mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 15:12:45 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			470 lines
		
	
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			470 lines
		
	
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2020, Srimanta Barua <srimanta.barua1@gmail.com>
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright notice, this
 | |
|  *    list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright notice,
 | |
|  *    this list of conditions and the following disclaimer in the documentation
 | |
|  *    and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
|  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 | |
|  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | |
|  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | |
|  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | |
|  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
|  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #include "Font.h"
 | |
| #include <AK/FixedArray.h>
 | |
| #include <LibGfx/FloatPoint.h>
 | |
| #include <LibGfx/Path.h>
 | |
| #include <math.h>
 | |
| 
 | |
| namespace TTF {
 | |
| 
 | |
| extern u16 be_u16(const u8* ptr);
 | |
| extern u32 be_u32(const u8* ptr);
 | |
| extern i16 be_i16(const u8* ptr);
 | |
| 
 | |
| enum class SimpleGlyfFlags {
 | |
|     // From spec.
 | |
|     OnCurve = 0x01,
 | |
|     XShortVector = 0x02,
 | |
|     YShortVector = 0x04,
 | |
|     RepeatFlag = 0x08,
 | |
|     XIsSameOrPositiveXShortVector = 0x10,
 | |
|     YIsSameOrPositiveYShortVector = 0x20,
 | |
|     // Combinations
 | |
|     XMask = 0x12,
 | |
|     YMask = 0x24,
 | |
|     XLongVector = 0x00,
 | |
|     YLongVector = 0x00,
 | |
|     XNegativeShortVector = 0x02,
 | |
|     YNegativeShortVector = 0x04,
 | |
|     XPositiveShortVector = 0x12,
 | |
|     YPositiveShortVector = 0x24,
 | |
| };
 | |
| 
 | |
| class PointIterator {
 | |
| public:
 | |
|     struct Item {
 | |
|         bool on_curve;
 | |
|         Gfx::FloatPoint point;
 | |
|     };
 | |
| 
 | |
|     PointIterator(const ByteBuffer& slice, u16 num_points, u32 flags_offset, u32 x_offset, u32 y_offset, float x_translate, float y_translate, float x_scale, float y_scale)
 | |
|         : m_slice(slice)
 | |
|         , m_points_remaining(num_points)
 | |
|         , m_flags_offset(flags_offset)
 | |
|         , m_x_offset(x_offset)
 | |
|         , m_y_offset(y_offset)
 | |
|         , m_x_translate(x_translate)
 | |
|         , m_y_translate(y_translate)
 | |
|         , m_x_scale(x_scale)
 | |
|         , m_y_scale(y_scale)
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     Optional<Item> next()
 | |
|     {
 | |
|         if (m_points_remaining == 0) {
 | |
|             return {};
 | |
|         }
 | |
|         if (m_flags_remaining > 0) {
 | |
|             m_flags_remaining--;
 | |
|         } else {
 | |
|             m_flag = m_slice[m_flags_offset++];
 | |
|             if (m_flag & (u8) SimpleGlyfFlags::RepeatFlag) {
 | |
|                 m_flags_remaining = m_slice[m_flags_offset++];
 | |
|             }
 | |
|         }
 | |
|         switch (m_flag & (u8) SimpleGlyfFlags::XMask) {
 | |
|         case (u8) SimpleGlyfFlags::XLongVector:
 | |
|             m_last_point.set_x(m_last_point.x() + be_i16(m_slice.offset_pointer(m_x_offset)));
 | |
|             m_x_offset += 2;
 | |
|             break;
 | |
|         case (u8) SimpleGlyfFlags::XNegativeShortVector:
 | |
|             m_last_point.set_x(m_last_point.x() - m_slice[m_x_offset++]);
 | |
|             break;
 | |
|         case (u8) SimpleGlyfFlags::XPositiveShortVector:
 | |
|             m_last_point.set_x(m_last_point.x() + m_slice[m_x_offset++]);
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|         switch (m_flag & (u8) SimpleGlyfFlags::YMask) {
 | |
|         case (u8) SimpleGlyfFlags::YLongVector:
 | |
|             m_last_point.set_y(m_last_point.y() + be_i16(m_slice.offset_pointer(m_y_offset)));
 | |
|             m_y_offset += 2;
 | |
|             break;
 | |
|         case (u8) SimpleGlyfFlags::YNegativeShortVector:
 | |
|             m_last_point.set_y(m_last_point.y() - m_slice[m_y_offset++]);
 | |
|             break;
 | |
|         case (u8) SimpleGlyfFlags::YPositiveShortVector:
 | |
|             m_last_point.set_y(m_last_point.y() + m_slice[m_y_offset++]);
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|         m_points_remaining--;
 | |
|         Item ret = {
 | |
|             .on_curve = (m_flag & (u8) SimpleGlyfFlags::OnCurve) != 0,
 | |
|             .point = m_last_point,
 | |
|         };
 | |
|         ret.point.move_by(m_x_translate, m_y_translate);
 | |
|         ret.point.set_x(ret.point.x() * m_x_scale);
 | |
|         ret.point.set_y(ret.point.y() * m_y_scale);
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     ByteBuffer m_slice;
 | |
|     u16 m_points_remaining;
 | |
|     u8 m_flag { 0 };
 | |
|     Gfx::FloatPoint m_last_point = { 0.0f, 0.0f };
 | |
|     u32 m_flags_remaining = { 0 };
 | |
|     u32 m_flags_offset;
 | |
|     u32 m_x_offset;
 | |
|     u32 m_y_offset;
 | |
|     float m_x_translate;
 | |
|     float m_y_translate;
 | |
|     float m_x_scale;
 | |
|     float m_y_scale;
 | |
| };
 | |
| 
 | |
| class Rasterizer {
 | |
| public:
 | |
|     Rasterizer(Gfx::Size size)
 | |
|         : m_size(size)
 | |
|         , m_data(m_size.width() * m_size.height())
 | |
|     {
 | |
|         for (int i = 0; i < m_size.width() * m_size.height(); i++) {
 | |
|             m_data[i] = 0.0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     RefPtr<Gfx::Bitmap> draw_path(Gfx::Path& path)
 | |
|     {
 | |
|         for (auto& line : path.split_lines()) {
 | |
|             draw_line(line.from, line.to);
 | |
|         }
 | |
|         return accumulate();
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     RefPtr<Gfx::Bitmap> accumulate()
 | |
|     {
 | |
|         auto bitmap = Gfx::Bitmap::create(Gfx::BitmapFormat::RGBA32, m_size);
 | |
|         Color base_color = Color::from_rgb(0xffffff);
 | |
|         for (int y = 0; y < m_size.height(); y++) {
 | |
|             float accumulator = 0.0;
 | |
|             for (int x = 0; x < m_size.width(); x++) {
 | |
|                 accumulator += m_data[y * m_size.width() + x];
 | |
|                 float value = accumulator;
 | |
|                 if (value < 0.0) {
 | |
|                     value = -value;
 | |
|                 }
 | |
|                 if (value > 1.0) {
 | |
|                     value = 1.0;
 | |
|                 }
 | |
|                 u8 alpha = value * 255.0;
 | |
|                 bitmap->set_pixel(x, y, base_color.with_alpha(alpha));
 | |
|             }
 | |
|         }
 | |
|         return bitmap;
 | |
|     }
 | |
| 
 | |
|     void draw_line(Gfx::FloatPoint p0, Gfx::FloatPoint p1)
 | |
|     {
 | |
|         ASSERT(p0.x() >= 0.0 && p0.y() >= 0.0 && p0.x() <= m_size.width() && p0.y() <= m_size.height());
 | |
|         ASSERT(p1.x() >= 0.0 && p1.y() >= 0.0 && p1.x() <= m_size.width() && p1.y() <= m_size.height());
 | |
|         // If we're on the same Y, there's no need to draw
 | |
|         if (p0.y() == p1.y()) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         float direction = -1.0;
 | |
|         if (p1.y() < p0.y()) {
 | |
|             direction = 1.0;
 | |
|             auto tmp = p0;
 | |
|             p0 = p1;
 | |
|             p1 = tmp;
 | |
|         }
 | |
| 
 | |
|         float dxdy = (p1.x() - p0.x()) / (p1.y() - p0.y());
 | |
|         u32 y0 = floor(p0.y());
 | |
|         u32 y1 = ceil(p1.y());
 | |
|         float x_cur = p0.x();
 | |
| 
 | |
|         for (u32 y = y0; y < y1; y++) {
 | |
|             u32 line_offset = m_size.width() * y;
 | |
| 
 | |
|             float dy = min(y + 1.0f, p1.y()) - max((float) y, p0.y());
 | |
|             float directed_dy = dy * direction;
 | |
|             float x_next = x_cur + dy * dxdy;
 | |
|             if (x_next < 0.0) {
 | |
|                 x_next = 0.0;
 | |
|             }
 | |
|             float x0 = x_cur;
 | |
|             float x1 = x_next;
 | |
|             if (x1 < x0) {
 | |
|                 x1 = x_cur;
 | |
|                 x0 = x_next;
 | |
|             }
 | |
|             float x0_floor = floor(x0);
 | |
|             float x1_ceil = ceil(x1);
 | |
|             u32 x0i = x0_floor;
 | |
| 
 | |
|             if (x1_ceil <= x0_floor + 1.0) {
 | |
|                 // If x0 and x1 are within the same pixel, then area to the right is (1 - (mid(x0, x1) - x0_floor)) * dy
 | |
|                 float area = ((x0 + x1) * 0.5) - x0_floor;
 | |
|                 m_data[line_offset + x0i] += directed_dy * (1.0 - area);
 | |
|                 m_data[line_offset + x0i + 1] += directed_dy * area;
 | |
|             } else {
 | |
|                 float dydx = 1.0 / dxdy;
 | |
|                 float x0_right = 1.0 - (x0 - x0_floor);
 | |
|                 u32 x1_floor_i = floor(x1);
 | |
|                 float area_upto_here = 0.5 * x0_right * x0_right * dydx;
 | |
|                 m_data[line_offset + x0i] += direction * area_upto_here;
 | |
|                 for (u32 x = x0i + 1; x < x1_floor_i; x++) {
 | |
|                     x0_right += 1.0;
 | |
|                     float total_area_here = 0.5 * x0_right * x0_right * dydx;
 | |
|                     m_data[line_offset + x] += direction * (total_area_here - area_upto_here);
 | |
|                     area_upto_here = total_area_here;
 | |
|                 }
 | |
|                 m_data[line_offset + x1_floor_i] += direction * (dy - area_upto_here);
 | |
|             }
 | |
| 
 | |
|             x_cur = x_next;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     Gfx::Size m_size;
 | |
|     FixedArray<float> m_data;
 | |
| };
 | |
| 
 | |
| Font::GlyphHorizontalMetrics Font::Hmtx::get_glyph_horizontal_metrics(u32 glyph_id) const
 | |
| {
 | |
|     ASSERT(glyph_id < m_num_glyphs);
 | |
|     if (glyph_id < m_number_of_h_metrics) {
 | |
|         auto offset = glyph_id * (u32) Sizes::LongHorMetric;
 | |
|         u16 advance_width = be_u16(m_slice.offset_pointer(offset));
 | |
|         i16 left_side_bearing = be_i16(m_slice.offset_pointer(offset + 2));
 | |
|         return GlyphHorizontalMetrics {
 | |
|             .advance_width = advance_width,
 | |
|             .left_side_bearing = left_side_bearing,
 | |
|         };
 | |
|     }
 | |
|     auto offset = m_number_of_h_metrics * (u32) Sizes::LongHorMetric + (glyph_id - m_number_of_h_metrics) * (u32) Sizes::LeftSideBearing;
 | |
|     u16 advance_width = be_u16(m_slice.offset_pointer((m_number_of_h_metrics - 1) * (u32) Sizes::LongHorMetric));
 | |
|     i16 left_side_bearing = be_i16(m_slice.offset_pointer(offset));
 | |
|     return GlyphHorizontalMetrics {
 | |
|         .advance_width = advance_width,
 | |
|         .left_side_bearing = left_side_bearing,
 | |
|     };
 | |
| }
 | |
| 
 | |
| u32 Font::Loca::get_glyph_offset(u32 glyph_id) const
 | |
| {
 | |
|     ASSERT(glyph_id < m_num_glyphs);
 | |
|     switch (m_index_to_loc_format) {
 | |
|     case IndexToLocFormat::Offset16:
 | |
|         return ((u32) be_u16(m_slice.offset_pointer(glyph_id * 2))) * 2;
 | |
|     case IndexToLocFormat::Offset32:
 | |
|         return be_u32(m_slice.offset_pointer(glyph_id * 4));
 | |
|     default:
 | |
|         ASSERT_NOT_REACHED();
 | |
|     }
 | |
| }
 | |
| 
 | |
| Font::Glyf::Glyph Font::Glyf::Glyph::simple(const ByteBuffer& slice, u16 num_contours, i16 xmin, i16 ymin, i16 xmax, i16 ymax)
 | |
| {
 | |
|     auto ret = Glyph(slice, Type::Simple);
 | |
|     ret.m_meta.simple = Simple {
 | |
|         .num_contours = num_contours,
 | |
|         .xmin = xmin,
 | |
|         .ymin = ymin,
 | |
|         .xmax = xmax,
 | |
|         .ymax = ymax,
 | |
|     };
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| // FIXME: This is currently just a dummy. Need to add support for composite glyphs.
 | |
| Font::Glyf::Glyph Font::Glyf::Glyph::composite(const ByteBuffer& slice)
 | |
| {
 | |
|     auto ret = Glyph(slice, Type::Composite);
 | |
|     ret.m_meta.composite = Composite();
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| RefPtr<Gfx::Bitmap> Font::Glyf::Glyph::raster(float x_scale, float y_scale) const
 | |
| {
 | |
|     switch (m_type) {
 | |
|     case Type::Simple:
 | |
|         return raster_simple(x_scale, y_scale);
 | |
|     case Type::Composite:
 | |
|         // FIXME: Add support for composite glyphs
 | |
|         TODO();
 | |
|     }
 | |
|     ASSERT_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| static void get_ttglyph_offsets(const ByteBuffer& slice, u32 num_points, u32 flags_offset, u32 *x_offset, u32 *y_offset)
 | |
| {
 | |
|     u32 flags_size = 0;
 | |
|     u32 x_size = 0;
 | |
|     u32 repeat_count;
 | |
|     while (num_points > 0) {
 | |
|         u8 flag = slice[flags_offset + flags_size];
 | |
|         if (flag & (u8) SimpleGlyfFlags::RepeatFlag) {
 | |
|             flags_size++;
 | |
|             repeat_count = slice[flags_offset + flags_size] + 1;
 | |
|         } else {
 | |
|             repeat_count = 1;
 | |
|         }
 | |
|         flags_size++;
 | |
|         switch (flag & (u8) SimpleGlyfFlags::XMask) {
 | |
|         case (u8) SimpleGlyfFlags::XLongVector:
 | |
|             x_size += repeat_count * 2;
 | |
|             break;
 | |
|         case (u8) SimpleGlyfFlags::XNegativeShortVector:
 | |
|         case (u8) SimpleGlyfFlags::XPositiveShortVector:
 | |
|             x_size += repeat_count;
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|         num_points -= repeat_count;
 | |
|     }
 | |
|     *x_offset = flags_offset + flags_size;
 | |
|     *y_offset = *x_offset + x_size;
 | |
| }
 | |
| 
 | |
| RefPtr<Gfx::Bitmap> Font::Glyf::Glyph::raster_simple(float x_scale, float y_scale) const
 | |
| {
 | |
|     auto simple = m_meta.simple;
 | |
|     // Get offets for flags, x, and y.
 | |
|     u16 num_points = be_u16(m_slice.offset_pointer((simple.num_contours - 1) * 2)) + 1;
 | |
|     u16 num_instructions = be_u16(m_slice.offset_pointer(simple.num_contours * 2));
 | |
|     u32 flags_offset = simple.num_contours * 2 + 2 + num_instructions;
 | |
|     u32 x_offset = 0;
 | |
|     u32 y_offset = 0;
 | |
|     get_ttglyph_offsets(m_slice, num_points, flags_offset, &x_offset, &y_offset);
 | |
| 
 | |
|     // Prepare to render glyph.
 | |
|     u32 width = (u32) (ceil((simple.xmax - simple.xmin) * x_scale)) + 1;
 | |
|     u32 height = (u32) (ceil((simple.ymax - simple.ymin) * y_scale)) + 1;
 | |
|     Gfx::Path path;
 | |
|     PointIterator point_iterator(m_slice, num_points, flags_offset, x_offset, y_offset, -simple.xmin, -simple.ymax, x_scale, -y_scale);
 | |
| 
 | |
|     int last_contour_end = -1;
 | |
|     u32 contour_index = 0;
 | |
|     u32 contour_size = 0;
 | |
|     Optional<Gfx::FloatPoint> contour_start = {};
 | |
|     Optional<Gfx::FloatPoint> last_offcurve_point = {};
 | |
| 
 | |
|     // Render glyph
 | |
|     while (true) {
 | |
|         if (!contour_start.has_value()) {
 | |
|             if (contour_index >= simple.num_contours) {
 | |
|                 break;
 | |
|             }
 | |
|             int current_contour_end = be_u16(m_slice.offset_pointer(contour_index++ * 2));
 | |
|             contour_size = current_contour_end - last_contour_end;
 | |
|             last_contour_end = current_contour_end;
 | |
|             auto opt_item = point_iterator.next();
 | |
|             if (!opt_item.has_value()) {
 | |
|                 ASSERT_NOT_REACHED();
 | |
|             }
 | |
|             contour_start = opt_item.value().point;
 | |
|             path.move_to(contour_start.value());
 | |
|             contour_size--;
 | |
|         } else if (!last_offcurve_point.has_value()) {
 | |
|             if (contour_size > 0) {
 | |
|                 auto opt_item = point_iterator.next();
 | |
|                 // FIXME: Should we draw a line to the first point here?
 | |
|                 if (!opt_item.has_value()) {
 | |
|                     break;
 | |
|                 }
 | |
|                 auto item = opt_item.value();
 | |
|                 contour_size--;
 | |
|                 if (item.on_curve) {
 | |
|                     path.line_to(item.point);
 | |
|                 } else if (contour_size > 0) {
 | |
|                     auto opt_next_item = point_iterator.next();
 | |
|                     // FIXME: Should we draw a quadratic bezier to the first point here?
 | |
|                     if (!opt_next_item.has_value()) {
 | |
|                         break;
 | |
|                     }
 | |
|                     auto next_item = opt_next_item.value();
 | |
|                     contour_size--;
 | |
|                     if (next_item.on_curve) {
 | |
|                         path.quadratic_bezier_curve_to(item.point, next_item.point);
 | |
|                     } else {
 | |
|                         auto mid_point = Gfx::FloatPoint::interpolate(item.point, next_item.point, 0.5);
 | |
|                         path.quadratic_bezier_curve_to(item.point, mid_point);
 | |
|                         last_offcurve_point = next_item.point;
 | |
|                     }
 | |
|                 } else {
 | |
|                     path.quadratic_bezier_curve_to(item.point, contour_start.value());
 | |
|                     contour_start = {};
 | |
|                 }
 | |
|             } else {
 | |
|                 path.line_to(contour_start.value());
 | |
|                 contour_start = {};
 | |
|             }
 | |
|         } else {
 | |
|             auto point0 = last_offcurve_point.value();
 | |
|             last_offcurve_point = {};
 | |
|             if (contour_size > 0) {
 | |
|                 auto opt_item = point_iterator.next();
 | |
|                 // FIXME: Should we draw a quadratic bezier to the first point here?
 | |
|                 if (!opt_item.has_value()) {
 | |
|                     break;
 | |
|                 }
 | |
|                 auto item = opt_item.value();
 | |
|                 contour_size--;
 | |
|                 if (item.on_curve) {
 | |
|                     path.quadratic_bezier_curve_to(point0, item.point);
 | |
|                 } else {
 | |
|                     auto mid_point = Gfx::FloatPoint::interpolate(point0, item.point, 0.5);
 | |
|                     path.quadratic_bezier_curve_to(point0, mid_point);
 | |
|                     last_offcurve_point = item.point;
 | |
|                 }
 | |
|             } else {
 | |
|                 path.quadratic_bezier_curve_to(point0, contour_start.value());
 | |
|                 contour_start = {};
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return Rasterizer(Gfx::Size(width, height)).draw_path(path);
 | |
| }
 | |
| 
 | |
| Font::Glyf::Glyph Font::Glyf::glyph(u32 offset) const
 | |
| {
 | |
|     ASSERT(m_slice.size() >= offset + (u32) Sizes::GlyphHeader);
 | |
|     i16 num_contours = be_i16(m_slice.offset_pointer(offset));
 | |
|     i16 xmin = be_i16(m_slice.offset_pointer(offset + (u32) Offsets::XMin));
 | |
|     i16 ymin = be_i16(m_slice.offset_pointer(offset + (u32) Offsets::YMin));
 | |
|     i16 xmax = be_i16(m_slice.offset_pointer(offset + (u32) Offsets::XMax));
 | |
|     i16 ymax = be_i16(m_slice.offset_pointer(offset + (u32) Offsets::YMax));
 | |
|     auto slice = ByteBuffer::wrap(m_slice.offset_pointer(offset + (u32) Sizes::GlyphHeader), m_slice.size() - offset - (u32) Sizes::GlyphHeader);
 | |
|     if (num_contours < 0) {
 | |
|         return Glyph::composite(slice);
 | |
|     }
 | |
|     return Glyph::simple(slice, num_contours, xmin, ymin, xmax, ymax);
 | |
| }
 | |
| 
 | |
| }
 | 
