mirror of
https://github.com/RGBCube/serenity
synced 2025-05-26 01:35:08 +00:00

This changes the Thread::wait_on function to not enable interrupts upon leaving, which caused some problems with page fault handlers and in other situations. It may now be called from critical sections, with interrupts enabled or disabled, and returns to the same state. This also requires some fixes to Lock. To aid debugging, a new define LOCK_DEBUG is added that enables checking for Lock leaks upon finalization of a Thread.
1157 lines
28 KiB
C++
1157 lines
28 KiB
C++
/*
|
|
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <AK/Atomic.h>
|
|
#include <AK/Badge.h>
|
|
#include <AK/Noncopyable.h>
|
|
#include <AK/Vector.h>
|
|
#include <Kernel/PhysicalAddress.h>
|
|
#include <Kernel/VirtualAddress.h>
|
|
|
|
#define PAGE_SIZE 4096
|
|
#define GENERIC_INTERRUPT_HANDLERS_COUNT (256 - IRQ_VECTOR_BASE)
|
|
#define PAGE_MASK ((FlatPtr)0xfffff000u)
|
|
|
|
namespace Kernel {
|
|
|
|
class MemoryManager;
|
|
class PageDirectory;
|
|
class PageTableEntry;
|
|
|
|
struct [[gnu::packed]] DescriptorTablePointer
|
|
{
|
|
u16 limit;
|
|
void* address;
|
|
};
|
|
|
|
struct [[gnu::packed]] TSS32
|
|
{
|
|
u16 backlink, __blh;
|
|
u32 esp0;
|
|
u16 ss0, __ss0h;
|
|
u32 esp1;
|
|
u16 ss1, __ss1h;
|
|
u32 esp2;
|
|
u16 ss2, __ss2h;
|
|
u32 cr3, eip, eflags;
|
|
u32 eax, ecx, edx, ebx, esp, ebp, esi, edi;
|
|
u16 es, __esh;
|
|
u16 cs, __csh;
|
|
u16 ss, __ssh;
|
|
u16 ds, __dsh;
|
|
u16 fs, __fsh;
|
|
u16 gs, __gsh;
|
|
u16 ldt, __ldth;
|
|
u16 trace, iomapbase;
|
|
};
|
|
|
|
union [[gnu::packed]] Descriptor
|
|
{
|
|
struct {
|
|
u16 limit_lo;
|
|
u16 base_lo;
|
|
u8 base_hi;
|
|
u8 type : 4;
|
|
u8 descriptor_type : 1;
|
|
u8 dpl : 2;
|
|
u8 segment_present : 1;
|
|
u8 limit_hi : 4;
|
|
u8 : 1;
|
|
u8 zero : 1;
|
|
u8 operation_size : 1;
|
|
u8 granularity : 1;
|
|
u8 base_hi2;
|
|
};
|
|
struct {
|
|
u32 low;
|
|
u32 high;
|
|
};
|
|
|
|
enum Type {
|
|
Invalid = 0,
|
|
AvailableTSS_16bit = 0x1,
|
|
LDT = 0x2,
|
|
BusyTSS_16bit = 0x3,
|
|
CallGate_16bit = 0x4,
|
|
TaskGate = 0x5,
|
|
InterruptGate_16bit = 0x6,
|
|
TrapGate_16bit = 0x7,
|
|
AvailableTSS_32bit = 0x9,
|
|
BusyTSS_32bit = 0xb,
|
|
CallGate_32bit = 0xc,
|
|
InterruptGate_32bit = 0xe,
|
|
TrapGate_32bit = 0xf,
|
|
};
|
|
|
|
void* get_base() const
|
|
{
|
|
u32 b = base_lo;
|
|
b |= base_hi << 16;
|
|
b |= base_hi2 << 24;
|
|
return reinterpret_cast<void*>(b);
|
|
}
|
|
|
|
void set_base(void* b)
|
|
{
|
|
base_lo = (u32)(b)&0xffff;
|
|
base_hi = ((u32)(b) >> 16) & 0xff;
|
|
base_hi2 = ((u32)(b) >> 24) & 0xff;
|
|
}
|
|
|
|
void set_limit(u32 l)
|
|
{
|
|
limit_lo = (u32)l & 0xffff;
|
|
limit_hi = ((u32)l >> 16) & 0xf;
|
|
}
|
|
};
|
|
|
|
class PageDirectoryEntry {
|
|
public:
|
|
const PageTableEntry* page_table_base() const { return reinterpret_cast<PageTableEntry*>(m_raw & 0xfffff000u); }
|
|
PageTableEntry* page_table_base() { return reinterpret_cast<PageTableEntry*>(m_raw & 0xfffff000u); }
|
|
void set_page_table_base(u32 value)
|
|
{
|
|
m_raw &= 0x8000000000000fffULL;
|
|
m_raw |= value & 0xfffff000;
|
|
}
|
|
|
|
bool is_null() const { return m_raw == 0; }
|
|
void clear() { m_raw = 0; }
|
|
|
|
u64 raw() const { return m_raw; }
|
|
void copy_from(Badge<PageDirectory>, const PageDirectoryEntry& other) { m_raw = other.m_raw; }
|
|
|
|
enum Flags {
|
|
Present = 1 << 0,
|
|
ReadWrite = 1 << 1,
|
|
UserSupervisor = 1 << 2,
|
|
WriteThrough = 1 << 3,
|
|
CacheDisabled = 1 << 4,
|
|
Huge = 1 << 7,
|
|
Global = 1 << 8,
|
|
NoExecute = 0x8000000000000000ULL,
|
|
};
|
|
|
|
bool is_present() const { return raw() & Present; }
|
|
void set_present(bool b) { set_bit(Present, b); }
|
|
|
|
bool is_user_allowed() const { return raw() & UserSupervisor; }
|
|
void set_user_allowed(bool b) { set_bit(UserSupervisor, b); }
|
|
|
|
bool is_huge() const { return raw() & Huge; }
|
|
void set_huge(bool b) { set_bit(Huge, b); }
|
|
|
|
bool is_writable() const { return raw() & ReadWrite; }
|
|
void set_writable(bool b) { set_bit(ReadWrite, b); }
|
|
|
|
bool is_write_through() const { return raw() & WriteThrough; }
|
|
void set_write_through(bool b) { set_bit(WriteThrough, b); }
|
|
|
|
bool is_cache_disabled() const { return raw() & CacheDisabled; }
|
|
void set_cache_disabled(bool b) { set_bit(CacheDisabled, b); }
|
|
|
|
bool is_global() const { return raw() & Global; }
|
|
void set_global(bool b) { set_bit(Global, b); }
|
|
|
|
bool is_execute_disabled() const { return raw() & NoExecute; }
|
|
void set_execute_disabled(bool b) { set_bit(NoExecute, b); }
|
|
|
|
void set_bit(u64 bit, bool value)
|
|
{
|
|
if (value)
|
|
m_raw |= bit;
|
|
else
|
|
m_raw &= ~bit;
|
|
}
|
|
|
|
private:
|
|
u64 m_raw;
|
|
};
|
|
|
|
class PageTableEntry {
|
|
public:
|
|
void* physical_page_base() { return reinterpret_cast<void*>(m_raw & 0xfffff000u); }
|
|
void set_physical_page_base(u32 value)
|
|
{
|
|
m_raw &= 0x8000000000000fffULL;
|
|
m_raw |= value & 0xfffff000;
|
|
}
|
|
|
|
u64 raw() const { return (u32)m_raw; }
|
|
|
|
enum Flags {
|
|
Present = 1 << 0,
|
|
ReadWrite = 1 << 1,
|
|
UserSupervisor = 1 << 2,
|
|
WriteThrough = 1 << 3,
|
|
CacheDisabled = 1 << 4,
|
|
Global = 1 << 8,
|
|
NoExecute = 0x8000000000000000ULL,
|
|
};
|
|
|
|
bool is_present() const { return raw() & Present; }
|
|
void set_present(bool b) { set_bit(Present, b); }
|
|
|
|
bool is_user_allowed() const { return raw() & UserSupervisor; }
|
|
void set_user_allowed(bool b) { set_bit(UserSupervisor, b); }
|
|
|
|
bool is_writable() const { return raw() & ReadWrite; }
|
|
void set_writable(bool b) { set_bit(ReadWrite, b); }
|
|
|
|
bool is_write_through() const { return raw() & WriteThrough; }
|
|
void set_write_through(bool b) { set_bit(WriteThrough, b); }
|
|
|
|
bool is_cache_disabled() const { return raw() & CacheDisabled; }
|
|
void set_cache_disabled(bool b) { set_bit(CacheDisabled, b); }
|
|
|
|
bool is_global() const { return raw() & Global; }
|
|
void set_global(bool b) { set_bit(Global, b); }
|
|
|
|
bool is_execute_disabled() const { return raw() & NoExecute; }
|
|
void set_execute_disabled(bool b) { set_bit(NoExecute, b); }
|
|
|
|
bool is_null() const { return m_raw == 0; }
|
|
void clear() { m_raw = 0; }
|
|
|
|
void set_bit(u64 bit, bool value)
|
|
{
|
|
if (value)
|
|
m_raw |= bit;
|
|
else
|
|
m_raw &= ~bit;
|
|
}
|
|
|
|
private:
|
|
u64 m_raw;
|
|
};
|
|
|
|
static_assert(sizeof(PageDirectoryEntry) == 8);
|
|
static_assert(sizeof(PageTableEntry) == 8);
|
|
|
|
class PageDirectoryPointerTable {
|
|
public:
|
|
PageDirectoryEntry* directory(size_t index)
|
|
{
|
|
return (PageDirectoryEntry*)(raw[index] & ~0xfffu);
|
|
}
|
|
|
|
u64 raw[4];
|
|
};
|
|
|
|
class GenericInterruptHandler;
|
|
struct RegisterState;
|
|
|
|
const DescriptorTablePointer& get_gdtr();
|
|
const DescriptorTablePointer& get_idtr();
|
|
void register_interrupt_handler(u8 number, void (*f)());
|
|
void register_user_callable_interrupt_handler(u8 number, void (*f)());
|
|
GenericInterruptHandler& get_interrupt_handler(u8 interrupt_number);
|
|
void register_generic_interrupt_handler(u8 number, GenericInterruptHandler&);
|
|
void replace_single_handler_with_shared(GenericInterruptHandler&);
|
|
void replace_shared_handler_with_single(GenericInterruptHandler&);
|
|
void unregister_generic_interrupt_handler(u8 number, GenericInterruptHandler&);
|
|
void flush_idt();
|
|
void load_task_register(u16 selector);
|
|
void handle_crash(RegisterState&, const char* description, int signal, bool out_of_memory = false);
|
|
|
|
[[nodiscard]] bool safe_memcpy(void* dest_ptr, const void* src_ptr, size_t n, void*& fault_at);
|
|
[[nodiscard]] ssize_t safe_strnlen(const char* str, size_t max_n, void*& fault_at);
|
|
[[nodiscard]] bool safe_memset(void* dest_ptr, int c, size_t n, void*& fault_at);
|
|
|
|
#define LSW(x) ((u32)(x)&0xFFFF)
|
|
#define MSW(x) (((u32)(x) >> 16) & 0xFFFF)
|
|
#define LSB(x) ((x)&0xFF)
|
|
#define MSB(x) (((x) >> 8) & 0xFF)
|
|
|
|
#define cli() asm volatile("cli" :: \
|
|
: "memory")
|
|
#define sti() asm volatile("sti" :: \
|
|
: "memory")
|
|
#define memory_barrier() asm volatile("" :: \
|
|
: "memory")
|
|
inline u32 cpu_flags()
|
|
{
|
|
u32 flags;
|
|
asm volatile(
|
|
"pushf\n"
|
|
"pop %0\n"
|
|
: "=rm"(flags)::"memory");
|
|
return flags;
|
|
}
|
|
|
|
inline void set_fs(u32 segment)
|
|
{
|
|
asm volatile(
|
|
"movl %%eax, %%fs" ::"a"(segment)
|
|
: "memory");
|
|
}
|
|
|
|
inline void set_gs(u32 segment)
|
|
{
|
|
asm volatile(
|
|
"movl %%eax, %%gs" ::"a"(segment)
|
|
: "memory");
|
|
}
|
|
|
|
inline u32 get_fs()
|
|
{
|
|
u32 fs;
|
|
asm("mov %%fs, %%eax"
|
|
: "=a"(fs));
|
|
return fs;
|
|
}
|
|
|
|
inline u32 get_gs()
|
|
{
|
|
u32 gs;
|
|
asm("mov %%gs, %%eax"
|
|
: "=a"(gs));
|
|
return gs;
|
|
}
|
|
|
|
inline u32 read_fs_u32(u32 offset)
|
|
{
|
|
u32 val;
|
|
asm volatile(
|
|
"movl %%fs:%a[off], %k[val]"
|
|
: [ val ] "=r"(val)
|
|
: [ off ] "ir"(offset));
|
|
return val;
|
|
}
|
|
|
|
inline void write_fs_u32(u32 offset, u32 val)
|
|
{
|
|
asm volatile(
|
|
"movl %k[val], %%fs:%a[off]" ::[off] "ir"(offset), [ val ] "ir"(val)
|
|
: "memory");
|
|
}
|
|
|
|
inline bool are_interrupts_enabled()
|
|
{
|
|
return cpu_flags() & 0x200;
|
|
}
|
|
|
|
class InterruptFlagSaver {
|
|
public:
|
|
InterruptFlagSaver()
|
|
{
|
|
m_flags = cpu_flags();
|
|
}
|
|
|
|
~InterruptFlagSaver()
|
|
{
|
|
if (m_flags & 0x200)
|
|
sti();
|
|
else
|
|
cli();
|
|
}
|
|
|
|
private:
|
|
u32 m_flags;
|
|
};
|
|
|
|
inline bool cli_and_save_interrupt_flag()
|
|
{
|
|
u32 flags = cpu_flags();
|
|
cli();
|
|
return flags & 0x200;
|
|
}
|
|
|
|
inline void restore_interrupt_flag(bool flag)
|
|
{
|
|
if (flag)
|
|
sti();
|
|
else
|
|
cli();
|
|
}
|
|
|
|
class InterruptDisabler {
|
|
public:
|
|
InterruptDisabler()
|
|
{
|
|
m_flags = cpu_flags();
|
|
cli();
|
|
}
|
|
|
|
~InterruptDisabler()
|
|
{
|
|
if (m_flags & 0x200)
|
|
sti();
|
|
}
|
|
|
|
private:
|
|
u32 m_flags;
|
|
};
|
|
|
|
class NonMaskableInterruptDisabler {
|
|
public:
|
|
NonMaskableInterruptDisabler();
|
|
~NonMaskableInterruptDisabler();
|
|
};
|
|
|
|
/* Map IRQ0-15 @ ISR 0x50-0x5F */
|
|
#define IRQ_VECTOR_BASE 0x50
|
|
|
|
struct PageFaultFlags {
|
|
enum Flags {
|
|
NotPresent = 0x00,
|
|
ProtectionViolation = 0x01,
|
|
Read = 0x00,
|
|
Write = 0x02,
|
|
UserMode = 0x04,
|
|
SupervisorMode = 0x00,
|
|
ReservedBitViolation = 0x08,
|
|
InstructionFetch = 0x10,
|
|
};
|
|
};
|
|
|
|
class PageFault {
|
|
public:
|
|
PageFault(u16 code, VirtualAddress vaddr)
|
|
: m_code(code)
|
|
, m_vaddr(vaddr)
|
|
{
|
|
}
|
|
|
|
enum class Type {
|
|
PageNotPresent = PageFaultFlags::NotPresent,
|
|
ProtectionViolation = PageFaultFlags::ProtectionViolation,
|
|
};
|
|
|
|
enum class Access {
|
|
Read = PageFaultFlags::Read,
|
|
Write = PageFaultFlags::Write,
|
|
};
|
|
|
|
VirtualAddress vaddr() const { return m_vaddr; }
|
|
u16 code() const { return m_code; }
|
|
|
|
Type type() const { return (Type)(m_code & 1); }
|
|
Access access() const { return (Access)(m_code & 2); }
|
|
|
|
bool is_not_present() const { return (m_code & 1) == PageFaultFlags::NotPresent; }
|
|
bool is_protection_violation() const { return (m_code & 1) == PageFaultFlags::ProtectionViolation; }
|
|
bool is_read() const { return (m_code & 2) == PageFaultFlags::Read; }
|
|
bool is_write() const { return (m_code & 2) == PageFaultFlags::Write; }
|
|
bool is_user() const { return (m_code & 4) == PageFaultFlags::UserMode; }
|
|
bool is_supervisor() const { return (m_code & 4) == PageFaultFlags::SupervisorMode; }
|
|
bool is_instruction_fetch() const { return (m_code & 8) == PageFaultFlags::InstructionFetch; }
|
|
|
|
private:
|
|
u16 m_code;
|
|
VirtualAddress m_vaddr;
|
|
};
|
|
|
|
struct [[gnu::packed]] RegisterState
|
|
{
|
|
u32 ss;
|
|
u32 gs;
|
|
u32 fs;
|
|
u32 es;
|
|
u32 ds;
|
|
u32 edi;
|
|
u32 esi;
|
|
u32 ebp;
|
|
u32 esp;
|
|
u32 ebx;
|
|
u32 edx;
|
|
u32 ecx;
|
|
u32 eax;
|
|
u16 exception_code;
|
|
u16 isr_number;
|
|
u32 eip;
|
|
u32 cs;
|
|
u32 eflags;
|
|
u32 userspace_esp;
|
|
u32 userspace_ss;
|
|
};
|
|
|
|
#define REGISTER_STATE_SIZE (19 * 4)
|
|
static_assert(REGISTER_STATE_SIZE == sizeof(RegisterState));
|
|
|
|
struct [[gnu::aligned(16)]] FPUState
|
|
{
|
|
u8 buffer[512];
|
|
};
|
|
|
|
constexpr FlatPtr page_base_of(FlatPtr address)
|
|
{
|
|
return address & PAGE_MASK;
|
|
}
|
|
|
|
inline FlatPtr page_base_of(const void* address)
|
|
{
|
|
return page_base_of((FlatPtr)address);
|
|
}
|
|
|
|
constexpr FlatPtr offset_in_page(FlatPtr address)
|
|
{
|
|
return address & (~PAGE_MASK);
|
|
}
|
|
|
|
inline FlatPtr offset_in_page(const void* address)
|
|
{
|
|
return offset_in_page((FlatPtr)address);
|
|
}
|
|
|
|
u32 read_cr0();
|
|
u32 read_cr3();
|
|
void write_cr3(u32);
|
|
u32 read_cr4();
|
|
|
|
u32 read_dr6();
|
|
|
|
static inline bool is_kernel_mode()
|
|
{
|
|
u32 cs;
|
|
asm volatile(
|
|
"movl %%cs, %[cs] \n"
|
|
: [ cs ] "=g"(cs));
|
|
return (cs & 3) == 0;
|
|
}
|
|
|
|
class CPUID {
|
|
public:
|
|
CPUID(u32 function) { asm volatile("cpuid"
|
|
: "=a"(m_eax), "=b"(m_ebx), "=c"(m_ecx), "=d"(m_edx)
|
|
: "a"(function), "c"(0)); }
|
|
u32 eax() const { return m_eax; }
|
|
u32 ebx() const { return m_ebx; }
|
|
u32 ecx() const { return m_ecx; }
|
|
u32 edx() const { return m_edx; }
|
|
|
|
private:
|
|
u32 m_eax { 0xffffffff };
|
|
u32 m_ebx { 0xffffffff };
|
|
u32 m_ecx { 0xffffffff };
|
|
u32 m_edx { 0xffffffff };
|
|
};
|
|
|
|
inline void read_tsc(u32& lsw, u32& msw)
|
|
{
|
|
asm volatile("rdtsc"
|
|
: "=d"(msw), "=a"(lsw));
|
|
}
|
|
|
|
inline u64 read_tsc()
|
|
{
|
|
u32 lsw;
|
|
u32 msw;
|
|
read_tsc(lsw, msw);
|
|
return ((u64)msw << 32) | lsw;
|
|
}
|
|
|
|
struct Stopwatch {
|
|
union SplitQword {
|
|
struct {
|
|
uint32_t lsw;
|
|
uint32_t msw;
|
|
};
|
|
uint64_t qw { 0 };
|
|
};
|
|
|
|
public:
|
|
Stopwatch(const char* name)
|
|
: m_name(name)
|
|
{
|
|
read_tsc(m_start.lsw, m_start.msw);
|
|
}
|
|
|
|
~Stopwatch()
|
|
{
|
|
SplitQword end;
|
|
read_tsc(end.lsw, end.msw);
|
|
uint64_t diff = end.qw - m_start.qw;
|
|
dbg() << "Stopwatch(" << m_name << "): " << diff << " ticks";
|
|
}
|
|
|
|
private:
|
|
const char* m_name { nullptr };
|
|
SplitQword m_start;
|
|
};
|
|
|
|
// FIXME: This can't hold every CPU feature as-is.
|
|
enum class CPUFeature : u32 {
|
|
NX = (1 << 0),
|
|
PAE = (1 << 1),
|
|
PGE = (1 << 2),
|
|
RDRAND = (1 << 3),
|
|
RDSEED = (1 << 4),
|
|
SMAP = (1 << 5),
|
|
SMEP = (1 << 6),
|
|
SSE = (1 << 7),
|
|
TSC = (1 << 8),
|
|
RDTSCP = (1 << 9),
|
|
CONSTANT_TSC = (1 << 10),
|
|
NONSTOP_TSC = (1 << 11),
|
|
UMIP = (1 << 12),
|
|
SEP = (1 << 13),
|
|
SYSCALL = (1 << 14),
|
|
MMX = (1 << 15),
|
|
SSE2 = (1 << 16),
|
|
SSE3 = (1 << 17),
|
|
SSSE3 = (1 << 18),
|
|
SSE4_1 = (1 << 19),
|
|
SSE4_2 = (1 << 20),
|
|
};
|
|
|
|
class Thread;
|
|
struct TrapFrame;
|
|
|
|
#define GDT_SELECTOR_CODE0 0x08
|
|
#define GDT_SELECTOR_DATA0 0x10
|
|
#define GDT_SELECTOR_CODE3 0x18
|
|
#define GDT_SELECTOR_DATA3 0x20
|
|
#define GDT_SELECTOR_TLS 0x28
|
|
#define GDT_SELECTOR_PROC 0x30
|
|
#define GDT_SELECTOR_TSS 0x38
|
|
|
|
// SYSENTER makes certain assumptions on how the GDT is structured:
|
|
static_assert(GDT_SELECTOR_CODE0 + 8 == GDT_SELECTOR_DATA0); // SS0 = CS0 + 8
|
|
|
|
// SYSEXIT makes certain assumptions on how the GDT is structured:
|
|
static_assert(GDT_SELECTOR_CODE0 + 16 == GDT_SELECTOR_CODE3); // CS3 = CS0 + 16
|
|
static_assert(GDT_SELECTOR_CODE0 + 24 == GDT_SELECTOR_DATA3); // SS3 = CS0 + 32
|
|
|
|
class ProcessorInfo;
|
|
class SchedulerPerProcessorData;
|
|
struct MemoryManagerData;
|
|
struct ProcessorMessageEntry;
|
|
|
|
struct ProcessorMessage {
|
|
enum Type {
|
|
FlushTlb,
|
|
Callback,
|
|
CallbackWithData
|
|
};
|
|
Type type;
|
|
volatile u32 refs; // atomic
|
|
union {
|
|
ProcessorMessage* next; // only valid while in the pool
|
|
struct {
|
|
void (*handler)();
|
|
} callback;
|
|
struct {
|
|
void* data;
|
|
void (*handler)(void*);
|
|
void (*free)(void*);
|
|
} callback_with_data;
|
|
struct {
|
|
u8* ptr;
|
|
size_t page_count;
|
|
} flush_tlb;
|
|
};
|
|
|
|
volatile bool async;
|
|
|
|
ProcessorMessageEntry* per_proc_entries;
|
|
};
|
|
|
|
struct ProcessorMessageEntry {
|
|
ProcessorMessageEntry* next;
|
|
ProcessorMessage* msg;
|
|
};
|
|
|
|
struct DeferredCallEntry {
|
|
DeferredCallEntry* next;
|
|
union {
|
|
struct {
|
|
void (*handler)();
|
|
} callback;
|
|
struct {
|
|
void* data;
|
|
void (*handler)(void*);
|
|
void (*free)(void*);
|
|
} callback_with_data;
|
|
};
|
|
bool have_data;
|
|
bool was_allocated;
|
|
};
|
|
|
|
class Processor {
|
|
friend class ProcessorInfo;
|
|
|
|
AK_MAKE_NONCOPYABLE(Processor);
|
|
AK_MAKE_NONMOVABLE(Processor);
|
|
|
|
Processor* m_self; // must be first field (%fs offset 0x0)
|
|
|
|
DescriptorTablePointer m_gdtr;
|
|
Descriptor m_gdt[256];
|
|
u32 m_gdt_length;
|
|
|
|
u32 m_cpu;
|
|
u32 m_in_irq;
|
|
u32 m_in_critical;
|
|
|
|
TSS32 m_tss;
|
|
static FPUState s_clean_fpu_state;
|
|
CPUFeature m_features;
|
|
static volatile u32 g_total_processors; // atomic
|
|
|
|
ProcessorInfo* m_info;
|
|
MemoryManagerData* m_mm_data;
|
|
SchedulerPerProcessorData* m_scheduler_data;
|
|
Thread* m_current_thread;
|
|
Thread* m_idle_thread;
|
|
|
|
volatile ProcessorMessageEntry* m_message_queue; // atomic, LIFO
|
|
|
|
bool m_invoke_scheduler_async;
|
|
bool m_scheduler_initialized;
|
|
Atomic<bool> m_halt_requested;
|
|
|
|
DeferredCallEntry* m_pending_deferred_calls; // in reverse order
|
|
DeferredCallEntry* m_free_deferred_call_pool_entry;
|
|
DeferredCallEntry m_deferred_call_pool[5];
|
|
|
|
void gdt_init();
|
|
void write_raw_gdt_entry(u16 selector, u32 low, u32 high);
|
|
void write_gdt_entry(u16 selector, Descriptor& descriptor);
|
|
static Vector<Processor*>& processors();
|
|
|
|
static void smp_return_to_pool(ProcessorMessage& msg);
|
|
static ProcessorMessage& smp_get_from_pool();
|
|
static void smp_cleanup_message(ProcessorMessage& msg);
|
|
bool smp_queue_message(ProcessorMessage& msg);
|
|
static void smp_unicast_message(u32 cpu, ProcessorMessage& msg, bool async);
|
|
static void smp_broadcast_message(ProcessorMessage& msg, bool async);
|
|
static void smp_broadcast_halt();
|
|
|
|
void deferred_call_pool_init();
|
|
void deferred_call_execute_pending();
|
|
DeferredCallEntry* deferred_call_get_free();
|
|
void deferred_call_return_to_pool(DeferredCallEntry*);
|
|
void deferred_call_queue_entry(DeferredCallEntry*);
|
|
|
|
void cpu_detect();
|
|
void cpu_setup();
|
|
|
|
String features_string() const;
|
|
|
|
public:
|
|
Processor() = default;
|
|
|
|
void early_initialize(u32 cpu);
|
|
void initialize(u32 cpu);
|
|
|
|
static u32 count()
|
|
{
|
|
// NOTE: because this value never changes once all APs are booted,
|
|
// we don't really need to do an atomic_load() on this variable
|
|
return g_total_processors;
|
|
}
|
|
|
|
ALWAYS_INLINE static void wait_check()
|
|
{
|
|
Processor::current().smp_process_pending_messages();
|
|
// TODO: pause
|
|
}
|
|
|
|
[[noreturn]] static void halt();
|
|
|
|
static void flush_entire_tlb_local()
|
|
{
|
|
write_cr3(read_cr3());
|
|
}
|
|
|
|
static void flush_tlb_local(VirtualAddress vaddr, size_t page_count);
|
|
static void flush_tlb(VirtualAddress vaddr, size_t page_count);
|
|
|
|
Descriptor& get_gdt_entry(u16 selector);
|
|
void flush_gdt();
|
|
const DescriptorTablePointer& get_gdtr();
|
|
|
|
static Processor& by_id(u32 cpu);
|
|
|
|
static size_t processor_count() { return processors().size(); }
|
|
|
|
template<typename Callback>
|
|
static inline IterationDecision for_each(Callback callback)
|
|
{
|
|
auto& procs = processors();
|
|
size_t count = procs.size();
|
|
for (size_t i = 0; i < count; i++) {
|
|
if (callback(*procs[i]) == IterationDecision::Break)
|
|
return IterationDecision::Break;
|
|
}
|
|
return IterationDecision::Continue;
|
|
}
|
|
|
|
ALWAYS_INLINE ProcessorInfo& info() { return *m_info; }
|
|
|
|
ALWAYS_INLINE static Processor& current()
|
|
{
|
|
return *(Processor*)read_fs_u32(0);
|
|
}
|
|
|
|
ALWAYS_INLINE static bool is_initialized()
|
|
{
|
|
return get_fs() == GDT_SELECTOR_PROC && read_fs_u32(0) != 0;
|
|
}
|
|
|
|
ALWAYS_INLINE void set_scheduler_data(SchedulerPerProcessorData& scheduler_data)
|
|
{
|
|
m_scheduler_data = &scheduler_data;
|
|
}
|
|
|
|
ALWAYS_INLINE SchedulerPerProcessorData& get_scheduler_data() const
|
|
{
|
|
return *m_scheduler_data;
|
|
}
|
|
|
|
ALWAYS_INLINE void set_mm_data(MemoryManagerData& mm_data)
|
|
{
|
|
m_mm_data = &mm_data;
|
|
}
|
|
|
|
ALWAYS_INLINE MemoryManagerData& get_mm_data() const
|
|
{
|
|
return *m_mm_data;
|
|
}
|
|
|
|
ALWAYS_INLINE Thread* idle_thread() const
|
|
{
|
|
return m_idle_thread;
|
|
}
|
|
|
|
ALWAYS_INLINE void set_idle_thread(Thread& idle_thread)
|
|
{
|
|
m_idle_thread = &idle_thread;
|
|
}
|
|
|
|
ALWAYS_INLINE Thread* current_thread() const
|
|
{
|
|
// NOTE: NOT safe to call from another processor!
|
|
ASSERT(&Processor::current() == this);
|
|
return m_current_thread;
|
|
}
|
|
|
|
ALWAYS_INLINE void set_current_thread(Thread& current_thread)
|
|
{
|
|
m_current_thread = ¤t_thread;
|
|
}
|
|
|
|
ALWAYS_INLINE u32 id()
|
|
{
|
|
return m_cpu;
|
|
}
|
|
|
|
ALWAYS_INLINE u32 raise_irq()
|
|
{
|
|
return m_in_irq++;
|
|
}
|
|
|
|
ALWAYS_INLINE void restore_irq(u32 prev_irq)
|
|
{
|
|
ASSERT(prev_irq <= m_in_irq);
|
|
if (!prev_irq) {
|
|
if (m_in_critical == 0) {
|
|
auto prev_critical = m_in_critical++;
|
|
m_in_irq = prev_irq;
|
|
deferred_call_execute_pending();
|
|
ASSERT(m_in_critical == prev_critical + 1);
|
|
m_in_critical = prev_critical;
|
|
}
|
|
if (!m_in_critical)
|
|
check_invoke_scheduler();
|
|
} else {
|
|
m_in_irq = prev_irq;
|
|
}
|
|
}
|
|
|
|
ALWAYS_INLINE u32& in_irq()
|
|
{
|
|
return m_in_irq;
|
|
}
|
|
|
|
ALWAYS_INLINE void enter_critical(u32& prev_flags)
|
|
{
|
|
m_in_critical++;
|
|
prev_flags = cpu_flags();
|
|
cli();
|
|
}
|
|
|
|
ALWAYS_INLINE void leave_critical(u32 prev_flags)
|
|
{
|
|
cli(); // Need to prevent IRQs from interrupting us here!
|
|
ASSERT(m_in_critical > 0);
|
|
if (m_in_critical == 1) {
|
|
if (!m_in_irq) {
|
|
deferred_call_execute_pending();
|
|
ASSERT(m_in_critical == 1);
|
|
}
|
|
m_in_critical--;
|
|
if (!m_in_irq)
|
|
check_invoke_scheduler();
|
|
} else {
|
|
m_in_critical--;
|
|
}
|
|
if (prev_flags & 0x200)
|
|
sti();
|
|
else
|
|
cli();
|
|
}
|
|
|
|
ALWAYS_INLINE u32 clear_critical(u32& prev_flags, bool enable_interrupts)
|
|
{
|
|
u32 prev_crit = m_in_critical;
|
|
m_in_critical = 0;
|
|
prev_flags = cpu_flags();
|
|
if (!m_in_irq)
|
|
check_invoke_scheduler();
|
|
if (enable_interrupts)
|
|
sti();
|
|
return prev_crit;
|
|
}
|
|
|
|
ALWAYS_INLINE void restore_critical(u32 prev_crit, u32 prev_flags)
|
|
{
|
|
ASSERT(m_in_critical == 0);
|
|
m_in_critical = prev_crit;
|
|
if (prev_flags & 0x200)
|
|
sti();
|
|
else
|
|
cli();
|
|
}
|
|
|
|
ALWAYS_INLINE u32& in_critical() { return m_in_critical; }
|
|
|
|
ALWAYS_INLINE const FPUState& clean_fpu_state() const
|
|
{
|
|
return s_clean_fpu_state;
|
|
}
|
|
|
|
static void smp_enable();
|
|
bool smp_process_pending_messages();
|
|
|
|
template<typename Callback>
|
|
static void smp_broadcast(Callback callback, bool async)
|
|
{
|
|
auto* data = new Callback(move(callback));
|
|
smp_broadcast(
|
|
[](void* data) {
|
|
(*reinterpret_cast<Callback*>(data))();
|
|
},
|
|
data,
|
|
[](void* data) {
|
|
delete reinterpret_cast<Callback*>(data);
|
|
},
|
|
async);
|
|
}
|
|
static void smp_broadcast(void (*callback)(), bool async);
|
|
static void smp_broadcast(void (*callback)(void*), void* data, void (*free_data)(void*), bool async);
|
|
template<typename Callback>
|
|
static void smp_unicast(u32 cpu, Callback callback, bool async)
|
|
{
|
|
auto* data = new Callback(move(callback));
|
|
smp_unicast(
|
|
cpu,
|
|
[](void* data) {
|
|
(*reinterpret_cast<Callback*>(data))();
|
|
},
|
|
data,
|
|
[](void* data) {
|
|
delete reinterpret_cast<Callback*>(data);
|
|
},
|
|
async);
|
|
}
|
|
static void smp_unicast(u32 cpu, void (*callback)(), bool async);
|
|
static void smp_unicast(u32 cpu, void (*callback)(void*), void* data, void (*free_data)(void*), bool async);
|
|
static void smp_broadcast_flush_tlb(VirtualAddress vaddr, size_t page_count);
|
|
|
|
template<typename Callback>
|
|
static void deferred_call_queue(Callback callback)
|
|
{
|
|
auto* data = new Callback(move(callback));
|
|
deferred_call_queue(
|
|
[](void* data) {
|
|
(*reinterpret_cast<Callback*>(data))();
|
|
},
|
|
data,
|
|
[](void* data) {
|
|
delete reinterpret_cast<Callback*>(data);
|
|
});
|
|
}
|
|
static void deferred_call_queue(void (*callback)());
|
|
static void deferred_call_queue(void (*callback)(void*), void* data, void (*free_data)(void*));
|
|
|
|
ALWAYS_INLINE bool has_feature(CPUFeature f) const
|
|
{
|
|
return (static_cast<u32>(m_features) & static_cast<u32>(f)) != 0;
|
|
}
|
|
|
|
void check_invoke_scheduler();
|
|
void invoke_scheduler_async() { m_invoke_scheduler_async = true; }
|
|
|
|
void enter_trap(TrapFrame& trap, bool raise_irq);
|
|
|
|
void exit_trap(TrapFrame& trap);
|
|
|
|
[[noreturn]] void initialize_context_switching(Thread& initial_thread);
|
|
void switch_context(Thread*& from_thread, Thread*& to_thread);
|
|
[[noreturn]] static void assume_context(Thread& thread, u32 flags);
|
|
u32 init_context(Thread& thread, bool leave_crit);
|
|
static bool get_context_frame_ptr(Thread& thread, u32& frame_ptr, u32& eip, bool = false);
|
|
|
|
void set_thread_specific(u8* data, size_t len);
|
|
};
|
|
|
|
class ScopedCritical {
|
|
AK_MAKE_NONCOPYABLE(ScopedCritical);
|
|
|
|
public:
|
|
ScopedCritical()
|
|
{
|
|
enter();
|
|
}
|
|
|
|
~ScopedCritical()
|
|
{
|
|
if (m_valid)
|
|
leave();
|
|
}
|
|
|
|
ScopedCritical(ScopedCritical&& from)
|
|
: m_prev_flags(exchange(from.m_prev_flags, 0))
|
|
, m_valid(exchange(from.m_valid, false))
|
|
{
|
|
}
|
|
|
|
ScopedCritical& operator=(ScopedCritical&& from)
|
|
{
|
|
if (&from != this) {
|
|
m_prev_flags = exchange(from.m_prev_flags, 0);
|
|
m_valid = exchange(from.m_valid, false);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
void leave()
|
|
{
|
|
ASSERT(m_valid);
|
|
m_valid = false;
|
|
Processor::current().leave_critical(m_prev_flags);
|
|
}
|
|
|
|
void enter()
|
|
{
|
|
ASSERT(!m_valid);
|
|
m_valid = true;
|
|
Processor::current().enter_critical(m_prev_flags);
|
|
}
|
|
|
|
private:
|
|
u32 m_prev_flags { 0 };
|
|
bool m_valid { false };
|
|
};
|
|
|
|
struct TrapFrame {
|
|
u32 prev_irq_level;
|
|
RegisterState* regs; // must be last
|
|
|
|
TrapFrame() = delete;
|
|
TrapFrame(const TrapFrame&) = delete;
|
|
TrapFrame(TrapFrame&&) = delete;
|
|
TrapFrame& operator=(const TrapFrame&) = delete;
|
|
TrapFrame& operator=(TrapFrame&&) = delete;
|
|
};
|
|
|
|
#define TRAP_FRAME_SIZE (2 * 4)
|
|
static_assert(TRAP_FRAME_SIZE == sizeof(TrapFrame));
|
|
|
|
extern "C" void enter_trap_no_irq(TrapFrame*);
|
|
extern "C" void enter_trap(TrapFrame*);
|
|
extern "C" void exit_trap(TrapFrame*);
|
|
|
|
class MSR {
|
|
uint32_t m_msr;
|
|
|
|
public:
|
|
static bool have()
|
|
{
|
|
CPUID id(1);
|
|
return (id.edx() & (1 << 5)) != 0;
|
|
}
|
|
|
|
MSR(const MSR&) = delete;
|
|
MSR& operator=(const MSR&) = delete;
|
|
|
|
MSR(uint32_t msr)
|
|
: m_msr(msr)
|
|
{
|
|
}
|
|
|
|
void get(u32& low, u32& high)
|
|
{
|
|
asm volatile("rdmsr"
|
|
: "=a"(low), "=d"(high)
|
|
: "c"(m_msr));
|
|
}
|
|
|
|
void set(u32 low, u32 high)
|
|
{
|
|
asm volatile("wrmsr" ::"a"(low), "d"(high), "c"(m_msr));
|
|
}
|
|
};
|
|
|
|
ALWAYS_INLINE void stac()
|
|
{
|
|
if (!Processor::current().has_feature(CPUFeature::SMAP))
|
|
return;
|
|
asm volatile("stac" ::
|
|
: "cc");
|
|
}
|
|
|
|
ALWAYS_INLINE void clac()
|
|
{
|
|
if (!Processor::current().has_feature(CPUFeature::SMAP))
|
|
return;
|
|
asm volatile("clac" ::
|
|
: "cc");
|
|
}
|
|
|
|
class SmapDisabler {
|
|
public:
|
|
ALWAYS_INLINE SmapDisabler()
|
|
{
|
|
m_flags = cpu_flags();
|
|
stac();
|
|
}
|
|
|
|
ALWAYS_INLINE ~SmapDisabler()
|
|
{
|
|
if (!(m_flags & 0x40000))
|
|
clac();
|
|
}
|
|
|
|
private:
|
|
u32 m_flags;
|
|
};
|
|
|
|
}
|