1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-28 18:55:09 +00:00
serenity/Libraries/LibTTF/Glyf.cpp
2020-12-30 20:40:30 +01:00

470 lines
17 KiB
C++

/*
* Copyright (c) 2020, Srimanta Barua <srimanta.barua1@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "Font.h"
#include <AK/FixedArray.h>
#include <LibGfx/FloatPoint.h>
#include <LibGfx/Path.h>
#include <math.h>
namespace TTF {
extern u16 be_u16(const u8* ptr);
extern u32 be_u32(const u8* ptr);
extern i16 be_i16(const u8* ptr);
enum class SimpleGlyfFlags {
// From spec.
OnCurve = 0x01,
XShortVector = 0x02,
YShortVector = 0x04,
RepeatFlag = 0x08,
XIsSameOrPositiveXShortVector = 0x10,
YIsSameOrPositiveYShortVector = 0x20,
// Combinations
XMask = 0x12,
YMask = 0x24,
XLongVector = 0x00,
YLongVector = 0x00,
XNegativeShortVector = 0x02,
YNegativeShortVector = 0x04,
XPositiveShortVector = 0x12,
YPositiveShortVector = 0x24,
};
class PointIterator {
public:
struct Item {
bool on_curve;
Gfx::FloatPoint point;
};
PointIterator(const ByteBuffer& slice, u16 num_points, u32 flags_offset, u32 x_offset, u32 y_offset, float x_translate, float y_translate, float x_scale, float y_scale)
: m_slice(slice)
, m_points_remaining(num_points)
, m_flags_offset(flags_offset)
, m_x_offset(x_offset)
, m_y_offset(y_offset)
, m_x_translate(x_translate)
, m_y_translate(y_translate)
, m_x_scale(x_scale)
, m_y_scale(y_scale)
{
}
Optional<Item> next()
{
if (m_points_remaining == 0) {
return {};
}
if (m_flags_remaining > 0) {
m_flags_remaining--;
} else {
m_flag = m_slice[m_flags_offset++];
if (m_flag & (u8) SimpleGlyfFlags::RepeatFlag) {
m_flags_remaining = m_slice[m_flags_offset++];
}
}
switch (m_flag & (u8) SimpleGlyfFlags::XMask) {
case (u8) SimpleGlyfFlags::XLongVector:
m_last_point.set_x(m_last_point.x() + be_i16(m_slice.offset_pointer(m_x_offset)));
m_x_offset += 2;
break;
case (u8) SimpleGlyfFlags::XNegativeShortVector:
m_last_point.set_x(m_last_point.x() - m_slice[m_x_offset++]);
break;
case (u8) SimpleGlyfFlags::XPositiveShortVector:
m_last_point.set_x(m_last_point.x() + m_slice[m_x_offset++]);
break;
default:
break;
}
switch (m_flag & (u8) SimpleGlyfFlags::YMask) {
case (u8) SimpleGlyfFlags::YLongVector:
m_last_point.set_y(m_last_point.y() + be_i16(m_slice.offset_pointer(m_y_offset)));
m_y_offset += 2;
break;
case (u8) SimpleGlyfFlags::YNegativeShortVector:
m_last_point.set_y(m_last_point.y() - m_slice[m_y_offset++]);
break;
case (u8) SimpleGlyfFlags::YPositiveShortVector:
m_last_point.set_y(m_last_point.y() + m_slice[m_y_offset++]);
break;
default:
break;
}
m_points_remaining--;
Item ret = {
.on_curve = (m_flag & (u8) SimpleGlyfFlags::OnCurve) != 0,
.point = m_last_point,
};
ret.point.move_by(m_x_translate, m_y_translate);
ret.point.set_x(ret.point.x() * m_x_scale);
ret.point.set_y(ret.point.y() * m_y_scale);
return ret;
}
private:
ByteBuffer m_slice;
u16 m_points_remaining;
u8 m_flag { 0 };
Gfx::FloatPoint m_last_point = { 0.0f, 0.0f };
u32 m_flags_remaining = { 0 };
u32 m_flags_offset;
u32 m_x_offset;
u32 m_y_offset;
float m_x_translate;
float m_y_translate;
float m_x_scale;
float m_y_scale;
};
class Rasterizer {
public:
Rasterizer(Gfx::Size size)
: m_size(size)
, m_data(m_size.width() * m_size.height())
{
for (int i = 0; i < m_size.width() * m_size.height(); i++) {
m_data[i] = 0.0;
}
}
RefPtr<Gfx::Bitmap> draw_path(Gfx::Path& path)
{
for (auto& line : path.split_lines()) {
draw_line(line.from, line.to);
}
return accumulate();
}
private:
RefPtr<Gfx::Bitmap> accumulate()
{
auto bitmap = Gfx::Bitmap::create(Gfx::BitmapFormat::RGBA32, m_size);
Color base_color = Color::from_rgb(0xffffff);
for (int y = 0; y < m_size.height(); y++) {
float accumulator = 0.0;
for (int x = 0; x < m_size.width(); x++) {
accumulator += m_data[y * m_size.width() + x];
float value = accumulator;
if (value < 0.0) {
value = -value;
}
if (value > 1.0) {
value = 1.0;
}
u8 alpha = value * 255.0;
bitmap->set_pixel(x, y, base_color.with_alpha(alpha));
}
}
return bitmap;
}
void draw_line(Gfx::FloatPoint p0, Gfx::FloatPoint p1)
{
ASSERT(p0.x() >= 0.0 && p0.y() >= 0.0 && p0.x() <= m_size.width() && p0.y() <= m_size.height());
ASSERT(p1.x() >= 0.0 && p1.y() >= 0.0 && p1.x() <= m_size.width() && p1.y() <= m_size.height());
// If we're on the same Y, there's no need to draw
if (p0.y() == p1.y()) {
return;
}
float direction = -1.0;
if (p1.y() < p0.y()) {
direction = 1.0;
auto tmp = p0;
p0 = p1;
p1 = tmp;
}
float dxdy = (p1.x() - p0.x()) / (p1.y() - p0.y());
u32 y0 = floor(p0.y());
u32 y1 = ceil(p1.y());
float x_cur = p0.x();
for (u32 y = y0; y < y1; y++) {
u32 line_offset = m_size.width() * y;
float dy = min(y + 1.0f, p1.y()) - max((float) y, p0.y());
float directed_dy = dy * direction;
float x_next = x_cur + dy * dxdy;
if (x_next < 0.0) {
x_next = 0.0;
}
float x0 = x_cur;
float x1 = x_next;
if (x1 < x0) {
x1 = x_cur;
x0 = x_next;
}
float x0_floor = floor(x0);
float x1_ceil = ceil(x1);
u32 x0i = x0_floor;
if (x1_ceil <= x0_floor + 1.0) {
// If x0 and x1 are within the same pixel, then area to the right is (1 - (mid(x0, x1) - x0_floor)) * dy
float area = ((x0 + x1) * 0.5) - x0_floor;
m_data[line_offset + x0i] += directed_dy * (1.0 - area);
m_data[line_offset + x0i + 1] += directed_dy * area;
} else {
float dydx = 1.0 / dxdy;
float x0_right = 1.0 - (x0 - x0_floor);
u32 x1_floor_i = floor(x1);
float area_upto_here = 0.5 * x0_right * x0_right * dydx;
m_data[line_offset + x0i] += direction * area_upto_here;
for (u32 x = x0i + 1; x < x1_floor_i; x++) {
x0_right += 1.0;
float total_area_here = 0.5 * x0_right * x0_right * dydx;
m_data[line_offset + x] += direction * (total_area_here - area_upto_here);
area_upto_here = total_area_here;
}
m_data[line_offset + x1_floor_i] += direction * (dy - area_upto_here);
}
x_cur = x_next;
}
}
Gfx::Size m_size;
FixedArray<float> m_data;
};
Font::GlyphHorizontalMetrics Font::Hmtx::get_glyph_horizontal_metrics(u32 glyph_id) const
{
ASSERT(glyph_id < m_num_glyphs);
if (glyph_id < m_number_of_h_metrics) {
auto offset = glyph_id * (u32) Sizes::LongHorMetric;
u16 advance_width = be_u16(m_slice.offset_pointer(offset));
i16 left_side_bearing = be_i16(m_slice.offset_pointer(offset + 2));
return GlyphHorizontalMetrics {
.advance_width = advance_width,
.left_side_bearing = left_side_bearing,
};
}
auto offset = m_number_of_h_metrics * (u32) Sizes::LongHorMetric + (glyph_id - m_number_of_h_metrics) * (u32) Sizes::LeftSideBearing;
u16 advance_width = be_u16(m_slice.offset_pointer((m_number_of_h_metrics - 1) * (u32) Sizes::LongHorMetric));
i16 left_side_bearing = be_i16(m_slice.offset_pointer(offset));
return GlyphHorizontalMetrics {
.advance_width = advance_width,
.left_side_bearing = left_side_bearing,
};
}
u32 Font::Loca::get_glyph_offset(u32 glyph_id) const
{
ASSERT(glyph_id < m_num_glyphs);
switch (m_index_to_loc_format) {
case IndexToLocFormat::Offset16:
return ((u32) be_u16(m_slice.offset_pointer(glyph_id * 2))) * 2;
case IndexToLocFormat::Offset32:
return be_u32(m_slice.offset_pointer(glyph_id * 4));
default:
ASSERT_NOT_REACHED();
}
}
Font::Glyf::Glyph Font::Glyf::Glyph::simple(const ByteBuffer& slice, u16 num_contours, i16 xmin, i16 ymin, i16 xmax, i16 ymax)
{
auto ret = Glyph(slice, Type::Simple);
ret.m_meta.simple = Simple {
.num_contours = num_contours,
.xmin = xmin,
.ymin = ymin,
.xmax = xmax,
.ymax = ymax,
};
return ret;
}
// FIXME: This is currently just a dummy. Need to add support for composite glyphs.
Font::Glyf::Glyph Font::Glyf::Glyph::composite(const ByteBuffer& slice)
{
auto ret = Glyph(slice, Type::Composite);
ret.m_meta.composite = Composite();
return ret;
}
RefPtr<Gfx::Bitmap> Font::Glyf::Glyph::raster(float x_scale, float y_scale) const
{
switch (m_type) {
case Type::Simple:
return raster_simple(x_scale, y_scale);
case Type::Composite:
// FIXME: Add support for composite glyphs
TODO();
}
ASSERT_NOT_REACHED();
}
static void get_ttglyph_offsets(const ByteBuffer& slice, u32 num_points, u32 flags_offset, u32 *x_offset, u32 *y_offset)
{
u32 flags_size = 0;
u32 x_size = 0;
u32 repeat_count;
while (num_points > 0) {
u8 flag = slice[flags_offset + flags_size];
if (flag & (u8) SimpleGlyfFlags::RepeatFlag) {
flags_size++;
repeat_count = slice[flags_offset + flags_size] + 1;
} else {
repeat_count = 1;
}
flags_size++;
switch (flag & (u8) SimpleGlyfFlags::XMask) {
case (u8) SimpleGlyfFlags::XLongVector:
x_size += repeat_count * 2;
break;
case (u8) SimpleGlyfFlags::XNegativeShortVector:
case (u8) SimpleGlyfFlags::XPositiveShortVector:
x_size += repeat_count;
break;
default:
break;
}
num_points -= repeat_count;
}
*x_offset = flags_offset + flags_size;
*y_offset = *x_offset + x_size;
}
RefPtr<Gfx::Bitmap> Font::Glyf::Glyph::raster_simple(float x_scale, float y_scale) const
{
auto simple = m_meta.simple;
// Get offets for flags, x, and y.
u16 num_points = be_u16(m_slice.offset_pointer((simple.num_contours - 1) * 2)) + 1;
u16 num_instructions = be_u16(m_slice.offset_pointer(simple.num_contours * 2));
u32 flags_offset = simple.num_contours * 2 + 2 + num_instructions;
u32 x_offset = 0;
u32 y_offset = 0;
get_ttglyph_offsets(m_slice, num_points, flags_offset, &x_offset, &y_offset);
// Prepare to render glyph.
u32 width = (u32) (ceil((simple.xmax - simple.xmin) * x_scale)) + 1;
u32 height = (u32) (ceil((simple.ymax - simple.ymin) * y_scale)) + 1;
Gfx::Path path;
PointIterator point_iterator(m_slice, num_points, flags_offset, x_offset, y_offset, -simple.xmin, -simple.ymax, x_scale, -y_scale);
int last_contour_end = -1;
u32 contour_index = 0;
u32 contour_size = 0;
Optional<Gfx::FloatPoint> contour_start = {};
Optional<Gfx::FloatPoint> last_offcurve_point = {};
// Render glyph
while (true) {
if (!contour_start.has_value()) {
if (contour_index >= simple.num_contours) {
break;
}
int current_contour_end = be_u16(m_slice.offset_pointer(contour_index++ * 2));
contour_size = current_contour_end - last_contour_end;
last_contour_end = current_contour_end;
auto opt_item = point_iterator.next();
if (!opt_item.has_value()) {
ASSERT_NOT_REACHED();
}
contour_start = opt_item.value().point;
path.move_to(contour_start.value());
contour_size--;
} else if (!last_offcurve_point.has_value()) {
if (contour_size > 0) {
auto opt_item = point_iterator.next();
// FIXME: Should we draw a line to the first point here?
if (!opt_item.has_value()) {
break;
}
auto item = opt_item.value();
contour_size--;
if (item.on_curve) {
path.line_to(item.point);
} else if (contour_size > 0) {
auto opt_next_item = point_iterator.next();
// FIXME: Should we draw a quadratic bezier to the first point here?
if (!opt_next_item.has_value()) {
break;
}
auto next_item = opt_next_item.value();
contour_size--;
if (next_item.on_curve) {
path.quadratic_bezier_curve_to(item.point, next_item.point);
} else {
auto mid_point = Gfx::FloatPoint::interpolate(item.point, next_item.point, 0.5);
path.quadratic_bezier_curve_to(item.point, mid_point);
last_offcurve_point = next_item.point;
}
} else {
path.quadratic_bezier_curve_to(item.point, contour_start.value());
contour_start = {};
}
} else {
path.line_to(contour_start.value());
contour_start = {};
}
} else {
auto point0 = last_offcurve_point.value();
last_offcurve_point = {};
if (contour_size > 0) {
auto opt_item = point_iterator.next();
// FIXME: Should we draw a quadratic bezier to the first point here?
if (!opt_item.has_value()) {
break;
}
auto item = opt_item.value();
contour_size--;
if (item.on_curve) {
path.quadratic_bezier_curve_to(point0, item.point);
} else {
auto mid_point = Gfx::FloatPoint::interpolate(point0, item.point, 0.5);
path.quadratic_bezier_curve_to(point0, mid_point);
last_offcurve_point = item.point;
}
} else {
path.quadratic_bezier_curve_to(point0, contour_start.value());
contour_start = {};
}
}
}
return Rasterizer(Gfx::Size(width, height)).draw_path(path);
}
Font::Glyf::Glyph Font::Glyf::glyph(u32 offset) const
{
ASSERT(m_slice.size() >= offset + (u32) Sizes::GlyphHeader);
i16 num_contours = be_i16(m_slice.offset_pointer(offset));
i16 xmin = be_i16(m_slice.offset_pointer(offset + (u32) Offsets::XMin));
i16 ymin = be_i16(m_slice.offset_pointer(offset + (u32) Offsets::YMin));
i16 xmax = be_i16(m_slice.offset_pointer(offset + (u32) Offsets::XMax));
i16 ymax = be_i16(m_slice.offset_pointer(offset + (u32) Offsets::YMax));
auto slice = ByteBuffer::wrap(m_slice.offset_pointer(offset + (u32) Sizes::GlyphHeader), m_slice.size() - offset - (u32) Sizes::GlyphHeader);
if (num_contours < 0) {
return Glyph::composite(slice);
}
return Glyph::simple(slice, num_contours, xmin, ymin, xmax, ymax);
}
}