 | ||
| 
 | ||
|     return return_value;
 | ||
| }
 | ||
| 
 | ||
| static inline Completion throw_type_error_for_callee(Bytecode::Interpreter& interpreter, Value callee, StringView callee_type, Optional<StringTableIndex> const& expression_string)
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     if (expression_string.has_value())
 | ||
|         return vm.throw_completion<TypeError>(ErrorType::IsNotAEvaluatedFrom, callee.to_string_without_side_effects(), callee_type, interpreter.current_executable().get_string(expression_string->value()));
 | ||
| 
 | ||
|     return vm.throw_completion<TypeError>(ErrorType::IsNotA, callee.to_string_without_side_effects(), callee_type);
 | ||
| }
 | ||
| 
 | ||
| inline ThrowCompletionOr<void> throw_if_needed_for_call(Interpreter& interpreter, Value callee, Op::CallType call_type, Optional<StringTableIndex> const& expression_string)
 | ||
| {
 | ||
|     if ((call_type == Op::CallType::Call || call_type == Op::CallType::DirectEval)
 | ||
|         && !callee.is_function())
 | ||
|         return throw_type_error_for_callee(interpreter, callee, "function"sv, expression_string);
 | ||
|     if (call_type == Op::CallType::Construct && !callee.is_constructor())
 | ||
|         return throw_type_error_for_callee(interpreter, callee, "constructor"sv, expression_string);
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| inline ThrowCompletionOr<Value> typeof_variable(VM& vm, DeprecatedFlyString const& string)
 | ||
| {
 | ||
|     // 1. Let val be the result of evaluating UnaryExpression.
 | ||
|     auto reference = TRY(vm.resolve_binding(string));
 | ||
| 
 | ||
|     // 2. If val is a Reference Record, then
 | ||
|     //    a. If IsUnresolvableReference(val) is true, return "undefined".
 | ||
|     if (reference.is_unresolvable())
 | ||
|         return PrimitiveString::create(vm, "undefined"_string);
 | ||
| 
 | ||
|     // 3. Set val to ? GetValue(val).
 | ||
|     auto value = TRY(reference.get_value(vm));
 | ||
| 
 | ||
|     // 4. NOTE: This step is replaced in section B.3.6.3.
 | ||
|     // 5. Return a String according to Table 41.
 | ||
|     return PrimitiveString::create(vm, value.typeof());
 | ||
| }
 | ||
| 
 | ||
| inline ThrowCompletionOr<void> set_variable(
 | ||
|     VM& vm,
 | ||
|     DeprecatedFlyString const& name,
 | ||
|     Value value,
 | ||
|     Op::EnvironmentMode mode,
 | ||
|     Op::SetVariable::InitializationMode initialization_mode,
 | ||
|     EnvironmentVariableCache& cache)
 | ||
| {
 | ||
|     auto environment = mode == Op::EnvironmentMode::Lexical ? vm.running_execution_context().lexical_environment : vm.running_execution_context().variable_environment;
 | ||
|     auto reference = TRY(vm.resolve_binding(name, environment));
 | ||
|     if (reference.environment_coordinate().has_value())
 | ||
|         cache = reference.environment_coordinate();
 | ||
|     switch (initialization_mode) {
 | ||
|     case Op::SetVariable::InitializationMode::Initialize:
 | ||
|         TRY(reference.initialize_referenced_binding(vm, value));
 | ||
|         break;
 | ||
|     case Op::SetVariable::InitializationMode::Set:
 | ||
|         TRY(reference.put_value(vm, value));
 | ||
|         break;
 | ||
|     }
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| inline Value new_function(VM& vm, FunctionExpression const& function_node, Optional<IdentifierTableIndex> const& lhs_name, Optional<Operand> const& home_object)
 | ||
| {
 | ||
|     Value value;
 | ||
| 
 | ||
|     if (!function_node.has_name()) {
 | ||
|         DeprecatedFlyString name = {};
 | ||
|         if (lhs_name.has_value())
 | ||
|             name = vm.bytecode_interpreter().current_executable().get_identifier(lhs_name.value());
 | ||
|         value = function_node.instantiate_ordinary_function_expression(vm, name);
 | ||
|     } else {
 | ||
|         value = ECMAScriptFunctionObject::create(*vm.current_realm(), function_node.name(), function_node.source_text(), function_node.body(), function_node.parameters(), function_node.function_length(), function_node.local_variables_names(), vm.lexical_environment(), vm.running_execution_context().private_environment, function_node.kind(), function_node.is_strict_mode(), function_node.might_need_arguments_object(), function_node.contains_direct_call_to_eval(), function_node.is_arrow_function());
 | ||
|     }
 | ||
| 
 | ||
|     if (home_object.has_value()) {
 | ||
|         auto home_object_value = vm.bytecode_interpreter().get(home_object.value());
 | ||
|         static_cast<ECMAScriptFunctionObject&>(value.as_function()).set_home_object(&home_object_value.as_object());
 | ||
|     }
 | ||
| 
 | ||
|     return value;
 | ||
| }
 | ||
| 
 | ||
| inline ThrowCompletionOr<void> put_by_value(VM& vm, Value base, Value property_key_value, Value value, Op::PropertyKind kind)
 | ||
| {
 | ||
|     // OPTIMIZATION: Fast path for simple Int32 indexes in array-like objects.
 | ||
|     if ((kind == Op::PropertyKind::KeyValue || kind == Op::PropertyKind::DirectKeyValue)
 | ||
|         && base.is_object() && property_key_value.is_int32() && property_key_value.as_i32() >= 0) {
 | ||
|         auto& object = base.as_object();
 | ||
|         auto* storage = object.indexed_properties().storage();
 | ||
|         auto index = static_cast<u32>(property_key_value.as_i32());
 | ||
| 
 | ||
|         // For "non-typed arrays":
 | ||
|         if (storage
 | ||
|             && storage->is_simple_storage()
 | ||
|             && !object.may_interfere_with_indexed_property_access()
 | ||
|             && storage->has_index(index)) {
 | ||
|             auto existing_value = storage->get(index)->value;
 | ||
|             if (!existing_value.is_accessor()) {
 | ||
|                 storage->put(index, value);
 | ||
|                 return {};
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         // For typed arrays:
 | ||
|         if (object.is_typed_array()) {
 | ||
|             auto& typed_array = static_cast<TypedArrayBase&>(object);
 | ||
|             auto canonical_index = CanonicalIndex { CanonicalIndex::Type::Index, index };
 | ||
| 
 | ||
|             if (value.is_int32() && is_valid_integer_index(typed_array, canonical_index)) {
 | ||
|                 switch (typed_array.kind()) {
 | ||
|                 case TypedArrayBase::Kind::Uint8Array:
 | ||
|                     fast_typed_array_set_element<u8>(typed_array, index, static_cast<u8>(value.as_i32()));
 | ||
|                     return {};
 | ||
|                 case TypedArrayBase::Kind::Uint16Array:
 | ||
|                     fast_typed_array_set_element<u16>(typed_array, index, static_cast<u16>(value.as_i32()));
 | ||
|                     return {};
 | ||
|                 case TypedArrayBase::Kind::Uint32Array:
 | ||
|                     fast_typed_array_set_element<u32>(typed_array, index, static_cast<u32>(value.as_i32()));
 | ||
|                     return {};
 | ||
|                 case TypedArrayBase::Kind::Int8Array:
 | ||
|                     fast_typed_array_set_element<i8>(typed_array, index, static_cast<i8>(value.as_i32()));
 | ||
|                     return {};
 | ||
|                 case TypedArrayBase::Kind::Int16Array:
 | ||
|                     fast_typed_array_set_element<i16>(typed_array, index, static_cast<i16>(value.as_i32()));
 | ||
|                     return {};
 | ||
|                 case TypedArrayBase::Kind::Int32Array:
 | ||
|                     fast_typed_array_set_element<i32>(typed_array, index, value.as_i32());
 | ||
|                     return {};
 | ||
|                 case TypedArrayBase::Kind::Uint8ClampedArray:
 | ||
|                     fast_typed_array_set_element<u8>(typed_array, index, clamp(value.as_i32(), 0, 255));
 | ||
|                     return {};
 | ||
|                 default:
 | ||
|                     // FIXME: Support more TypedArray kinds.
 | ||
|                     break;
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             if (typed_array.kind() == TypedArrayBase::Kind::Uint32Array && value.is_integral_number()) {
 | ||
|                 auto integer = value.as_double();
 | ||
| 
 | ||
|                 if (AK::is_within_range<u32>(integer) && is_valid_integer_index(typed_array, canonical_index)) {
 | ||
|                     fast_typed_array_set_element<u32>(typed_array, index, static_cast<u32>(integer));
 | ||
|                     return {};
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             switch (typed_array.kind()) {
 | ||
| #define __JS_ENUMERATE(ClassName, snake_name, PrototypeName, ConstructorName, Type) \
 | ||
|     case TypedArrayBase::Kind::ClassName:                                           \
 | ||
|         return typed_array_set_element<Type>(typed_array, canonical_index, value);
 | ||
|                 JS_ENUMERATE_TYPED_ARRAYS
 | ||
| #undef __JS_ENUMERATE
 | ||
|             }
 | ||
|             return {};
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     auto property_key = kind != Op::PropertyKind::Spread ? TRY(property_key_value.to_property_key(vm)) : PropertyKey {};
 | ||
|     TRY(put_by_property_key(vm, base, base, value, property_key, kind));
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| inline ThrowCompletionOr<Value> get_variable(Bytecode::Interpreter& interpreter, DeprecatedFlyString const& name, EnvironmentVariableCache& cache)
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     if (cache.has_value()) {
 | ||
|         auto environment = vm.running_execution_context().lexical_environment;
 | ||
|         for (size_t i = 0; i < cache->hops; ++i)
 | ||
|             environment = environment->outer_environment();
 | ||
|         VERIFY(environment);
 | ||
|         VERIFY(environment->is_declarative_environment());
 | ||
|         if (!environment->is_permanently_screwed_by_eval()) {
 | ||
|             return TRY(verify_cast<DeclarativeEnvironment>(*environment).get_binding_value_direct(vm, cache.value().index, vm.in_strict_mode()));
 | ||
|         }
 | ||
|         cache = {};
 | ||
|     }
 | ||
| 
 | ||
|     auto reference = TRY(vm.resolve_binding(name));
 | ||
|     if (reference.environment_coordinate().has_value())
 | ||
|         cache = reference.environment_coordinate();
 | ||
|     return TRY(reference.get_value(vm));
 | ||
| }
 | ||
| 
 | ||
| struct CalleeAndThis {
 | ||
|     Value callee;
 | ||
|     Value this_value;
 | ||
| };
 | ||
| 
 | ||
| inline ThrowCompletionOr<CalleeAndThis> get_callee_and_this_from_environment(Bytecode::Interpreter& interpreter, DeprecatedFlyString const& name, EnvironmentVariableCache& cache)
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     Value callee = js_undefined();
 | ||
|     Value this_value = js_undefined();
 | ||
| 
 | ||
|     if (cache.has_value()) {
 | ||
|         auto environment = vm.running_execution_context().lexical_environment;
 | ||
|         for (size_t i = 0; i < cache->hops; ++i)
 | ||
|             environment = environment->outer_environment();
 | ||
|         VERIFY(environment);
 | ||
|         VERIFY(environment->is_declarative_environment());
 | ||
|         if (!environment->is_permanently_screwed_by_eval()) {
 | ||
|             callee = TRY(verify_cast<DeclarativeEnvironment>(*environment).get_binding_value_direct(vm, cache.value().index, vm.in_strict_mode()));
 | ||
|             this_value = js_undefined();
 | ||
|             if (auto base_object = environment->with_base_object())
 | ||
|                 this_value = base_object;
 | ||
|             return CalleeAndThis {
 | ||
|                 .callee = callee,
 | ||
|                 .this_value = this_value,
 | ||
|             };
 | ||
|         }
 | ||
|         cache = {};
 | ||
|     }
 | ||
| 
 | ||
|     auto reference = TRY(vm.resolve_binding(name));
 | ||
|     if (reference.environment_coordinate().has_value())
 | ||
|         cache = reference.environment_coordinate();
 | ||
| 
 | ||
|     callee = TRY(reference.get_value(vm));
 | ||
| 
 | ||
|     if (reference.is_property_reference()) {
 | ||
|         this_value = reference.get_this_value();
 | ||
|     } else {
 | ||
|         if (reference.is_environment_reference()) {
 | ||
|             if (auto base_object = reference.base_environment().with_base_object(); base_object != nullptr)
 | ||
|                 this_value = base_object;
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     return CalleeAndThis {
 | ||
|         .callee = callee,
 | ||
|         .this_value = this_value,
 | ||
|     };
 | ||
| }
 | ||
| 
 | ||
| // 13.2.7.3 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-regular-expression-literals-runtime-semantics-evaluation
 | ||
| inline Value new_regexp(VM& vm, ParsedRegex const& parsed_regex, ByteString const& pattern, ByteString const& flags)
 | ||
| {
 | ||
|     // 1. Let pattern be CodePointsToString(BodyText of RegularExpressionLiteral).
 | ||
|     // 2. Let flags be CodePointsToString(FlagText of RegularExpressionLiteral).
 | ||
| 
 | ||
|     // 3. Return ! RegExpCreate(pattern, flags).
 | ||
|     auto& realm = *vm.current_realm();
 | ||
|     Regex<ECMA262> regex(parsed_regex.regex, parsed_regex.pattern, parsed_regex.flags);
 | ||
|     // NOTE: We bypass RegExpCreate and subsequently RegExpAlloc as an optimization to use the already parsed values.
 | ||
|     auto regexp_object = RegExpObject::create(realm, move(regex), pattern, flags);
 | ||
|     // RegExpAlloc has these two steps from the 'Legacy RegExp features' proposal.
 | ||
|     regexp_object->set_realm(realm);
 | ||
|     // We don't need to check 'If SameValue(newTarget, thisRealm.[[Intrinsics]].[[%RegExp%]]) is true'
 | ||
|     // here as we know RegExpCreate calls RegExpAlloc with %RegExp% for newTarget.
 | ||
|     regexp_object->set_legacy_features_enabled(true);
 | ||
|     return regexp_object;
 | ||
| }
 | ||
| 
 | ||
| // 13.3.8.1 https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation
 | ||
| inline MarkedVector<Value> argument_list_evaluation(VM& vm, Value arguments)
 | ||
| {
 | ||
|     // Note: Any spreading and actual evaluation is handled in preceding opcodes
 | ||
|     // Note: The spec uses the concept of a list, while we create a temporary array
 | ||
|     //       in the preceding opcodes, so we have to convert in a manner that is not
 | ||
|     //       visible to the user
 | ||
|     MarkedVector<Value> argument_values { vm.heap() };
 | ||
| 
 | ||
|     auto& argument_array = arguments.as_array();
 | ||
|     auto array_length = argument_array.indexed_properties().array_like_size();
 | ||
| 
 | ||
|     argument_values.ensure_capacity(array_length);
 | ||
| 
 | ||
|     for (size_t i = 0; i < array_length; ++i) {
 | ||
|         if (auto maybe_value = argument_array.indexed_properties().get(i); maybe_value.has_value())
 | ||
|             argument_values.append(maybe_value.release_value().value);
 | ||
|         else
 | ||
|             argument_values.append(js_undefined());
 | ||
|     }
 | ||
| 
 | ||
|     return argument_values;
 | ||
| }
 | ||
| 
 | ||
| inline ThrowCompletionOr<void> create_variable(VM& vm, DeprecatedFlyString const& name, Op::EnvironmentMode mode, bool is_global, bool is_immutable, bool is_strict)
 | ||
| {
 | ||
|     if (mode == Op::EnvironmentMode::Lexical) {
 | ||
|         VERIFY(!is_global);
 | ||
| 
 | ||
|         // Note: This is papering over an issue where "FunctionDeclarationInstantiation" creates these bindings for us.
 | ||
|         //       Instead of crashing in there, we'll just raise an exception here.
 | ||
|         if (TRY(vm.lexical_environment()->has_binding(name)))
 | ||
|             return vm.throw_completion<InternalError>(TRY_OR_THROW_OOM(vm, String::formatted("Lexical environment already has binding '{}'", name)));
 | ||
| 
 | ||
|         if (is_immutable)
 | ||
|             return vm.lexical_environment()->create_immutable_binding(vm, name, is_strict);
 | ||
|         return vm.lexical_environment()->create_mutable_binding(vm, name, is_strict);
 | ||
|     }
 | ||
| 
 | ||
|     if (!is_global) {
 | ||
|         if (is_immutable)
 | ||
|             return vm.variable_environment()->create_immutable_binding(vm, name, is_strict);
 | ||
|         return vm.variable_environment()->create_mutable_binding(vm, name, is_strict);
 | ||
|     }
 | ||
| 
 | ||
|     // NOTE: CreateVariable with m_is_global set to true is expected to only be used in GlobalDeclarationInstantiation currently, which only uses "false" for "can_be_deleted".
 | ||
|     //       The only area that sets "can_be_deleted" to true is EvalDeclarationInstantiation, which is currently fully implemented in C++ and not in Bytecode.
 | ||
|     return verify_cast<GlobalEnvironment>(vm.variable_environment())->create_global_var_binding(name, false);
 | ||
| }
 | ||
| 
 | ||
| inline ThrowCompletionOr<ECMAScriptFunctionObject*> new_class(VM& vm, Value super_class, ClassExpression const& class_expression, Optional<IdentifierTableIndex> const& lhs_name)
 | ||
| {
 | ||
|     auto& interpreter = vm.bytecode_interpreter();
 | ||
|     auto name = class_expression.name();
 | ||
| 
 | ||
|     // NOTE: NewClass expects classEnv to be active lexical environment
 | ||
|     auto* class_environment = vm.lexical_environment();
 | ||
|     vm.running_execution_context().lexical_environment = interpreter.saved_lexical_environment_stack().take_last();
 | ||
| 
 | ||
|     Optional<DeprecatedFlyString> binding_name;
 | ||
|     DeprecatedFlyString class_name;
 | ||
|     if (!class_expression.has_name() && lhs_name.has_value()) {
 | ||
|         class_name = interpreter.current_executable().get_identifier(lhs_name.value());
 | ||
|     } else {
 | ||
|         binding_name = name;
 | ||
|         class_name = name.is_null() ? ""sv : name;
 | ||
|     }
 | ||
| 
 | ||
|     return TRY(class_expression.create_class_constructor(vm, class_environment, vm.lexical_environment(), super_class, binding_name, class_name));
 | ||
| }
 | ||
| 
 | ||
| // 13.3.7.1 Runtime Semantics: Evaluation, https://tc39.es/ecma262/#sec-super-keyword-runtime-semantics-evaluation
 | ||
| inline ThrowCompletionOr<NonnullGCPtr<Object>> super_call_with_argument_array(VM& vm, Value argument_array, bool is_synthetic)
 | ||
| {
 | ||
|     // 1. Let newTarget be GetNewTarget().
 | ||
|     auto new_target = vm.get_new_target();
 | ||
| 
 | ||
|     // 2. Assert: Type(newTarget) is Object.
 | ||
|     VERIFY(new_target.is_object());
 | ||
| 
 | ||
|     // 3. Let func be GetSuperConstructor().
 | ||
|     auto* func = get_super_constructor(vm);
 | ||
| 
 | ||
|     // 4. Let argList be ? ArgumentListEvaluation of Arguments.
 | ||
|     MarkedVector<Value> arg_list { vm.heap() };
 | ||
|     if (is_synthetic) {
 | ||
|         VERIFY(argument_array.is_object() && is<Array>(argument_array.as_object()));
 | ||
|         auto const& array_value = static_cast<Array const&>(argument_array.as_object());
 | ||
|         auto length = MUST(length_of_array_like(vm, array_value));
 | ||
|         for (size_t i = 0; i < length; ++i)
 | ||
|             arg_list.append(array_value.get_without_side_effects(PropertyKey { i }));
 | ||
|     } else {
 | ||
|         arg_list = argument_list_evaluation(vm, argument_array);
 | ||
|     }
 | ||
| 
 | ||
|     // 5. If IsConstructor(func) is false, throw a TypeError exception.
 | ||
|     if (!Value(func).is_constructor())
 | ||
|         return vm.throw_completion<TypeError>(ErrorType::NotAConstructor, "Super constructor");
 | ||
| 
 | ||
|     // 6. Let result be ? Construct(func, argList, newTarget).
 | ||
|     auto result = TRY(construct(vm, static_cast<FunctionObject&>(*func), arg_list.span(), &new_target.as_function()));
 | ||
| 
 | ||
|     // 7. Let thisER be GetThisEnvironment().
 | ||
|     auto& this_environment = verify_cast<FunctionEnvironment>(*get_this_environment(vm));
 | ||
| 
 | ||
|     // 8. Perform ? thisER.BindThisValue(result).
 | ||
|     TRY(this_environment.bind_this_value(vm, result));
 | ||
| 
 | ||
|     // 9. Let F be thisER.[[FunctionObject]].
 | ||
|     auto& f = this_environment.function_object();
 | ||
| 
 | ||
|     // 10. Assert: F is an ECMAScript function object.
 | ||
|     // NOTE: This is implied by the strong C++ type.
 | ||
| 
 | ||
|     // 11. Perform ? InitializeInstanceElements(result, F).
 | ||
|     TRY(result->initialize_instance_elements(f));
 | ||
| 
 | ||
|     // 12. Return result.
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| inline ThrowCompletionOr<NonnullGCPtr<Array>> iterator_to_array(VM& vm, Value iterator)
 | ||
| {
 | ||
|     auto& iterator_record = verify_cast<IteratorRecord>(iterator.as_object());
 | ||
| 
 | ||
|     auto array = MUST(Array::create(*vm.current_realm(), 0));
 | ||
|     size_t index = 0;
 | ||
| 
 | ||
|     while (true) {
 | ||
|         auto value = TRY(iterator_step_value(vm, iterator_record));
 | ||
|         if (!value.has_value())
 | ||
|             return array;
 | ||
| 
 | ||
|         MUST(array->create_data_property_or_throw(index, value.release_value()));
 | ||
|         index++;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| inline ThrowCompletionOr<void> append(VM& vm, Value lhs, Value rhs, bool is_spread)
 | ||
| {
 | ||
|     // Note: This OpCode is used to construct array literals and argument arrays for calls,
 | ||
|     //       containing at least one spread element,
 | ||
|     //       Iterating over such a spread element to unpack it has to be visible by
 | ||
|     //       the user courtesy of
 | ||
|     //       (1) https://tc39.es/ecma262/#sec-runtime-semantics-arrayaccumulation
 | ||
|     //          SpreadElement : ... AssignmentExpression
 | ||
|     //              1. Let spreadRef be ? Evaluation of AssignmentExpression.
 | ||
|     //              2. Let spreadObj be ? GetValue(spreadRef).
 | ||
|     //              3. Let iteratorRecord be ? GetIterator(spreadObj).
 | ||
|     //              4. Repeat,
 | ||
|     //                  a. Let next be ? IteratorStep(iteratorRecord).
 | ||
|     //                  b. If next is false, return nextIndex.
 | ||
|     //                  c. Let nextValue be ? IteratorValue(next).
 | ||
|     //                  d. Perform ! CreateDataPropertyOrThrow(array, ! ToString(𝔽(nextIndex)), nextValue).
 | ||
|     //                  e. Set nextIndex to nextIndex + 1.
 | ||
|     //       (2) https://tc39.es/ecma262/#sec-runtime-semantics-argumentlistevaluation
 | ||
|     //          ArgumentList : ... AssignmentExpression
 | ||
|     //              1. Let list be a new empty List.
 | ||
|     //              2. Let spreadRef be ? Evaluation of AssignmentExpression.
 | ||
|     //              3. Let spreadObj be ? GetValue(spreadRef).
 | ||
|     //              4. Let iteratorRecord be ? GetIterator(spreadObj).
 | ||
|     //              5. Repeat,
 | ||
|     //                  a. Let next be ? IteratorStep(iteratorRecord).
 | ||
|     //                  b. If next is false, return list.
 | ||
|     //                  c. Let nextArg be ? IteratorValue(next).
 | ||
|     //                  d. Append nextArg to list.
 | ||
|     //          ArgumentList : ArgumentList , ... AssignmentExpression
 | ||
|     //             1. Let precedingArgs be ? ArgumentListEvaluation of ArgumentList.
 | ||
|     //             2. Let spreadRef be ? Evaluation of AssignmentExpression.
 | ||
|     //             3. Let iteratorRecord be ? GetIterator(? GetValue(spreadRef)).
 | ||
|     //             4. Repeat,
 | ||
|     //                 a. Let next be ? IteratorStep(iteratorRecord).
 | ||
|     //                 b. If next is false, return precedingArgs.
 | ||
|     //                 c. Let nextArg be ? IteratorValue(next).
 | ||
|     //                 d. Append nextArg to precedingArgs.
 | ||
| 
 | ||
|     // Note: We know from codegen, that lhs is a plain array with only indexed properties
 | ||
|     auto& lhs_array = lhs.as_array();
 | ||
|     auto lhs_size = lhs_array.indexed_properties().array_like_size();
 | ||
| 
 | ||
|     if (is_spread) {
 | ||
|         // ...rhs
 | ||
|         size_t i = lhs_size;
 | ||
|         TRY(get_iterator_values(vm, rhs, [&i, &lhs_array](Value iterator_value) -> Optional<Completion> {
 | ||
|             lhs_array.indexed_properties().put(i, iterator_value, default_attributes);
 | ||
|             ++i;
 | ||
|             return {};
 | ||
|         }));
 | ||
|     } else {
 | ||
|         lhs_array.indexed_properties().put(lhs_size, rhs, default_attributes);
 | ||
|     }
 | ||
| 
 | ||
|     return {};
 | ||
| }
 | ||
| 
 | ||
| inline ThrowCompletionOr<Value> delete_by_id(Bytecode::Interpreter& interpreter, Value base, IdentifierTableIndex property)
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     auto const& identifier = interpreter.current_executable().get_identifier(property);
 | ||
|     bool strict = vm.in_strict_mode();
 | ||
|     auto reference = Reference { base, identifier, {}, strict };
 | ||
| 
 | ||
|     return TRY(reference.delete_(vm));
 | ||
| }
 | ||
| 
 | ||
| inline ThrowCompletionOr<Value> delete_by_value(Bytecode::Interpreter& interpreter, Value base, Value property_key_value)
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     auto property_key = TRY(property_key_value.to_property_key(vm));
 | ||
|     bool strict = vm.in_strict_mode();
 | ||
|     auto reference = Reference { base, property_key, {}, strict };
 | ||
| 
 | ||
|     return Value(TRY(reference.delete_(vm)));
 | ||
| }
 | ||
| 
 | ||
| inline ThrowCompletionOr<Value> delete_by_value_with_this(Bytecode::Interpreter& interpreter, Value base, Value property_key_value, Value this_value)
 | ||
| {
 | ||
|     auto& vm = interpreter.vm();
 | ||
| 
 | ||
|     auto property_key = TRY(property_key_value.to_property_key(vm));
 | ||
|     bool strict = vm.in_strict_mode();
 | ||
|     auto reference = Reference { base, property_key, this_value, strict };
 | ||
| 
 | ||
|     return Value(TRY(reference.delete_(vm)));
 | ||
| }
 | ||
| 
 | ||
| // 14.7.5.9 EnumerateObjectProperties ( O ), https://tc39.es/ecma262/#sec-enumerate-object-properties
 | ||
| inline ThrowCompletionOr<Object*> get_object_property_iterator(VM& vm, Value value)
 | ||
| {
 | ||
|     // While the spec does provide an algorithm, it allows us to implement it ourselves so long as we meet the following invariants:
 | ||
|     //    1- Returned property keys do not include keys that are Symbols
 | ||
|     //    2- Properties of the target object may be deleted during enumeration. A property that is deleted before it is processed by the iterator's next method is ignored
 | ||
|     //    3- If new properties are added to the target object during enumeration, the newly added properties are not guaranteed to be processed in the active enumeration
 | ||
|     //    4- A property name will be returned by the iterator's next method at most once in any enumeration.
 | ||
|     //    5- Enumerating the properties of the target object includes enumerating properties of its prototype, and the prototype of the prototype, and so on, recursively;
 | ||
|     //       but a property of a prototype is not processed if it has the same name as a property that has already been processed by the iterator's next method.
 | ||
|     //    6- The values of [[Enumerable]] attributes are not considered when determining if a property of a prototype object has already been processed.
 | ||
|     //    7- The enumerable property names of prototype objects must be obtained by invoking EnumerateObjectProperties passing the prototype object as the argument.
 | ||
|     //    8- EnumerateObjectProperties must obtain the own property keys of the target object by calling its [[OwnPropertyKeys]] internal method.
 | ||
|     //    9- Property attributes of the target object must be obtained by calling its [[GetOwnProperty]] internal method
 | ||
| 
 | ||
|     // Invariant 3 effectively allows the implementation to ignore newly added keys, and we do so (similar to other implementations).
 | ||
|     auto object = TRY(value.to_object(vm));
 | ||
|     // Note: While the spec doesn't explicitly require these to be ordered, it says that the values should be retrieved via OwnPropertyKeys,
 | ||
|     //       so we just keep the order consistent anyway.
 | ||
|     OrderedHashTable<PropertyKey> properties;
 | ||
|     OrderedHashTable<PropertyKey> non_enumerable_properties;
 | ||
|     HashTable<NonnullGCPtr<Object>> seen_objects;
 | ||
|     // Collect all keys immediately (invariant no. 5)
 | ||
|     for (auto object_to_check = GCPtr { object.ptr() }; object_to_check && !seen_objects.contains(*object_to_check); object_to_check = TRY(object_to_check->internal_get_prototype_of())) {
 | ||
|         seen_objects.set(*object_to_check);
 | ||
|         for (auto& key : TRY(object_to_check->internal_own_property_keys())) {
 | ||
|             if (key.is_symbol())
 | ||
|                 continue;
 | ||
|             auto property_key = TRY(PropertyKey::from_value(vm, key));
 | ||
| 
 | ||
|             // If there is a non-enumerable property higher up the prototype chain with the same key,
 | ||
|             // we mustn't include this property even if it's enumerable (invariant no. 5 and 6)
 | ||
|             if (non_enumerable_properties.contains(property_key))
 | ||
|                 continue;
 | ||
|             if (properties.contains(property_key))
 | ||
|                 continue;
 | ||
| 
 | ||
|             auto descriptor = TRY(object_to_check->internal_get_own_property(property_key));
 | ||
|             if (!*descriptor->enumerable)
 | ||
|                 non_enumerable_properties.set(move(property_key));
 | ||
|             else
 | ||
|                 properties.set(move(property_key));
 | ||
|         }
 | ||
|     }
 | ||
|     auto& realm = *vm.current_realm();
 | ||
|     auto callback = NativeFunction::create(
 | ||
|         *vm.current_realm(), [items = move(properties)](VM& vm) mutable -> ThrowCompletionOr<Value> {
 | ||
|             auto& realm = *vm.current_realm();
 | ||
|             auto iterated_object_value = vm.this_value();
 | ||
|             if (!iterated_object_value.is_object())
 | ||
|                 return vm.throw_completion<InternalError>("Invalid state for GetObjectPropertyIterator.next"sv);
 | ||
| 
 | ||
|             auto& iterated_object = iterated_object_value.as_object();
 | ||
|             auto result_object = Object::create(realm, nullptr);
 | ||
|             while (true) {
 | ||
|                 if (items.is_empty()) {
 | ||
|                     result_object->define_direct_property(vm.names.done, JS::Value(true), default_attributes);
 | ||
|                     return result_object;
 | ||
|                 }
 | ||
| 
 | ||
|                 auto key = items.take_first();
 | ||
| 
 | ||
|                 // If the property is deleted, don't include it (invariant no. 2)
 | ||
|                 if (!TRY(iterated_object.has_property(key)))
 | ||
|                     continue;
 | ||
| 
 | ||
|                 result_object->define_direct_property(vm.names.done, JS::Value(false), default_attributes);
 | ||
| 
 | ||
|                 if (key.is_number())
 | ||
|                     result_object->define_direct_property(vm.names.value, PrimitiveString::create(vm, TRY_OR_THROW_OOM(vm, String::number(key.as_number()))), default_attributes);
 | ||
|                 else if (key.is_string())
 | ||
|                     result_object->define_direct_property(vm.names.value, PrimitiveString::create(vm, key.as_string()), default_attributes);
 | ||
|                 else
 | ||
|                     VERIFY_NOT_REACHED(); // We should not have non-string/number keys.
 | ||
| 
 | ||
|                 return result_object;
 | ||
|             }
 | ||
|         },
 | ||
|         1, vm.names.next);
 | ||
|     return vm.heap().allocate<IteratorRecord>(realm, realm, object, callback, false).ptr();
 | ||
| }
 | ||
| 
 | ||
| }
 |