1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-21 15:05:07 +00:00
serenity/Kernel/Storage/NVMe/NVMeController.cpp
Pankaj Raghav bfcf7ab3e8 Kernel: Pass NVMeController reference to NVMequeue
This is in preparation for adding MSI(x) support to the NVMe device.
NVMeInterruptQueue needs access to the PCI device to deal with MSI(x)
interrupts. It is ok to pass the NVMeController as a reference to the
NVMeQueue as NVMeController is the one that owns the NVMeQueue.

This is very similar to how AHCIController passes its reference to its
interrupt handler.
2023-05-07 21:16:41 +02:00

354 lines
13 KiB
C++

/*
* Copyright (c) 2021, Pankaj R <pankydev8@gmail.com>
* Copyright (c) 2022, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Format.h>
#include <AK/Types.h>
#include <Kernel/Arch/Delay.h>
#include <Kernel/Arch/SafeMem.h>
#include <Kernel/Bus/PCI/API.h>
#include <Kernel/CommandLine.h>
#include <Kernel/Devices/Device.h>
#include <Kernel/Library/LockRefPtr.h>
#include <Kernel/Sections.h>
#include <Kernel/Storage/NVMe/NVMeController.h>
#include <Kernel/Storage/StorageManagement.h>
namespace Kernel {
UNMAP_AFTER_INIT ErrorOr<NonnullRefPtr<NVMeController>> NVMeController::try_initialize(Kernel::PCI::DeviceIdentifier const& device_identifier, bool is_queue_polled)
{
auto controller = TRY(adopt_nonnull_ref_or_enomem(new NVMeController(device_identifier, StorageManagement::generate_relative_nvme_controller_id({}))));
TRY(controller->initialize(is_queue_polled));
return controller;
}
UNMAP_AFTER_INIT NVMeController::NVMeController(const PCI::DeviceIdentifier& device_identifier, u32 hardware_relative_controller_id)
: PCI::Device(const_cast<PCI::DeviceIdentifier&>(device_identifier))
, StorageController(hardware_relative_controller_id)
{
}
UNMAP_AFTER_INIT ErrorOr<void> NVMeController::initialize(bool is_queue_polled)
{
// Nr of queues = one queue per core
auto nr_of_queues = Processor::count();
auto queue_type = is_queue_polled ? QueueType::Polled : QueueType::IRQ;
PCI::enable_memory_space(device_identifier());
PCI::enable_bus_mastering(device_identifier());
m_bar = PCI::get_BAR0(device_identifier()) & PCI::bar_address_mask;
static_assert(sizeof(ControllerRegister) == REG_SQ0TDBL_START);
static_assert(sizeof(NVMeSubmission) == (1 << SQ_WIDTH));
// Map only until doorbell register for the controller
// Queues will individually map the doorbell register respectively
m_controller_regs = TRY(Memory::map_typed_writable<ControllerRegister volatile>(PhysicalAddress(m_bar)));
auto caps = m_controller_regs->cap;
m_ready_timeout = Time::from_milliseconds((CAP_TO(caps) + 1) * 500); // CAP.TO is in 500ms units
calculate_doorbell_stride();
TRY(create_admin_queue(queue_type));
VERIFY(m_admin_queue_ready == true);
VERIFY(IO_QUEUE_SIZE < MQES(caps));
dbgln_if(NVME_DEBUG, "NVMe: IO queue depth is: {}", IO_QUEUE_SIZE);
// Create an IO queue per core
for (u32 cpuid = 0; cpuid < nr_of_queues; ++cpuid) {
// qid is zero is used for admin queue
TRY(create_io_queue(cpuid + 1, queue_type));
}
TRY(identify_and_init_namespaces());
return {};
}
bool NVMeController::wait_for_ready(bool expected_ready_bit_value)
{
constexpr size_t one_ms_io_delay = 1000;
auto wait_iterations = m_ready_timeout.to_milliseconds();
u32 expected_rdy = expected_ready_bit_value ? 1 : 0;
while (((m_controller_regs->csts >> CSTS_RDY_BIT) & 0x1) != expected_rdy) {
microseconds_delay(one_ms_io_delay);
if (--wait_iterations == 0) {
if (((m_controller_regs->csts >> CSTS_RDY_BIT) & 0x1) != expected_rdy) {
dbgln_if(NVME_DEBUG, "NVMEController: CSTS.RDY still not set to {} after {} ms", expected_rdy, m_ready_timeout.to_milliseconds());
return false;
}
break;
}
}
return true;
}
ErrorOr<void> NVMeController::reset_controller()
{
if ((m_controller_regs->cc & (1 << CC_EN_BIT)) != 0) {
// If the EN bit is already set, we need to wait
// until the RDY bit is 1, otherwise the behavior is undefined
if (!wait_for_ready(true))
return Error::from_errno(ETIMEDOUT);
}
auto cc = m_controller_regs->cc;
cc = cc & ~(1 << CC_EN_BIT);
m_controller_regs->cc = cc;
full_memory_barrier();
// Wait until the RDY bit is cleared
if (!wait_for_ready(false))
return Error::from_errno(ETIMEDOUT);
return {};
}
ErrorOr<void> NVMeController::start_controller()
{
if (!(m_controller_regs->cc & (1 << CC_EN_BIT))) {
// If the EN bit is not already set, we need to wait
// until the RDY bit is 0, otherwise the behavior is undefined
if (!wait_for_ready(false))
return Error::from_errno(ETIMEDOUT);
}
auto cc = m_controller_regs->cc;
cc = cc | (1 << CC_EN_BIT);
cc = cc | (CQ_WIDTH << CC_IOCQES_BIT);
cc = cc | (SQ_WIDTH << CC_IOSQES_BIT);
m_controller_regs->cc = cc;
full_memory_barrier();
// Wait until the RDY bit is set
if (!wait_for_ready(true))
return Error::from_errno(ETIMEDOUT);
return {};
}
UNMAP_AFTER_INIT u32 NVMeController::get_admin_q_dept()
{
u32 aqa = m_controller_regs->aqa;
// Queue depth is 0 based
u32 q_depth = min(ACQ_SIZE(aqa), ASQ_SIZE(aqa)) + 1;
dbgln_if(NVME_DEBUG, "NVMe: Admin queue depth is {}", q_depth);
return q_depth;
}
UNMAP_AFTER_INIT ErrorOr<void> NVMeController::identify_and_init_namespaces()
{
RefPtr<Memory::PhysicalPage> prp_dma_buffer;
OwnPtr<Memory::Region> prp_dma_region;
auto namespace_data_struct = TRY(ByteBuffer::create_zeroed(NVMe_IDENTIFY_SIZE));
u32 active_namespace_list[NVMe_IDENTIFY_SIZE / sizeof(u32)];
{
auto buffer = TRY(MM.allocate_dma_buffer_page("Identify PRP"sv, Memory::Region::Access::ReadWrite, prp_dma_buffer));
prp_dma_region = move(buffer);
}
// Get the active namespace
{
NVMeSubmission sub {};
u16 status = 0;
sub.op = OP_ADMIN_IDENTIFY;
sub.identify.data_ptr.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(prp_dma_buffer->paddr().as_ptr()));
sub.identify.cns = NVMe_CNS_ID_ACTIVE_NS & 0xff;
status = submit_admin_command(sub, true);
if (status) {
dmesgln_pci(*this, "Failed to identify active namespace command");
return EFAULT;
}
if (void* fault_at; !safe_memcpy(active_namespace_list, prp_dma_region->vaddr().as_ptr(), NVMe_IDENTIFY_SIZE, fault_at)) {
return EFAULT;
}
}
// Get the NAMESPACE attributes
{
NVMeSubmission sub {};
IdentifyNamespace id_ns {};
u16 status = 0;
for (auto nsid : active_namespace_list) {
memset(prp_dma_region->vaddr().as_ptr(), 0, NVMe_IDENTIFY_SIZE);
// Invalid NS
if (nsid == 0)
break;
sub.op = OP_ADMIN_IDENTIFY;
sub.identify.data_ptr.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(prp_dma_buffer->paddr().as_ptr()));
sub.identify.cns = NVMe_CNS_ID_NS & 0xff;
sub.identify.nsid = nsid;
status = submit_admin_command(sub, true);
if (status) {
dmesgln_pci(*this, "Failed identify namespace with nsid {}", nsid);
return EFAULT;
}
static_assert(sizeof(IdentifyNamespace) == NVMe_IDENTIFY_SIZE);
if (void* fault_at; !safe_memcpy(&id_ns, prp_dma_region->vaddr().as_ptr(), NVMe_IDENTIFY_SIZE, fault_at)) {
return EFAULT;
}
auto val = get_ns_features(id_ns);
auto block_counts = val.get<0>();
auto block_size = 1 << val.get<1>();
dbgln_if(NVME_DEBUG, "NVMe: Block count is {} and Block size is {}", block_counts, block_size);
m_namespaces.append(TRY(NVMeNameSpace::try_create(*this, m_queues, nsid, block_counts, block_size)));
m_device_count++;
dbgln_if(NVME_DEBUG, "NVMe: Initialized namespace with NSID: {}", nsid);
}
}
return {};
}
UNMAP_AFTER_INIT Tuple<u64, u8> NVMeController::get_ns_features(IdentifyNamespace& identify_data_struct)
{
auto flbas = identify_data_struct.flbas & FLBA_SIZE_MASK;
auto namespace_size = identify_data_struct.nsze;
auto lba_format = identify_data_struct.lbaf[flbas];
auto lba_size = (lba_format & LBA_SIZE_MASK) >> 16;
return Tuple<u64, u8>(namespace_size, lba_size);
}
LockRefPtr<StorageDevice> NVMeController::device(u32 index) const
{
return m_namespaces.at(index);
}
size_t NVMeController::devices_count() const
{
return m_device_count;
}
ErrorOr<void> NVMeController::reset()
{
TRY(reset_controller());
TRY(start_controller());
return {};
}
ErrorOr<void> NVMeController::shutdown()
{
return Error::from_errno(ENOTIMPL);
}
void NVMeController::complete_current_request([[maybe_unused]] AsyncDeviceRequest::RequestResult result)
{
VERIFY_NOT_REACHED();
}
UNMAP_AFTER_INIT ErrorOr<void> NVMeController::create_admin_queue(QueueType queue_type)
{
auto qdepth = get_admin_q_dept();
OwnPtr<Memory::Region> cq_dma_region;
Vector<NonnullRefPtr<Memory::PhysicalPage>> cq_dma_pages;
OwnPtr<Memory::Region> sq_dma_region;
Vector<NonnullRefPtr<Memory::PhysicalPage>> sq_dma_pages;
auto cq_size = round_up_to_power_of_two(CQ_SIZE(qdepth), 4096);
auto sq_size = round_up_to_power_of_two(SQ_SIZE(qdepth), 4096);
auto maybe_error = reset_controller();
if (maybe_error.is_error()) {
dmesgln_pci(*this, "Failed to reset the NVMe controller");
return maybe_error;
}
{
auto buffer = TRY(MM.allocate_dma_buffer_pages(cq_size, "Admin CQ queue"sv, Memory::Region::Access::ReadWrite, cq_dma_pages));
cq_dma_region = move(buffer);
}
// Phase bit is important to determine completion, so zero out the space
// so that we don't get any garbage phase bit value
memset(cq_dma_region->vaddr().as_ptr(), 0, cq_size);
{
auto buffer = TRY(MM.allocate_dma_buffer_pages(sq_size, "Admin SQ queue"sv, Memory::Region::Access::ReadWrite, sq_dma_pages));
sq_dma_region = move(buffer);
}
auto doorbell_regs = TRY(Memory::map_typed_writable<DoorbellRegister volatile>(PhysicalAddress(m_bar + REG_SQ0TDBL_START)));
m_controller_regs->acq = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(cq_dma_pages.first()->paddr().as_ptr()));
m_controller_regs->asq = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(sq_dma_pages.first()->paddr().as_ptr()));
maybe_error = start_controller();
if (maybe_error.is_error()) {
dmesgln_pci(*this, "Failed to restart the NVMe controller");
return maybe_error;
}
set_admin_queue_ready_flag();
m_admin_queue = TRY(NVMeQueue::try_create(*this, 0, device_identifier().interrupt_line().value(), qdepth, move(cq_dma_region), cq_dma_pages, move(sq_dma_region), sq_dma_pages, move(doorbell_regs), queue_type));
dbgln_if(NVME_DEBUG, "NVMe: Admin queue created");
return {};
}
UNMAP_AFTER_INIT ErrorOr<void> NVMeController::create_io_queue(u8 qid, QueueType queue_type)
{
OwnPtr<Memory::Region> cq_dma_region;
Vector<NonnullRefPtr<Memory::PhysicalPage>> cq_dma_pages;
OwnPtr<Memory::Region> sq_dma_region;
Vector<NonnullRefPtr<Memory::PhysicalPage>> sq_dma_pages;
auto cq_size = round_up_to_power_of_two(CQ_SIZE(IO_QUEUE_SIZE), 4096);
auto sq_size = round_up_to_power_of_two(SQ_SIZE(IO_QUEUE_SIZE), 4096);
{
auto buffer = TRY(MM.allocate_dma_buffer_pages(cq_size, "IO CQ queue"sv, Memory::Region::Access::ReadWrite, cq_dma_pages));
cq_dma_region = move(buffer);
}
// Phase bit is important to determine completion, so zero out the space
// so that we don't get any garbage phase bit value
memset(cq_dma_region->vaddr().as_ptr(), 0, cq_size);
{
auto buffer = TRY(MM.allocate_dma_buffer_pages(sq_size, "IO SQ queue"sv, Memory::Region::Access::ReadWrite, sq_dma_pages));
sq_dma_region = move(buffer);
}
{
NVMeSubmission sub {};
sub.op = OP_ADMIN_CREATE_COMPLETION_QUEUE;
sub.create_cq.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(cq_dma_pages.first()->paddr().as_ptr()));
sub.create_cq.cqid = qid;
// The queue size is 0 based
sub.create_cq.qsize = AK::convert_between_host_and_little_endian(IO_QUEUE_SIZE - 1);
auto flags = (queue_type == QueueType::IRQ) ? QUEUE_IRQ_ENABLED : QUEUE_IRQ_DISABLED;
flags |= QUEUE_PHY_CONTIGUOUS;
// TODO: Eventually move to MSI.
// For now using pin based interrupts. Clear the first 16 bits
// to use pin-based interrupts.
sub.create_cq.cq_flags = AK::convert_between_host_and_little_endian(flags & 0xFFFF);
submit_admin_command(sub, true);
}
{
NVMeSubmission sub {};
sub.op = OP_ADMIN_CREATE_SUBMISSION_QUEUE;
sub.create_sq.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(sq_dma_pages.first()->paddr().as_ptr()));
sub.create_sq.sqid = qid;
// The queue size is 0 based
sub.create_sq.qsize = AK::convert_between_host_and_little_endian(IO_QUEUE_SIZE - 1);
auto flags = QUEUE_PHY_CONTIGUOUS;
sub.create_sq.cqid = qid;
sub.create_sq.sq_flags = AK::convert_between_host_and_little_endian(flags);
submit_admin_command(sub, true);
}
auto queue_doorbell_offset = REG_SQ0TDBL_START + ((2 * qid) * (4 << m_dbl_stride));
auto doorbell_regs = TRY(Memory::map_typed_writable<DoorbellRegister volatile>(PhysicalAddress(m_bar + queue_doorbell_offset)));
m_queues.append(TRY(NVMeQueue::try_create(*this, qid, device_identifier().interrupt_line().value(), IO_QUEUE_SIZE, move(cq_dma_region), cq_dma_pages, move(sq_dma_region), sq_dma_pages, move(doorbell_regs), queue_type)));
dbgln_if(NVME_DEBUG, "NVMe: Created IO Queue with QID{}", m_queues.size());
return {};
}
}