1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-14 19:54:57 +00:00
serenity/DevTools/UserspaceEmulator/SoftCPU.cpp
2020-07-18 00:25:02 +02:00

2228 lines
67 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "SoftCPU.h"
#include "Emulator.h"
#include <AK/Assertions.h>
#include <stdio.h>
#include <string.h>
#if defined(__GNUC__) && !defined(__clang__)
# pragma GCC optimize("O3")
#endif
//#define MEMORY_DEBUG
#define DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(mnemonic, op) \
void SoftCPU::mnemonic##_RM8_1(const X86::Instruction& insn) { generic_RM8_1(op<u8>, insn); } \
void SoftCPU::mnemonic##_RM8_CL(const X86::Instruction& insn) { generic_RM8_CL(op<u8>, insn); } \
void SoftCPU::mnemonic##_RM8_imm8(const X86::Instruction& insn) { generic_RM8_imm8<true>(op<u8>, insn); } \
void SoftCPU::mnemonic##_RM16_1(const X86::Instruction& insn) { generic_RM16_1(op<u16>, insn); } \
void SoftCPU::mnemonic##_RM16_CL(const X86::Instruction& insn) { generic_RM16_CL(op<u16>, insn); } \
void SoftCPU::mnemonic##_RM16_imm8(const X86::Instruction& insn) { generic_RM16_imm8<true>(op<u16>, insn); } \
void SoftCPU::mnemonic##_RM32_1(const X86::Instruction& insn) { generic_RM32_1(op<u32>, insn); } \
void SoftCPU::mnemonic##_RM32_CL(const X86::Instruction& insn) { generic_RM32_CL(op<u32>, insn); } \
void SoftCPU::mnemonic##_RM32_imm8(const X86::Instruction& insn) { generic_RM32_imm8<true>(op<u32>, insn); }
namespace UserspaceEmulator {
template<typename T, typename U>
inline constexpr T sign_extended_to(U value)
{
if (!(value & X86::TypeTrivia<U>::sign_bit))
return value;
return (X86::TypeTrivia<T>::mask & ~X86::TypeTrivia<U>::mask) | value;
}
SoftCPU::SoftCPU(Emulator& emulator)
: m_emulator(emulator)
{
memset(m_gpr, 0, sizeof(m_gpr));
m_segment[(int)X86::SegmentRegister::CS] = 0x18;
m_segment[(int)X86::SegmentRegister::DS] = 0x20;
m_segment[(int)X86::SegmentRegister::ES] = 0x20;
m_segment[(int)X86::SegmentRegister::SS] = 0x20;
m_segment[(int)X86::SegmentRegister::GS] = 0x28;
}
void SoftCPU::dump() const
{
printf("eax=%08x ebx=%08x ecx=%08x edx=%08x ", eax(), ebx(), ecx(), edx());
printf("ebp=%08x esp=%08x esi=%08x edi=%08x ", ebp(), esp(), esi(), edi());
printf("o=%u s=%u z=%u a=%u p=%u c=%u\n", of(), sf(), zf(), af(), pf(), cf());
}
void SoftCPU::did_receive_secret_data()
{
if (m_secret_data[0] == 1) {
if (auto* tracer = m_emulator.malloc_tracer())
tracer->target_did_malloc({}, m_secret_data[2], m_secret_data[1]);
} else if (m_secret_data[0] == 2) {
if (auto* tracer = m_emulator.malloc_tracer())
tracer->target_did_free({}, m_secret_data[1]);
} else {
ASSERT_NOT_REACHED();
}
}
void SoftCPU::update_code_cache()
{
auto* region = m_emulator.mmu().find_region({ cs(), eip() });
ASSERT(region);
m_cached_code_ptr = region->cacheable_ptr(eip() - region->base());
m_cached_code_end = region->cacheable_ptr(region->size());
}
u8 SoftCPU::read_memory8(X86::LogicalAddress address)
{
ASSERT(address.selector() == 0x18 || address.selector() == 0x20 || address.selector() == 0x28);
auto value = m_emulator.mmu().read8(address);
#ifdef MEMORY_DEBUG
printf("\033[36;1mread_memory8: @%08x:%08x -> %02x\033[0m\n", address.selector(), address.offset(), value);
#endif
return value;
}
u16 SoftCPU::read_memory16(X86::LogicalAddress address)
{
ASSERT(address.selector() == 0x18 || address.selector() == 0x20 || address.selector() == 0x28);
auto value = m_emulator.mmu().read16(address);
#ifdef MEMORY_DEBUG
printf("\033[36;1mread_memory16: @%04x:%08x -> %04x\033[0m\n", address.selector(), address.offset(), value);
#endif
return value;
}
u32 SoftCPU::read_memory32(X86::LogicalAddress address)
{
ASSERT(address.selector() == 0x18 || address.selector() == 0x20 || address.selector() == 0x28);
auto value = m_emulator.mmu().read32(address);
#ifdef MEMORY_DEBUG
printf("\033[36;1mread_memory32: @%04x:%08x -> %08x\033[0m\n", address.selector(), address.offset(), value);
#endif
return value;
}
void SoftCPU::write_memory8(X86::LogicalAddress address, u8 value)
{
ASSERT(address.selector() == 0x20 || address.selector() == 0x28);
#ifdef MEMORY_DEBUG
printf("\033[35;1mwrite_memory8: @%04x:%08x <- %02x\033[0m\n", address.selector(), address.offset(), value);
#endif
m_emulator.mmu().write8(address, value);
}
void SoftCPU::write_memory16(X86::LogicalAddress address, u16 value)
{
ASSERT(address.selector() == 0x20 || address.selector() == 0x28);
#ifdef MEMORY_DEBUG
printf("\033[35;1mwrite_memory16: @%04x:%08x <- %04x\033[0m\n", address.selector(), address.offset(), value);
#endif
m_emulator.mmu().write16(address, value);
}
void SoftCPU::write_memory32(X86::LogicalAddress address, u32 value)
{
ASSERT(address.selector() == 0x20 || address.selector() == 0x28);
#ifdef MEMORY_DEBUG
printf("\033[35;1mwrite_memory32: @%04x:%08x <- %08x\033[0m\n", address.selector(), address.offset(), value);
#endif
m_emulator.mmu().write32(address, value);
}
void SoftCPU::push_string(const StringView& string)
{
size_t space_to_allocate = round_up_to_power_of_two(string.length() + 1, 16);
set_esp(esp() - space_to_allocate);
m_emulator.mmu().copy_to_vm(esp(), string.characters_without_null_termination(), string.length());
m_emulator.mmu().write8({ 0x20, esp() + string.length() }, '\0');
}
void SoftCPU::push32(u32 value)
{
set_esp(esp() - sizeof(value));
write_memory32({ ss(), esp() }, value);
}
u32 SoftCPU::pop32()
{
auto value = read_memory32({ ss(), esp() });
set_esp(esp() + sizeof(value));
return value;
}
void SoftCPU::push16(u16 value)
{
set_esp(esp() - sizeof(value));
write_memory16({ ss(), esp() }, value);
}
u16 SoftCPU::pop16()
{
auto value = read_memory16({ ss(), esp() });
set_esp(esp() + sizeof(value));
return value;
}
template<bool check_zf, typename Callback>
void SoftCPU::do_once_or_repeat(const X86::Instruction& insn, Callback callback)
{
if (!insn.has_rep_prefix())
return callback();
while (loop_index(insn.a32())) {
callback();
decrement_loop_index(insn.a32());
if constexpr (check_zf) {
if (insn.rep_prefix() == X86::Prefix::REPZ && !zf())
break;
if (insn.rep_prefix() == X86::Prefix::REPNZ && zf())
break;
}
}
}
template<typename T>
ALWAYS_INLINE static T op_inc(SoftCPU& cpu, T data)
{
T result = 0;
u32 new_flags = 0;
if constexpr (sizeof(T) == 4) {
asm volatile("incl %%eax\n"
: "=a"(result)
: "a"(data));
} else if constexpr (sizeof(T) == 2) {
asm volatile("incw %%ax\n"
: "=a"(result)
: "a"(data));
} else if constexpr (sizeof(T) == 1) {
asm volatile("incb %%al\n"
: "=a"(result)
: "a"(data));
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszap(new_flags);
return result;
}
template<typename T>
ALWAYS_INLINE static T op_dec(SoftCPU& cpu, T data)
{
T result = 0;
u32 new_flags = 0;
if constexpr (sizeof(T) == 4) {
asm volatile("decl %%eax\n"
: "=a"(result)
: "a"(data));
} else if constexpr (sizeof(T) == 2) {
asm volatile("decw %%ax\n"
: "=a"(result)
: "a"(data));
} else if constexpr (sizeof(T) == 1) {
asm volatile("decb %%al\n"
: "=a"(result)
: "a"(data));
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszap(new_flags);
return result;
}
template<typename T>
ALWAYS_INLINE static T op_xor(SoftCPU& cpu, const T& dest, const T& src)
{
T result = 0;
u32 new_flags = 0;
if constexpr (sizeof(T) == 4) {
asm volatile("xorl %%ecx, %%eax\n"
: "=a"(result)
: "a"(dest), "c"((u32)src));
} else if constexpr (sizeof(T) == 2) {
asm volatile("xor %%cx, %%ax\n"
: "=a"(result)
: "a"(dest), "c"((u16)src));
} else if constexpr (sizeof(T) == 1) {
asm volatile("xorb %%cl, %%al\n"
: "=a"(result)
: "a"(dest), "c"((u8)src));
} else {
ASSERT_NOT_REACHED();
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszpc(new_flags);
return result;
}
template<typename T>
ALWAYS_INLINE static T op_or(SoftCPU& cpu, const T& dest, const T& src)
{
T result = 0;
u32 new_flags = 0;
if constexpr (sizeof(T) == 4) {
asm volatile("orl %%ecx, %%eax\n"
: "=a"(result)
: "a"(dest), "c"((u32)src));
} else if constexpr (sizeof(T) == 2) {
asm volatile("or %%cx, %%ax\n"
: "=a"(result)
: "a"(dest), "c"((u16)src));
} else if constexpr (sizeof(T) == 1) {
asm volatile("orb %%cl, %%al\n"
: "=a"(result)
: "a"(dest), "c"((u8)src));
} else {
ASSERT_NOT_REACHED();
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszpc(new_flags);
return result;
}
template<typename T>
ALWAYS_INLINE static T op_sub(SoftCPU& cpu, const T& dest, const T& src)
{
T result = 0;
u32 new_flags = 0;
if constexpr (sizeof(T) == 4) {
asm volatile("subl %%ecx, %%eax\n"
: "=a"(result)
: "a"(dest), "c"((u32)src));
} else if constexpr (sizeof(T) == 2) {
asm volatile("subw %%cx, %%ax\n"
: "=a"(result)
: "a"(dest), "c"((u16)src));
} else if constexpr (sizeof(T) == 1) {
asm volatile("subb %%cl, %%al\n"
: "=a"(result)
: "a"(dest), "c"((u8)src));
} else {
ASSERT_NOT_REACHED();
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszapc(new_flags);
return result;
}
template<typename T, bool cf>
ALWAYS_INLINE static T op_sbb_impl(SoftCPU& cpu, const T& dest, const T& src)
{
T result = 0;
u32 new_flags = 0;
if constexpr (cf)
asm volatile("stc");
else
asm volatile("clc");
if constexpr (sizeof(T) == 4) {
asm volatile("sbbl %%ecx, %%eax\n"
: "=a"(result)
: "a"(dest), "c"((u32)src));
} else if constexpr (sizeof(T) == 2) {
asm volatile("sbbw %%cx, %%ax\n"
: "=a"(result)
: "a"(dest), "c"((u16)src));
} else if constexpr (sizeof(T) == 1) {
asm volatile("sbbb %%cl, %%al\n"
: "=a"(result)
: "a"(dest), "c"((u8)src));
} else {
ASSERT_NOT_REACHED();
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszapc(new_flags);
return result;
}
template<typename T>
ALWAYS_INLINE static T op_sbb(SoftCPU& cpu, T& dest, const T& src)
{
if (cpu.cf())
return op_sbb_impl<T, true>(cpu, dest, src);
return op_sbb_impl<T, false>(cpu, dest, src);
}
template<typename T>
ALWAYS_INLINE static T op_add(SoftCPU& cpu, T& dest, const T& src)
{
T result = 0;
u32 new_flags = 0;
if constexpr (sizeof(T) == 4) {
asm volatile("addl %%ecx, %%eax\n"
: "=a"(result)
: "a"(dest), "c"((u32)src));
} else if constexpr (sizeof(T) == 2) {
asm volatile("addw %%cx, %%ax\n"
: "=a"(result)
: "a"(dest), "c"((u16)src));
} else if constexpr (sizeof(T) == 1) {
asm volatile("addb %%cl, %%al\n"
: "=a"(result)
: "a"(dest), "c"((u8)src));
} else {
ASSERT_NOT_REACHED();
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszapc(new_flags);
return result;
}
template<typename T, bool cf>
ALWAYS_INLINE static T op_adc_impl(SoftCPU& cpu, T& dest, const T& src)
{
T result = 0;
u32 new_flags = 0;
if constexpr (cf)
asm volatile("stc");
else
asm volatile("clc");
if constexpr (sizeof(T) == 4) {
asm volatile("adcl %%ecx, %%eax\n"
: "=a"(result)
: "a"(dest), "c"((u32)src));
} else if constexpr (sizeof(T) == 2) {
asm volatile("adcw %%cx, %%ax\n"
: "=a"(result)
: "a"(dest), "c"((u16)src));
} else if constexpr (sizeof(T) == 1) {
asm volatile("adcb %%cl, %%al\n"
: "=a"(result)
: "a"(dest), "c"((u8)src));
} else {
ASSERT_NOT_REACHED();
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszapc(new_flags);
return result;
}
template<typename T>
ALWAYS_INLINE static T op_adc(SoftCPU& cpu, T& dest, const T& src)
{
if (cpu.cf())
return op_adc_impl<T, true>(cpu, dest, src);
return op_adc_impl<T, false>(cpu, dest, src);
}
template<typename T>
ALWAYS_INLINE static T op_and(SoftCPU& cpu, const T& dest, const T& src)
{
T result = 0;
u32 new_flags = 0;
if constexpr (sizeof(T) == 4) {
asm volatile("andl %%ecx, %%eax\n"
: "=a"(result)
: "a"(dest), "c"((u32)src));
} else if constexpr (sizeof(T) == 2) {
asm volatile("andw %%cx, %%ax\n"
: "=a"(result)
: "a"(dest), "c"((u16)src));
} else if constexpr (sizeof(T) == 1) {
asm volatile("andb %%cl, %%al\n"
: "=a"(result)
: "a"(dest), "c"((u8)src));
} else {
ASSERT_NOT_REACHED();
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszpc(new_flags);
return result;
}
template<typename T>
ALWAYS_INLINE static T op_imul(SoftCPU& cpu, const T& dest, const T& src)
{
u32 result_high = 0;
u32 result_low = 0;
T result = 0;
u32 new_flags = 0;
if constexpr (sizeof(T) == 8) {
asm volatile("imull %%ecx"
: "=a"(result_low), "=d"(result_high)
: "a"((i32)dest), "c"((i32)src));
} else if constexpr (sizeof(T) == 4) {
asm volatile("imull %%ecx, %%eax\n"
: "=a"(result)
: "a"(dest), "c"((i32)src));
} else if constexpr (sizeof(T) == 2) {
asm volatile("imulw %%cx, %%ax\n"
: "=a"(result)
: "a"(dest), "c"((i16)src));
} else {
ASSERT_NOT_REACHED();
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
if constexpr (sizeof(T) == 8)
result = ((u64)result_high << 32) | result_low;
cpu.set_flags_oc(new_flags);
return result;
}
template<typename T>
ALWAYS_INLINE static T op_shr(SoftCPU& cpu, T data, u8 steps)
{
if (steps == 0)
return data;
u32 result = 0;
u32 new_flags = 0;
if constexpr (sizeof(T) == 4) {
asm volatile("shrl %%cl, %%eax\n"
: "=a"(result)
: "a"(data), "c"(steps));
} else if constexpr (sizeof(T) == 2) {
asm volatile("shrw %%cl, %%ax\n"
: "=a"(result)
: "a"(data), "c"(steps));
} else if constexpr (sizeof(T) == 1) {
asm volatile("shrb %%cl, %%al\n"
: "=a"(result)
: "a"(data), "c"(steps));
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszapc(new_flags);
return result;
}
template<typename T>
ALWAYS_INLINE static T op_shl(SoftCPU& cpu, T data, u8 steps)
{
if (steps == 0)
return data;
u32 result = 0;
u32 new_flags = 0;
if constexpr (sizeof(T) == 4) {
asm volatile("shll %%cl, %%eax\n"
: "=a"(result)
: "a"(data), "c"(steps));
} else if constexpr (sizeof(T) == 2) {
asm volatile("shlw %%cl, %%ax\n"
: "=a"(result)
: "a"(data), "c"(steps));
} else if constexpr (sizeof(T) == 1) {
asm volatile("shlb %%cl, %%al\n"
: "=a"(result)
: "a"(data), "c"(steps));
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszapc(new_flags);
return result;
}
template<typename T>
ALWAYS_INLINE static T op_shrd(SoftCPU& cpu, T data, T extra_bits, u8 steps)
{
if (steps == 0)
return data;
u32 result = 0;
u32 new_flags = 0;
if constexpr (sizeof(T) == 4) {
asm volatile("shrd %%cl, %%edx, %%eax\n"
: "=a"(result)
: "a"(data), "d"(extra_bits), "c"(steps));
} else if constexpr (sizeof(T) == 2) {
asm volatile("shrd %%cl, %%dx, %%ax\n"
: "=a"(result)
: "a"(data), "d"(extra_bits), "c"(steps));
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszapc(new_flags);
return result;
}
template<typename T>
ALWAYS_INLINE static T op_shld(SoftCPU& cpu, T data, T extra_bits, u8 steps)
{
if (steps == 0)
return data;
u32 result = 0;
u32 new_flags = 0;
if constexpr (sizeof(T) == 4) {
asm volatile("shld %%cl, %%edx, %%eax\n"
: "=a"(result)
: "a"(data), "d"(extra_bits), "c"(steps));
} else if constexpr (sizeof(T) == 2) {
asm volatile("shld %%cl, %%dx, %%ax\n"
: "=a"(result)
: "a"(data), "d"(extra_bits), "c"(steps));
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszapc(new_flags);
return result;
}
template<bool update_dest, typename Op>
ALWAYS_INLINE void SoftCPU::generic_AL_imm8(Op op, const X86::Instruction& insn)
{
auto dest = al();
auto src = insn.imm8();
auto result = op(*this, dest, src);
if (update_dest)
set_al(result);
}
template<bool update_dest, typename Op>
ALWAYS_INLINE void SoftCPU::generic_AX_imm16(Op op, const X86::Instruction& insn)
{
auto dest = ax();
auto src = insn.imm16();
auto result = op(*this, dest, src);
if (update_dest)
set_ax(result);
}
template<bool update_dest, typename Op>
ALWAYS_INLINE void SoftCPU::generic_EAX_imm32(Op op, const X86::Instruction& insn)
{
auto dest = eax();
auto src = insn.imm32();
auto result = op(*this, dest, src);
if (update_dest)
set_eax(result);
}
template<bool update_dest, typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM16_imm16(Op op, const X86::Instruction& insn)
{
auto dest = insn.modrm().read16(*this, insn);
auto src = insn.imm16();
auto result = op(*this, dest, src);
if (update_dest)
insn.modrm().write16(*this, insn, result);
}
template<bool update_dest, typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM16_imm8(Op op, const X86::Instruction& insn)
{
auto dest = insn.modrm().read16(*this, insn);
auto src = sign_extended_to<u16>(insn.imm8());
auto result = op(*this, dest, src);
if (update_dest)
insn.modrm().write16(*this, insn, result);
}
template<bool update_dest, typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM16_reg16(Op op, const X86::Instruction& insn)
{
auto dest = insn.modrm().read16(*this, insn);
auto src = gpr16(insn.reg16());
auto result = op(*this, dest, src);
if (update_dest)
insn.modrm().write16(*this, insn, result);
}
template<bool update_dest, typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM32_imm32(Op op, const X86::Instruction& insn)
{
auto dest = insn.modrm().read32(*this, insn);
auto src = insn.imm32();
auto result = op(*this, dest, src);
if (update_dest)
insn.modrm().write32(*this, insn, result);
}
template<bool update_dest, typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM32_imm8(Op op, const X86::Instruction& insn)
{
auto dest = insn.modrm().read32(*this, insn);
auto src = sign_extended_to<u32>(insn.imm8());
auto result = op(*this, dest, src);
if (update_dest)
insn.modrm().write32(*this, insn, result);
}
template<bool update_dest, typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM32_reg32(Op op, const X86::Instruction& insn)
{
auto dest = insn.modrm().read32(*this, insn);
auto src = gpr32(insn.reg32());
auto result = op(*this, dest, src);
if (update_dest)
insn.modrm().write32(*this, insn, result);
}
template<bool update_dest, typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM8_imm8(Op op, const X86::Instruction& insn)
{
auto dest = insn.modrm().read8(*this, insn);
auto src = insn.imm8();
auto result = op(*this, dest, src);
if (update_dest)
insn.modrm().write8(*this, insn, result);
}
template<bool update_dest, typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM8_reg8(Op op, const X86::Instruction& insn)
{
auto dest = insn.modrm().read8(*this, insn);
auto src = gpr8(insn.reg8());
auto result = op(*this, dest, src);
if (update_dest)
insn.modrm().write8(*this, insn, result);
}
template<bool update_dest, typename Op>
ALWAYS_INLINE void SoftCPU::generic_reg16_RM16(Op op, const X86::Instruction& insn)
{
auto dest = gpr16(insn.reg16());
auto src = insn.modrm().read16(*this, insn);
auto result = op(*this, dest, src);
if (update_dest)
gpr16(insn.reg16()) = result;
}
template<bool update_dest, typename Op>
ALWAYS_INLINE void SoftCPU::generic_reg32_RM32(Op op, const X86::Instruction& insn)
{
auto dest = gpr32(insn.reg32());
auto src = insn.modrm().read32(*this, insn);
auto result = op(*this, dest, src);
if (update_dest)
gpr32(insn.reg32()) = result;
}
template<bool update_dest, typename Op>
ALWAYS_INLINE void SoftCPU::generic_reg8_RM8(Op op, const X86::Instruction& insn)
{
auto dest = gpr8(insn.reg8());
auto src = insn.modrm().read8(*this, insn);
auto result = op(*this, dest, src);
if (update_dest)
gpr8(insn.reg8()) = result;
}
template<typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM8_1(Op op, const X86::Instruction& insn)
{
auto data = insn.modrm().read8(*this, insn);
insn.modrm().write8(*this, insn, op(*this, data, 1));
}
template<typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM8_CL(Op op, const X86::Instruction& insn)
{
auto data = insn.modrm().read8(*this, insn);
insn.modrm().write8(*this, insn, op(*this, data, cl()));
}
template<typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM16_1(Op op, const X86::Instruction& insn)
{
auto data = insn.modrm().read16(*this, insn);
insn.modrm().write16(*this, insn, op(*this, data, 1));
}
template<typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM16_CL(Op op, const X86::Instruction& insn)
{
auto data = insn.modrm().read16(*this, insn);
insn.modrm().write16(*this, insn, op(*this, data, cl()));
}
template<typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM32_1(Op op, const X86::Instruction& insn)
{
auto data = insn.modrm().read32(*this, insn);
insn.modrm().write32(*this, insn, op(*this, data, 1));
}
template<typename Op>
ALWAYS_INLINE void SoftCPU::generic_RM32_CL(Op op, const X86::Instruction& insn)
{
auto data = insn.modrm().read32(*this, insn);
insn.modrm().write32(*this, insn, op(*this, data, cl()));
}
void SoftCPU::AAA(const X86::Instruction&) { TODO(); }
void SoftCPU::AAD(const X86::Instruction&) { TODO(); }
void SoftCPU::AAM(const X86::Instruction&) { TODO(); }
void SoftCPU::AAS(const X86::Instruction&) { TODO(); }
void SoftCPU::ARPL(const X86::Instruction&) { TODO(); }
void SoftCPU::BOUND(const X86::Instruction&) { TODO(); }
void SoftCPU::BSF_reg16_RM16(const X86::Instruction&) { }
void SoftCPU::BSF_reg32_RM32(const X86::Instruction&) { }
void SoftCPU::BSR_reg16_RM16(const X86::Instruction&) { }
void SoftCPU::BSR_reg32_RM32(const X86::Instruction&) { }
void SoftCPU::BSWAP_reg32(const X86::Instruction& insn)
{
gpr32(insn.reg32()) = __builtin_bswap32(gpr32(insn.reg32()));
}
template<typename T>
ALWAYS_INLINE static T op_bt(T value, T)
{
return value;
}
template<typename T>
ALWAYS_INLINE static T op_bts(T value, T bit_mask)
{
return value | bit_mask;
}
template<typename T>
ALWAYS_INLINE static T op_btr(T value, T bit_mask)
{
return value & ~bit_mask;
}
template<typename T>
ALWAYS_INLINE static T op_btc(T value, T bit_mask)
{
return value ^ bit_mask;
}
template<bool should_update, typename Op>
ALWAYS_INLINE void BTx_RM16_reg16(SoftCPU& cpu, const X86::Instruction& insn, Op op)
{
if (insn.modrm().is_register()) {
unsigned bit_index = cpu.gpr16(insn.reg16()) & (X86::TypeTrivia<u16>::bits - 1);
u16 original = insn.modrm().read16(cpu, insn);
u16 bit_mask = 1 << bit_index;
u16 result = op(original, bit_mask);
cpu.set_cf((original & bit_mask) != 0);
if (should_update)
insn.modrm().write16(cpu, insn, result);
return;
}
// FIXME: Is this supposed to perform a full 16-bit read/modify/write?
unsigned bit_offset_in_array = cpu.gpr16(insn.reg16()) / 8;
unsigned bit_offset_in_byte = cpu.gpr16(insn.reg16()) & 7;
auto address = insn.modrm().resolve(cpu, insn);
address.set_offset(address.offset() + bit_offset_in_array);
u8 dest = cpu.read_memory8(address);
u8 bit_mask = 1 << bit_offset_in_byte;
u8 result = op(dest, bit_mask);
cpu.set_cf((dest & bit_mask) != 0);
if (should_update)
cpu.write_memory8(address, result);
}
template<bool should_update, typename Op>
ALWAYS_INLINE void BTx_RM32_reg32(SoftCPU& cpu, const X86::Instruction& insn, Op op)
{
if (insn.modrm().is_register()) {
unsigned bit_index = cpu.gpr32(insn.reg32()) & (X86::TypeTrivia<u32>::bits - 1);
u32 original = insn.modrm().read32(cpu, insn);
u32 bit_mask = 1 << bit_index;
u32 result = op(original, bit_mask);
cpu.set_cf((original & bit_mask) != 0);
if (should_update)
insn.modrm().write32(cpu, insn, result);
return;
}
// FIXME: Is this supposed to perform a full 32-bit read/modify/write?
unsigned bit_offset_in_array = cpu.gpr32(insn.reg32()) / 8;
unsigned bit_offset_in_byte = cpu.gpr32(insn.reg32()) & 7;
auto address = insn.modrm().resolve(cpu, insn);
address.set_offset(address.offset() + bit_offset_in_array);
u8 dest = cpu.read_memory8(address);
u8 bit_mask = 1 << bit_offset_in_byte;
u8 result = op(dest, bit_mask);
cpu.set_cf((dest & bit_mask) != 0);
if (should_update)
cpu.write_memory8(address, result);
}
template<bool should_update, typename Op>
ALWAYS_INLINE void BTx_RM16_imm8(SoftCPU& cpu, const X86::Instruction& insn, Op op)
{
unsigned bit_index = insn.imm8() & (X86::TypeTrivia<u16>::mask);
// FIXME: Support higher bit indices
ASSERT(bit_index < 16);
u16 original = insn.modrm().read16(cpu, insn);
u16 bit_mask = 1 << bit_index;
u16 result = op(original, bit_mask);
cpu.set_cf((original & bit_mask) != 0);
if (should_update)
insn.modrm().write16(cpu, insn, result);
}
template<bool should_update, typename Op>
ALWAYS_INLINE void BTx_RM32_imm8(SoftCPU& cpu, const X86::Instruction& insn, Op op)
{
unsigned bit_index = insn.imm8() & (X86::TypeTrivia<u32>::mask);
// FIXME: Support higher bit indices
ASSERT(bit_index < 32);
u32 original = insn.modrm().read32(cpu, insn);
u32 bit_mask = 1 << bit_index;
u32 result = op(original, bit_mask);
cpu.set_cf((original & bit_mask) != 0);
if (should_update)
insn.modrm().write32(cpu, insn, result);
}
#define DEFINE_GENERIC_BTx_INSN_HANDLERS(mnemonic, op, update_dest) \
void SoftCPU::mnemonic##_RM32_reg32(const X86::Instruction& insn) { BTx_RM32_reg32<update_dest>(*this, insn, op<u32>); } \
void SoftCPU::mnemonic##_RM16_reg16(const X86::Instruction& insn) { BTx_RM16_reg16<update_dest>(*this, insn, op<u16>); } \
void SoftCPU::mnemonic##_RM32_imm8(const X86::Instruction& insn) { BTx_RM32_imm8<update_dest>(*this, insn, op<u32>); } \
void SoftCPU::mnemonic##_RM16_imm8(const X86::Instruction& insn) { BTx_RM16_imm8<update_dest>(*this, insn, op<u16>); }
DEFINE_GENERIC_BTx_INSN_HANDLERS(BTS, op_bts, true);
DEFINE_GENERIC_BTx_INSN_HANDLERS(BTR, op_btr, true);
DEFINE_GENERIC_BTx_INSN_HANDLERS(BTC, op_btc, true);
DEFINE_GENERIC_BTx_INSN_HANDLERS(BT, op_bt, false);
void SoftCPU::CALL_FAR_mem16(const X86::Instruction&)
{
TODO();
}
void SoftCPU::CALL_FAR_mem32(const X86::Instruction&) { TODO(); }
void SoftCPU::CALL_RM16(const X86::Instruction&) { TODO(); }
void SoftCPU::CALL_RM32(const X86::Instruction& insn)
{
push32(eip());
set_eip(insn.modrm().read32(*this, insn));
}
void SoftCPU::CALL_imm16(const X86::Instruction&) { TODO(); }
void SoftCPU::CALL_imm16_imm16(const X86::Instruction&) { TODO(); }
void SoftCPU::CALL_imm16_imm32(const X86::Instruction&) { TODO(); }
void SoftCPU::CALL_imm32(const X86::Instruction& insn)
{
push32(eip());
set_eip(eip() + (i32)insn.imm32());
}
void SoftCPU::CBW(const X86::Instruction&)
{
set_ah((al() & 0x80) ? 0xff : 0x00);
}
void SoftCPU::CDQ(const X86::Instruction&)
{
if (eax() & 0x80000000)
set_edx(0xffffffff);
else
set_edx(0x00000000);
}
void SoftCPU::CLC(const X86::Instruction&)
{
set_cf(false);
}
void SoftCPU::CLD(const X86::Instruction&)
{
set_df(false);
}
void SoftCPU::CLI(const X86::Instruction&) { TODO(); }
void SoftCPU::CLTS(const X86::Instruction&) { TODO(); }
void SoftCPU::CMC(const X86::Instruction&) { TODO(); }
void SoftCPU::CMOVcc_reg16_RM16(const X86::Instruction& insn)
{
if (evaluate_condition(insn.cc()))
gpr16(insn.reg16()) = insn.modrm().read16(*this, insn);
}
void SoftCPU::CMOVcc_reg32_RM32(const X86::Instruction& insn)
{
if (evaluate_condition(insn.cc()))
gpr32(insn.reg32()) = insn.modrm().read32(*this, insn);
}
template<typename T>
ALWAYS_INLINE static void do_cmps(SoftCPU& cpu, const X86::Instruction& insn)
{
auto src_segment = cpu.segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS));
cpu.do_once_or_repeat<true>(insn, [&] {
auto src = cpu.read_memory<T>({ src_segment, cpu.source_index(insn.a32()) });
auto dest = cpu.read_memory<T>({ cpu.es(), cpu.destination_index(insn.a32()) });
op_sub(cpu, dest, src);
cpu.step_source_index(insn.a32(), sizeof(T));
cpu.step_destination_index(insn.a32(), sizeof(T));
});
}
void SoftCPU::CMPSB(const X86::Instruction& insn)
{
do_cmps<u8>(*this, insn);
}
void SoftCPU::CMPSD(const X86::Instruction& insn)
{
do_cmps<u32>(*this, insn);
}
void SoftCPU::CMPSW(const X86::Instruction& insn)
{
do_cmps<u16>(*this, insn);
}
void SoftCPU::CMPXCHG_RM16_reg16(const X86::Instruction& insn)
{
auto current = insn.modrm().read16(*this, insn);
if (current == ax()) {
set_zf(true);
insn.modrm().write16(*this, insn, gpr16(insn.reg16()));
} else {
set_zf(false);
set_eax(current);
}
}
void SoftCPU::CMPXCHG_RM32_reg32(const X86::Instruction& insn)
{
auto current = insn.modrm().read32(*this, insn);
if (current == eax()) {
set_zf(true);
insn.modrm().write32(*this, insn, gpr32(insn.reg32()));
} else {
set_zf(false);
set_eax(current);
}
}
void SoftCPU::CMPXCHG_RM8_reg8(const X86::Instruction& insn)
{
auto current = insn.modrm().read8(*this, insn);
if (current == al()) {
set_zf(true);
insn.modrm().write8(*this, insn, gpr8(insn.reg8()));
} else {
set_zf(false);
set_eax(current);
}
}
void SoftCPU::CPUID(const X86::Instruction&) { TODO(); }
void SoftCPU::CWD(const X86::Instruction&)
{
set_dx((ax() & 0x8000) ? 0xffff : 0x0000);
}
void SoftCPU::CWDE(const X86::Instruction&)
{
set_eax(sign_extended_to<u32>(ax()));
}
void SoftCPU::DAA(const X86::Instruction&) { TODO(); }
void SoftCPU::DAS(const X86::Instruction&) { TODO(); }
void SoftCPU::DEC_RM16(const X86::Instruction& insn)
{
insn.modrm().write16(*this, insn, op_dec(*this, insn.modrm().read16(*this, insn)));
}
void SoftCPU::DEC_RM32(const X86::Instruction& insn)
{
insn.modrm().write32(*this, insn, op_dec(*this, insn.modrm().read32(*this, insn)));
}
void SoftCPU::DEC_RM8(const X86::Instruction& insn)
{
insn.modrm().write8(*this, insn, op_dec(*this, insn.modrm().read8(*this, insn)));
}
void SoftCPU::DEC_reg16(const X86::Instruction& insn)
{
gpr16(insn.reg16()) = op_dec(*this, gpr16(insn.reg16()));
}
void SoftCPU::DEC_reg32(const X86::Instruction& insn)
{
gpr32(insn.reg32()) = op_dec(*this, gpr32(insn.reg32()));
}
void SoftCPU::DIV_RM16(const X86::Instruction&) { TODO(); }
void SoftCPU::DIV_RM32(const X86::Instruction& insn)
{
auto divisor = insn.modrm().read32(*this, insn);
if (divisor == 0) {
warn() << "Divide by zero";
TODO();
}
u64 dividend = ((u64)edx() << 32) | eax();
auto result = dividend / divisor;
if (result > NumericLimits<u32>::max()) {
warn() << "Divide overflow";
TODO();
}
set_eax(result);
set_edx(dividend % divisor);
}
void SoftCPU::DIV_RM8(const X86::Instruction&) { TODO(); }
void SoftCPU::ENTER16(const X86::Instruction&) { TODO(); }
void SoftCPU::ENTER32(const X86::Instruction&) { TODO(); }
void SoftCPU::ESCAPE(const X86::Instruction&)
{
dbg() << "FIXME: x87 floating-point support";
m_emulator.dump_backtrace();
TODO();
}
void SoftCPU::HLT(const X86::Instruction&) { TODO(); }
void SoftCPU::IDIV_RM16(const X86::Instruction&) { TODO(); }
void SoftCPU::IDIV_RM32(const X86::Instruction& insn)
{
auto divisor = insn.modrm().read32(*this, insn);
if (divisor == 0) {
warn() << "Divide by zero";
TODO();
}
i64 dividend = ((i64)edx() << 32) | eax();
auto result = dividend / divisor;
if (result > NumericLimits<i32>::max()) {
warn() << "Divide overflow";
TODO();
}
set_eax(result);
set_edx(dividend % divisor);
}
void SoftCPU::IDIV_RM8(const X86::Instruction&) { TODO(); }
void SoftCPU::IMUL_RM16(const X86::Instruction&) { TODO(); }
void SoftCPU::IMUL_RM32(const X86::Instruction& insn)
{
i64 value = op_imul<i64>(*this, insn.modrm().read32(*this, insn), eax());
set_edx(value >> 32);
set_eax(value & 0xffffffff);
}
void SoftCPU::IMUL_RM8(const X86::Instruction& insn)
{
set_ax(op_imul<i16>(*this, insn.modrm().read8(*this, insn), al()));
}
void SoftCPU::IMUL_reg16_RM16(const X86::Instruction& insn)
{
gpr16(insn.reg16()) = op_imul<i16>(*this, gpr16(insn.reg16()), insn.modrm().read16(*this, insn));
}
void SoftCPU::IMUL_reg16_RM16_imm16(const X86::Instruction& insn)
{
gpr16(insn.reg16()) = op_imul<i16>(*this, insn.modrm().read16(*this, insn), insn.imm16());
}
void SoftCPU::IMUL_reg16_RM16_imm8(const X86::Instruction& insn)
{
gpr16(insn.reg16()) = op_imul<i16>(*this, insn.modrm().read16(*this, insn), sign_extended_to<i16>(insn.imm8()));
}
void SoftCPU::IMUL_reg32_RM32(const X86::Instruction& insn)
{
gpr32(insn.reg32()) = op_imul<i32>(*this, gpr32(insn.reg32()), insn.modrm().read32(*this, insn));
}
void SoftCPU::IMUL_reg32_RM32_imm32(const X86::Instruction& insn)
{
gpr32(insn.reg32()) = op_imul<i32>(*this, insn.modrm().read32(*this, insn), insn.imm32());
}
void SoftCPU::IMUL_reg32_RM32_imm8(const X86::Instruction& insn)
{
gpr32(insn.reg32()) = op_imul<i32>(*this, insn.modrm().read32(*this, insn), sign_extended_to<i32>(insn.imm8()));
}
void SoftCPU::INC_RM16(const X86::Instruction& insn)
{
insn.modrm().write16(*this, insn, op_inc(*this, insn.modrm().read16(*this, insn)));
}
void SoftCPU::INC_RM32(const X86::Instruction& insn)
{
insn.modrm().write32(*this, insn, op_inc(*this, insn.modrm().read32(*this, insn)));
}
void SoftCPU::INC_RM8(const X86::Instruction& insn)
{
insn.modrm().write8(*this, insn, op_inc(*this, insn.modrm().read8(*this, insn)));
}
void SoftCPU::INC_reg16(const X86::Instruction& insn)
{
gpr16(insn.reg16()) = op_inc(*this, gpr16(insn.reg16()));
}
void SoftCPU::INC_reg32(const X86::Instruction& insn)
{
gpr32(insn.reg32()) = op_inc(*this, gpr32(insn.reg32()));
}
void SoftCPU::INSB(const X86::Instruction&) { TODO(); }
void SoftCPU::INSD(const X86::Instruction&) { TODO(); }
void SoftCPU::INSW(const X86::Instruction&) { TODO(); }
void SoftCPU::INT3(const X86::Instruction&) { TODO(); }
void SoftCPU::INTO(const X86::Instruction&) { TODO(); }
void SoftCPU::INT_imm8(const X86::Instruction& insn)
{
ASSERT(insn.imm8() == 0x82);
set_eax(m_emulator.virt_syscall(eax(), edx(), ecx(), ebx()));
}
void SoftCPU::INVLPG(const X86::Instruction&) { TODO(); }
void SoftCPU::IN_AL_DX(const X86::Instruction&) { TODO(); }
void SoftCPU::IN_AL_imm8(const X86::Instruction&) { TODO(); }
void SoftCPU::IN_AX_DX(const X86::Instruction&) { TODO(); }
void SoftCPU::IN_AX_imm8(const X86::Instruction&) { TODO(); }
void SoftCPU::IN_EAX_DX(const X86::Instruction&) { TODO(); }
void SoftCPU::IN_EAX_imm8(const X86::Instruction&) { TODO(); }
void SoftCPU::IRET(const X86::Instruction&) { TODO(); }
void SoftCPU::JCXZ_imm8(const X86::Instruction& insn)
{
if ((insn.a32() && ecx() == 0) || (!insn.a32() && cx() == 0))
set_eip(eip() + (i8)insn.imm8());
}
void SoftCPU::JMP_FAR_mem16(const X86::Instruction&) { TODO(); }
void SoftCPU::JMP_FAR_mem32(const X86::Instruction&) { TODO(); }
void SoftCPU::JMP_RM16(const X86::Instruction&) { TODO(); }
void SoftCPU::JMP_RM32(const X86::Instruction& insn)
{
set_eip(insn.modrm().read32(*this, insn));
}
void SoftCPU::JMP_imm16(const X86::Instruction& insn)
{
set_eip(eip() + (i16)insn.imm16());
}
void SoftCPU::JMP_imm16_imm16(const X86::Instruction&) { TODO(); }
void SoftCPU::JMP_imm16_imm32(const X86::Instruction&) { TODO(); }
void SoftCPU::JMP_imm32(const X86::Instruction& insn)
{
set_eip(eip() + (i32)insn.imm32());
}
void SoftCPU::JMP_short_imm8(const X86::Instruction& insn)
{
set_eip(eip() + (i8)insn.imm8());
}
void SoftCPU::Jcc_NEAR_imm(const X86::Instruction& insn)
{
if (evaluate_condition(insn.cc()))
set_eip(eip() + (i32)insn.imm32());
}
void SoftCPU::Jcc_imm8(const X86::Instruction& insn)
{
if (evaluate_condition(insn.cc()))
set_eip(eip() + (i8)insn.imm8());
}
void SoftCPU::LAHF(const X86::Instruction&) { TODO(); }
void SoftCPU::LAR_reg16_RM16(const X86::Instruction&) { TODO(); }
void SoftCPU::LAR_reg32_RM32(const X86::Instruction&) { TODO(); }
void SoftCPU::LDS_reg16_mem16(const X86::Instruction&) { TODO(); }
void SoftCPU::LDS_reg32_mem32(const X86::Instruction&) { TODO(); }
void SoftCPU::LEAVE16(const X86::Instruction&) { TODO(); }
void SoftCPU::LEAVE32(const X86::Instruction&)
{
u32 new_ebp = read_memory32({ ss(), ebp() });
set_esp(ebp() + 4);
set_ebp(new_ebp);
}
void SoftCPU::LEA_reg16_mem16(const X86::Instruction& insn)
{
gpr16(insn.reg16()) = insn.modrm().resolve(*this, insn).offset();
}
void SoftCPU::LEA_reg32_mem32(const X86::Instruction& insn)
{
gpr32(insn.reg32()) = insn.modrm().resolve(*this, insn).offset();
}
void SoftCPU::LES_reg16_mem16(const X86::Instruction&) { TODO(); }
void SoftCPU::LES_reg32_mem32(const X86::Instruction&) { TODO(); }
void SoftCPU::LFS_reg16_mem16(const X86::Instruction&) { TODO(); }
void SoftCPU::LFS_reg32_mem32(const X86::Instruction&) { TODO(); }
void SoftCPU::LGDT(const X86::Instruction&) { TODO(); }
void SoftCPU::LGS_reg16_mem16(const X86::Instruction&) { TODO(); }
void SoftCPU::LGS_reg32_mem32(const X86::Instruction&) { TODO(); }
void SoftCPU::LIDT(const X86::Instruction&) { TODO(); }
void SoftCPU::LLDT_RM16(const X86::Instruction&) { TODO(); }
void SoftCPU::LMSW_RM16(const X86::Instruction&) { TODO(); }
void SoftCPU::LODSB(const X86::Instruction&) { TODO(); }
void SoftCPU::LODSD(const X86::Instruction&) { TODO(); }
void SoftCPU::LODSW(const X86::Instruction&) { TODO(); }
void SoftCPU::LOOPNZ_imm8(const X86::Instruction& insn)
{
if (insn.a32()) {
set_ecx(ecx() - 1);
if (ecx() != 0 && !zf())
set_eip(eip() + (i8)insn.imm8());
} else {
set_cx(cx() - 1);
if (cx() != 0 && !zf())
set_eip(eip() + (i8)insn.imm8());
}
}
void SoftCPU::LOOPZ_imm8(const X86::Instruction& insn)
{
if (insn.a32()) {
set_ecx(ecx() - 1);
if (ecx() != 0 && zf())
set_eip(eip() + (i8)insn.imm8());
} else {
set_cx(cx() - 1);
if (cx() != 0 && zf())
set_eip(eip() + (i8)insn.imm8());
}
}
void SoftCPU::LOOP_imm8(const X86::Instruction& insn)
{
if (insn.a32()) {
set_ecx(ecx() - 1);
if (ecx() != 0)
set_eip(eip() + (i8)insn.imm8());
} else {
set_cx(cx() - 1);
if (cx() != 0)
set_eip(eip() + (i8)insn.imm8());
}
}
void SoftCPU::LSL_reg16_RM16(const X86::Instruction&) { TODO(); }
void SoftCPU::LSL_reg32_RM32(const X86::Instruction&) { TODO(); }
void SoftCPU::LSS_reg16_mem16(const X86::Instruction&) { TODO(); }
void SoftCPU::LSS_reg32_mem32(const X86::Instruction&) { TODO(); }
void SoftCPU::LTR_RM16(const X86::Instruction&) { TODO(); }
void SoftCPU::MOVSB(const X86::Instruction& insn)
{
auto src_segment = segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS));
if (insn.has_address_size_override_prefix()) {
do_once_or_repeat<false>(insn, [&] {
auto src = read_memory8({ src_segment, si() });
write_memory8({ es(), di() }, src);
set_di(di() + (df() ? -1 : 1));
set_si(si() + (df() ? -1 : 1));
});
} else {
do_once_or_repeat<false>(insn, [&] {
auto src = read_memory8({ src_segment, esi() });
write_memory8({ es(), edi() }, src);
set_edi(edi() + (df() ? -1 : 1));
set_esi(esi() + (df() ? -1 : 1));
});
}
}
void SoftCPU::MOVSD(const X86::Instruction& insn)
{
auto src_segment = segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS));
if (insn.has_address_size_override_prefix()) {
do_once_or_repeat<false>(insn, [&] {
auto src = read_memory32({ src_segment, si() });
write_memory32({ es(), di() }, src);
set_di(di() + (df() ? -4 : 4));
set_si(si() + (df() ? -4 : 4));
});
} else {
do_once_or_repeat<false>(insn, [&] {
auto src = read_memory32({ src_segment, esi() });
write_memory32({ es(), edi() }, src);
set_edi(edi() + (df() ? -4 : 4));
set_esi(esi() + (df() ? -4 : 4));
});
}
}
void SoftCPU::MOVSW(const X86::Instruction& insn)
{
auto src_segment = segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS));
if (insn.has_address_size_override_prefix()) {
do_once_or_repeat<false>(insn, [&] {
auto src = read_memory16({ src_segment, si() });
write_memory16({ es(), di() }, src);
set_di(di() + (df() ? -2 : 2));
set_si(si() + (df() ? -2 : 2));
});
} else {
do_once_or_repeat<false>(insn, [&] {
auto src = read_memory16({ src_segment, esi() });
write_memory16({ es(), edi() }, src);
set_edi(edi() + (df() ? -2 : 2));
set_esi(esi() + (df() ? -2 : 2));
});
}
}
void SoftCPU::MOVSX_reg16_RM8(const X86::Instruction& insn)
{
gpr16(insn.reg16()) = sign_extended_to<u16>(insn.modrm().read8(*this, insn));
}
void SoftCPU::MOVSX_reg32_RM16(const X86::Instruction& insn)
{
gpr32(insn.reg32()) = sign_extended_to<u32>(insn.modrm().read16(*this, insn));
}
void SoftCPU::MOVSX_reg32_RM8(const X86::Instruction& insn)
{
gpr32(insn.reg32()) = sign_extended_to<u32>(insn.modrm().read8(*this, insn));
}
void SoftCPU::MOVZX_reg16_RM8(const X86::Instruction& insn)
{
gpr16(insn.reg16()) = insn.modrm().read8(*this, insn);
}
void SoftCPU::MOVZX_reg32_RM16(const X86::Instruction& insn)
{
gpr32(insn.reg32()) = insn.modrm().read16(*this, insn);
}
void SoftCPU::MOVZX_reg32_RM8(const X86::Instruction& insn)
{
gpr32(insn.reg32()) = insn.modrm().read8(*this, insn);
}
void SoftCPU::MOV_AL_moff8(const X86::Instruction& insn)
{
set_al(read_memory8({ segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)), insn.imm_address() }));
}
void SoftCPU::MOV_AX_moff16(const X86::Instruction& insn)
{
set_ax(read_memory16({ segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)), insn.imm_address() }));
}
void SoftCPU::MOV_CR_reg32(const X86::Instruction&) { TODO(); }
void SoftCPU::MOV_DR_reg32(const X86::Instruction&) { TODO(); }
void SoftCPU::MOV_EAX_moff32(const X86::Instruction& insn)
{
set_eax(read_memory32({ segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)), insn.imm_address() }));
}
void SoftCPU::MOV_RM16_imm16(const X86::Instruction& insn)
{
insn.modrm().write16(*this, insn, insn.imm16());
}
void SoftCPU::MOV_RM16_reg16(const X86::Instruction& insn)
{
insn.modrm().write16(*this, insn, gpr16(insn.reg16()));
}
void SoftCPU::MOV_RM16_seg(const X86::Instruction&) { TODO(); }
void SoftCPU::MOV_RM32_imm32(const X86::Instruction& insn)
{
insn.modrm().write32(*this, insn, insn.imm32());
}
void SoftCPU::MOV_RM32_reg32(const X86::Instruction& insn)
{
insn.modrm().write32(*this, insn, gpr32(insn.reg32()));
}
void SoftCPU::MOV_RM8_imm8(const X86::Instruction& insn)
{
insn.modrm().write8(*this, insn, insn.imm8());
}
void SoftCPU::MOV_RM8_reg8(const X86::Instruction& insn)
{
insn.modrm().write8(*this, insn, gpr8(insn.reg8()));
}
void SoftCPU::MOV_moff16_AX(const X86::Instruction& insn)
{
write_memory16({ segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)), insn.imm_address() }, ax());
}
void SoftCPU::MOV_moff32_EAX(const X86::Instruction& insn)
{
write_memory32({ segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)), insn.imm_address() }, eax());
}
void SoftCPU::MOV_moff8_AL(const X86::Instruction& insn)
{
write_memory8({ segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)), insn.imm_address() }, al());
}
void SoftCPU::MOV_reg16_RM16(const X86::Instruction& insn)
{
gpr16(insn.reg16()) = insn.modrm().read16(*this, insn);
}
void SoftCPU::MOV_reg16_imm16(const X86::Instruction& insn)
{
gpr16(insn.reg16()) = insn.imm16();
}
void SoftCPU::MOV_reg32_CR(const X86::Instruction&) { TODO(); }
void SoftCPU::MOV_reg32_DR(const X86::Instruction&) { TODO(); }
void SoftCPU::MOV_reg32_RM32(const X86::Instruction& insn)
{
gpr32(insn.reg32()) = insn.modrm().read32(*this, insn);
}
void SoftCPU::MOV_reg32_imm32(const X86::Instruction& insn)
{
gpr32(insn.reg32()) = insn.imm32();
}
void SoftCPU::MOV_reg8_RM8(const X86::Instruction& insn)
{
gpr8(insn.reg8()) = insn.modrm().read8(*this, insn);
}
void SoftCPU::MOV_reg8_imm8(const X86::Instruction& insn)
{
gpr8(insn.reg8()) = insn.imm8();
}
void SoftCPU::MOV_seg_RM16(const X86::Instruction&) { TODO(); }
void SoftCPU::MOV_seg_RM32(const X86::Instruction&) { TODO(); }
void SoftCPU::MUL_RM16(const X86::Instruction&) { TODO(); }
void SoftCPU::MUL_RM32(const X86::Instruction& insn)
{
u64 result = (u64)eax() * (u64)insn.modrm().read32(*this, insn);
set_eax(result & 0xffffffff);
set_edx(result >> 32);
set_cf(edx() != 0);
set_of(edx() != 0);
}
void SoftCPU::MUL_RM8(const X86::Instruction&) { TODO(); }
void SoftCPU::NEG_RM16(const X86::Instruction& insn)
{
insn.modrm().write16(*this, insn, op_sub<u16>(*this, 0, insn.modrm().read16(*this, insn)));
}
void SoftCPU::NEG_RM32(const X86::Instruction& insn)
{
insn.modrm().write32(*this, insn, op_sub<u32>(*this, 0, insn.modrm().read32(*this, insn)));
}
void SoftCPU::NEG_RM8(const X86::Instruction& insn)
{
insn.modrm().write8(*this, insn, op_sub<u8>(*this, 0, insn.modrm().read8(*this, insn)));
}
void SoftCPU::NOP(const X86::Instruction&)
{
}
void SoftCPU::NOT_RM16(const X86::Instruction& insn)
{
insn.modrm().write16(*this, insn, ~insn.modrm().read16(*this, insn));
}
void SoftCPU::NOT_RM32(const X86::Instruction& insn)
{
insn.modrm().write32(*this, insn, ~insn.modrm().read32(*this, insn));
}
void SoftCPU::NOT_RM8(const X86::Instruction& insn)
{
insn.modrm().write8(*this, insn, ~insn.modrm().read8(*this, insn));
}
void SoftCPU::OUTSB(const X86::Instruction&) { TODO(); }
void SoftCPU::OUTSD(const X86::Instruction&) { TODO(); }
void SoftCPU::OUTSW(const X86::Instruction&) { TODO(); }
void SoftCPU::OUT_DX_AL(const X86::Instruction&) { TODO(); }
void SoftCPU::OUT_DX_AX(const X86::Instruction&) { TODO(); }
void SoftCPU::OUT_DX_EAX(const X86::Instruction&) { TODO(); }
void SoftCPU::OUT_imm8_AL(const X86::Instruction&) { TODO(); }
void SoftCPU::OUT_imm8_AX(const X86::Instruction&) { TODO(); }
void SoftCPU::OUT_imm8_EAX(const X86::Instruction&) { TODO(); }
void SoftCPU::PADDB_mm1_mm2m64(const X86::Instruction&) { TODO(); }
void SoftCPU::PADDW_mm1_mm2m64(const X86::Instruction&) { TODO(); }
void SoftCPU::PADDD_mm1_mm2m64(const X86::Instruction&) { TODO(); }
void SoftCPU::POPA(const X86::Instruction&) { TODO(); }
void SoftCPU::POPAD(const X86::Instruction&) { TODO(); }
void SoftCPU::POPF(const X86::Instruction&) { TODO(); }
void SoftCPU::POPFD(const X86::Instruction&)
{
m_eflags &= ~0x00fcffff;
m_eflags |= pop32() & 0x00fcffff;
}
void SoftCPU::POP_DS(const X86::Instruction&) { TODO(); }
void SoftCPU::POP_ES(const X86::Instruction&) { TODO(); }
void SoftCPU::POP_FS(const X86::Instruction&) { TODO(); }
void SoftCPU::POP_GS(const X86::Instruction&) { TODO(); }
void SoftCPU::POP_RM16(const X86::Instruction& insn)
{
insn.modrm().write16(*this, insn, pop16());
}
void SoftCPU::POP_RM32(const X86::Instruction& insn)
{
insn.modrm().write32(*this, insn, pop32());
}
void SoftCPU::POP_SS(const X86::Instruction&) { TODO(); }
void SoftCPU::POP_reg16(const X86::Instruction& insn)
{
gpr16(insn.reg16()) = pop16();
}
void SoftCPU::POP_reg32(const X86::Instruction& insn)
{
gpr32(insn.reg32()) = pop32();
}
void SoftCPU::PUSHA(const X86::Instruction&) { TODO(); }
void SoftCPU::PUSHAD(const X86::Instruction&) { TODO(); }
void SoftCPU::PUSHF(const X86::Instruction&) { TODO(); }
void SoftCPU::PUSHFD(const X86::Instruction&)
{
push32(m_eflags & 0x00fcffff);
}
void SoftCPU::PUSH_CS(const X86::Instruction&) { TODO(); }
void SoftCPU::PUSH_DS(const X86::Instruction&) { TODO(); }
void SoftCPU::PUSH_ES(const X86::Instruction&) { TODO(); }
void SoftCPU::PUSH_FS(const X86::Instruction&) { TODO(); }
void SoftCPU::PUSH_GS(const X86::Instruction&) { TODO(); }
void SoftCPU::PUSH_RM16(const X86::Instruction&) { TODO(); }
void SoftCPU::PUSH_RM32(const X86::Instruction& insn)
{
push32(insn.modrm().read32(*this, insn));
}
void SoftCPU::PUSH_SP_8086_80186(const X86::Instruction&) { TODO(); }
void SoftCPU::PUSH_SS(const X86::Instruction&) { TODO(); }
void SoftCPU::PUSH_imm16(const X86::Instruction& insn)
{
push16(insn.imm16());
}
void SoftCPU::PUSH_imm32(const X86::Instruction& insn)
{
push32(insn.imm32());
}
void SoftCPU::PUSH_imm8(const X86::Instruction& insn)
{
ASSERT(!insn.has_operand_size_override_prefix());
push32(sign_extended_to<i32>(insn.imm8()));
}
void SoftCPU::PUSH_reg16(const X86::Instruction& insn)
{
push16(gpr16(insn.reg16()));
}
void SoftCPU::PUSH_reg32(const X86::Instruction& insn)
{
push32(gpr32(insn.reg32()));
if (m_secret_handshake_state == 2) {
m_secret_data[0] = gpr32(insn.reg32());
++m_secret_handshake_state;
} else if (m_secret_handshake_state == 3) {
m_secret_data[1] = gpr32(insn.reg32());
++m_secret_handshake_state;
} else if (m_secret_handshake_state == 4) {
m_secret_data[2] = gpr32(insn.reg32());
m_secret_handshake_state = 0;
did_receive_secret_data();
}
}
template<typename T, bool cf>
ALWAYS_INLINE static T op_rcl_impl(SoftCPU& cpu, T data, u8 steps)
{
if (steps == 0)
return data;
u32 result = 0;
u32 new_flags = 0;
if constexpr (cf)
asm volatile("stc");
else
asm volatile("clc");
if constexpr (sizeof(T) == 4) {
asm volatile("rcll %%cl, %%eax\n"
: "=a"(result)
: "a"(data), "c"(steps));
} else if constexpr (sizeof(T) == 2) {
asm volatile("rclw %%cl, %%ax\n"
: "=a"(result)
: "a"(data), "c"(steps));
} else if constexpr (sizeof(T) == 1) {
asm volatile("rclb %%cl, %%al\n"
: "=a"(result)
: "a"(data), "c"(steps));
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oc(new_flags);
return result;
}
template<typename T>
ALWAYS_INLINE static T op_rcl(SoftCPU& cpu, T data, u8 steps)
{
if (cpu.cf())
return op_rcl_impl<T, true>(cpu, data, steps);
return op_rcl_impl<T, false>(cpu, data, steps);
}
DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(RCL, op_rcl)
template<typename T, bool cf>
ALWAYS_INLINE static T op_rcr_impl(SoftCPU& cpu, T data, u8 steps)
{
if (steps == 0)
return data;
u32 result = 0;
u32 new_flags = 0;
if constexpr (cf)
asm volatile("stc");
else
asm volatile("clc");
if constexpr (sizeof(T) == 4) {
asm volatile("rcrl %%cl, %%eax\n"
: "=a"(result)
: "a"(data), "c"(steps));
} else if constexpr (sizeof(T) == 2) {
asm volatile("rcrw %%cl, %%ax\n"
: "=a"(result)
: "a"(data), "c"(steps));
} else if constexpr (sizeof(T) == 1) {
asm volatile("rcrb %%cl, %%al\n"
: "=a"(result)
: "a"(data), "c"(steps));
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oc(new_flags);
return result;
}
template<typename T>
ALWAYS_INLINE static T op_rcr(SoftCPU& cpu, T data, u8 steps)
{
if (cpu.cf())
return op_rcr_impl<T, true>(cpu, data, steps);
return op_rcr_impl<T, false>(cpu, data, steps);
}
DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(RCR, op_rcr)
void SoftCPU::RDTSC(const X86::Instruction&) { TODO(); }
void SoftCPU::RET(const X86::Instruction& insn)
{
ASSERT(!insn.has_operand_size_override_prefix());
set_eip(pop32());
}
void SoftCPU::RETF(const X86::Instruction&) { TODO(); }
void SoftCPU::RETF_imm16(const X86::Instruction&) { TODO(); }
void SoftCPU::RET_imm16(const X86::Instruction& insn)
{
ASSERT(!insn.has_operand_size_override_prefix());
set_eip(pop32());
set_esp(esp() + insn.imm16());
}
template<typename T>
ALWAYS_INLINE static T op_rol(SoftCPU& cpu, T data, u8 steps)
{
if (steps == 0)
return data;
u32 result = 0;
u32 new_flags = 0;
if constexpr (sizeof(T) == 4) {
asm volatile("roll %%cl, %%eax\n"
: "=a"(result)
: "a"(data), "c"(steps));
} else if constexpr (sizeof(T) == 2) {
asm volatile("rolw %%cl, %%ax\n"
: "=a"(result)
: "a"(data), "c"(steps));
} else if constexpr (sizeof(T) == 1) {
asm volatile("rolb %%cl, %%al\n"
: "=a"(result)
: "a"(data), "c"(steps));
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oc(new_flags);
return result;
}
DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(ROL, op_rol)
template<typename T>
ALWAYS_INLINE static T op_ror(SoftCPU& cpu, T data, u8 steps)
{
if (steps == 0)
return data;
u32 result = 0;
u32 new_flags = 0;
if constexpr (sizeof(T) == 4) {
asm volatile("rorl %%cl, %%eax\n"
: "=a"(result)
: "a"(data), "c"(steps));
} else if constexpr (sizeof(T) == 2) {
asm volatile("rorw %%cl, %%ax\n"
: "=a"(result)
: "a"(data), "c"(steps));
} else if constexpr (sizeof(T) == 1) {
asm volatile("rorb %%cl, %%al\n"
: "=a"(result)
: "a"(data), "c"(steps));
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oc(new_flags);
return result;
}
DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(ROR, op_ror)
void SoftCPU::SAHF(const X86::Instruction&) { TODO(); }
void SoftCPU::SALC(const X86::Instruction&)
{
set_al(cf() ? 0xff : 0x00);
if (m_secret_handshake_state < 2)
++m_secret_handshake_state;
else
m_secret_handshake_state = 0;
}
template<typename T>
static T op_sar(SoftCPU& cpu, T data, u8 steps)
{
if (steps == 0)
return data;
u32 result = 0;
u32 new_flags = 0;
if constexpr (sizeof(T) == 4) {
asm volatile("sarl %%cl, %%eax\n"
: "=a"(result)
: "a"(data), "c"(steps));
} else if constexpr (sizeof(T) == 2) {
asm volatile("sarw %%cl, %%ax\n"
: "=a"(result)
: "a"(data), "c"(steps));
} else if constexpr (sizeof(T) == 1) {
asm volatile("sarb %%cl, %%al\n"
: "=a"(result)
: "a"(data), "c"(steps));
}
asm volatile(
"pushf\n"
"pop %%ebx"
: "=b"(new_flags));
cpu.set_flags_oszapc(new_flags);
return result;
}
DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(SAR, op_sar)
void SoftCPU::SCASB(const X86::Instruction&) { TODO(); }
void SoftCPU::SCASD(const X86::Instruction&) { TODO(); }
void SoftCPU::SCASW(const X86::Instruction&) { TODO(); }
void SoftCPU::SETcc_RM8(const X86::Instruction& insn)
{
insn.modrm().write8(*this, insn, evaluate_condition(insn.cc()));
}
void SoftCPU::SGDT(const X86::Instruction&) { TODO(); }
void SoftCPU::SHLD_RM16_reg16_CL(const X86::Instruction& insn)
{
insn.modrm().write16(*this, insn, op_shld(*this, insn.modrm().read16(*this, insn), gpr16(insn.reg16()), cl()));
}
void SoftCPU::SHLD_RM16_reg16_imm8(const X86::Instruction& insn)
{
insn.modrm().write16(*this, insn, op_shld(*this, insn.modrm().read16(*this, insn), gpr16(insn.reg16()), insn.imm8()));
}
void SoftCPU::SHLD_RM32_reg32_CL(const X86::Instruction& insn)
{
insn.modrm().write32(*this, insn, op_shld(*this, insn.modrm().read32(*this, insn), gpr32(insn.reg32()), cl()));
}
void SoftCPU::SHLD_RM32_reg32_imm8(const X86::Instruction& insn)
{
insn.modrm().write32(*this, insn, op_shld(*this, insn.modrm().read32(*this, insn), gpr32(insn.reg32()), insn.imm8()));
}
DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(SHL, op_shl)
void SoftCPU::SHRD_RM16_reg16_CL(const X86::Instruction& insn)
{
insn.modrm().write16(*this, insn, op_shrd(*this, insn.modrm().read16(*this, insn), gpr16(insn.reg16()), cl()));
}
void SoftCPU::SHRD_RM16_reg16_imm8(const X86::Instruction& insn)
{
insn.modrm().write16(*this, insn, op_shrd(*this, insn.modrm().read16(*this, insn), gpr16(insn.reg16()), insn.imm8()));
}
void SoftCPU::SHRD_RM32_reg32_CL(const X86::Instruction& insn)
{
insn.modrm().write32(*this, insn, op_shrd(*this, insn.modrm().read32(*this, insn), gpr32(insn.reg32()), cl()));
}
void SoftCPU::SHRD_RM32_reg32_imm8(const X86::Instruction& insn)
{
insn.modrm().write32(*this, insn, op_shrd(*this, insn.modrm().read32(*this, insn), gpr32(insn.reg32()), insn.imm8()));
}
DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(SHR, op_shr)
void SoftCPU::SIDT(const X86::Instruction&) { TODO(); }
void SoftCPU::SLDT_RM16(const X86::Instruction&) { TODO(); }
void SoftCPU::SMSW_RM16(const X86::Instruction&) { TODO(); }
void SoftCPU::STC(const X86::Instruction&)
{
set_cf(true);
}
void SoftCPU::STD(const X86::Instruction&)
{
set_df(true);
}
void SoftCPU::STI(const X86::Instruction&) { TODO(); }
void SoftCPU::STOSB(const X86::Instruction& insn)
{
if (insn.has_address_size_override_prefix()) {
do_once_or_repeat<false>(insn, [&] {
write_memory8({ es(), di() }, al());
set_di(di() + (df() ? -1 : 1));
});
} else {
do_once_or_repeat<false>(insn, [&] {
write_memory8({ es(), edi() }, al());
set_edi(edi() + (df() ? -1 : 1));
});
}
}
void SoftCPU::STOSD(const X86::Instruction& insn)
{
if (insn.has_address_size_override_prefix()) {
do_once_or_repeat<false>(insn, [&] {
write_memory32({ es(), di() }, eax());
set_di(di() + (df() ? -4 : 4));
});
} else {
do_once_or_repeat<false>(insn, [&] {
write_memory32({ es(), edi() }, eax());
set_edi(edi() + (df() ? -4 : 4));
});
}
}
void SoftCPU::STOSW(const X86::Instruction& insn)
{
if (insn.has_address_size_override_prefix()) {
do_once_or_repeat<false>(insn, [&] {
write_memory16({ es(), di() }, ax());
set_di(di() + (df() ? -2 : 2));
});
} else {
do_once_or_repeat<false>(insn, [&] {
write_memory16({ es(), edi() }, ax());
set_edi(edi() + (df() ? -2 : 2));
});
}
}
void SoftCPU::STR_RM16(const X86::Instruction&) { TODO(); }
void SoftCPU::UD0(const X86::Instruction&) { TODO(); }
void SoftCPU::UD1(const X86::Instruction&) { TODO(); }
void SoftCPU::UD2(const X86::Instruction&) { TODO(); }
void SoftCPU::VERR_RM16(const X86::Instruction&) { TODO(); }
void SoftCPU::VERW_RM16(const X86::Instruction&) { TODO(); }
void SoftCPU::WAIT(const X86::Instruction&) { TODO(); }
void SoftCPU::WBINVD(const X86::Instruction&) { TODO(); }
void SoftCPU::XADD_RM16_reg16(const X86::Instruction& insn)
{
auto dest = insn.modrm().read16(*this, insn);
auto src = gpr16(insn.reg16());
auto result = op_add(*this, dest, src);
gpr16(insn.reg16()) = dest;
insn.modrm().write16(*this, insn, result);
}
void SoftCPU::XADD_RM32_reg32(const X86::Instruction& insn)
{
auto dest = insn.modrm().read32(*this, insn);
auto src = gpr32(insn.reg32());
auto result = op_add(*this, dest, src);
gpr32(insn.reg32()) = dest;
insn.modrm().write32(*this, insn, result);
}
void SoftCPU::XADD_RM8_reg8(const X86::Instruction& insn)
{
auto dest = insn.modrm().read8(*this, insn);
auto src = gpr8(insn.reg8());
auto result = op_add(*this, dest, src);
gpr8(insn.reg8()) = dest;
insn.modrm().write8(*this, insn, result);
}
void SoftCPU::XCHG_AX_reg16(const X86::Instruction& insn)
{
auto temp = gpr16(insn.reg16());
gpr16(insn.reg16()) = eax();
set_eax(temp);
}
void SoftCPU::XCHG_EAX_reg32(const X86::Instruction& insn)
{
auto temp = gpr32(insn.reg32());
gpr32(insn.reg32()) = eax();
set_eax(temp);
}
void SoftCPU::XCHG_reg16_RM16(const X86::Instruction& insn)
{
auto temp = insn.modrm().read16(*this, insn);
insn.modrm().write16(*this, insn, gpr16(insn.reg16()));
gpr16(insn.reg16()) = temp;
}
void SoftCPU::XCHG_reg32_RM32(const X86::Instruction& insn)
{
auto temp = insn.modrm().read32(*this, insn);
insn.modrm().write32(*this, insn, gpr32(insn.reg32()));
gpr32(insn.reg32()) = temp;
}
void SoftCPU::XCHG_reg8_RM8(const X86::Instruction& insn)
{
auto temp = insn.modrm().read8(*this, insn);
insn.modrm().write8(*this, insn, gpr8(insn.reg8()));
gpr8(insn.reg8()) = temp;
}
void SoftCPU::XLAT(const X86::Instruction& insn)
{
u32 offset = (insn.a32() ? ebx() : bx()) + al();
set_al(read_memory8({ segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)), offset }));
}
#define DEFINE_GENERIC_INSN_HANDLERS_PARTIAL(mnemonic, op, update_dest) \
void SoftCPU::mnemonic##_AL_imm8(const X86::Instruction& insn) { generic_AL_imm8<update_dest>(op<u8>, insn); } \
void SoftCPU::mnemonic##_AX_imm16(const X86::Instruction& insn) { generic_AX_imm16<update_dest>(op<u16>, insn); } \
void SoftCPU::mnemonic##_EAX_imm32(const X86::Instruction& insn) { generic_EAX_imm32<update_dest>(op<u32>, insn); } \
void SoftCPU::mnemonic##_RM16_imm16(const X86::Instruction& insn) { generic_RM16_imm16<update_dest>(op<u16>, insn); } \
void SoftCPU::mnemonic##_RM16_reg16(const X86::Instruction& insn) { generic_RM16_reg16<update_dest>(op<u16>, insn); } \
void SoftCPU::mnemonic##_RM32_imm32(const X86::Instruction& insn) { generic_RM32_imm32<update_dest>(op<u32>, insn); } \
void SoftCPU::mnemonic##_RM32_reg32(const X86::Instruction& insn) { generic_RM32_reg32<update_dest>(op<u32>, insn); } \
void SoftCPU::mnemonic##_RM8_imm8(const X86::Instruction& insn) { generic_RM8_imm8<update_dest>(op<u8>, insn); } \
void SoftCPU::mnemonic##_RM8_reg8(const X86::Instruction& insn) { generic_RM8_reg8<update_dest>(op<u8>, insn); }
#define DEFINE_GENERIC_INSN_HANDLERS(mnemonic, op, update_dest) \
DEFINE_GENERIC_INSN_HANDLERS_PARTIAL(mnemonic, op, update_dest) \
void SoftCPU::mnemonic##_RM16_imm8(const X86::Instruction& insn) { generic_RM16_imm8<update_dest>(op<u16>, insn); } \
void SoftCPU::mnemonic##_RM32_imm8(const X86::Instruction& insn) { generic_RM32_imm8<update_dest>(op<u32>, insn); } \
void SoftCPU::mnemonic##_reg16_RM16(const X86::Instruction& insn) { generic_reg16_RM16<update_dest>(op<u16>, insn); } \
void SoftCPU::mnemonic##_reg32_RM32(const X86::Instruction& insn) { generic_reg32_RM32<update_dest>(op<u32>, insn); } \
void SoftCPU::mnemonic##_reg8_RM8(const X86::Instruction& insn) { generic_reg8_RM8<update_dest>(op<u8>, insn); }
DEFINE_GENERIC_INSN_HANDLERS(XOR, op_xor, true)
DEFINE_GENERIC_INSN_HANDLERS(OR, op_or, true)
DEFINE_GENERIC_INSN_HANDLERS(ADD, op_add, true)
DEFINE_GENERIC_INSN_HANDLERS(ADC, op_adc, true)
DEFINE_GENERIC_INSN_HANDLERS(SUB, op_sub, true)
DEFINE_GENERIC_INSN_HANDLERS(SBB, op_sbb, true)
DEFINE_GENERIC_INSN_HANDLERS(AND, op_and, true)
DEFINE_GENERIC_INSN_HANDLERS(CMP, op_sub, false)
DEFINE_GENERIC_INSN_HANDLERS_PARTIAL(TEST, op_and, false)
void SoftCPU::MOVQ_mm1_mm2m64(const X86::Instruction&) { TODO(); }
void SoftCPU::EMMS(const X86::Instruction&) { TODO(); }
void SoftCPU::MOVQ_mm1_m64_mm2(const X86::Instruction&) { TODO(); }
void SoftCPU::wrap_0xC0(const X86::Instruction&) { TODO(); }
void SoftCPU::wrap_0xC1_16(const X86::Instruction&) { TODO(); }
void SoftCPU::wrap_0xC1_32(const X86::Instruction&) { TODO(); }
void SoftCPU::wrap_0xD0(const X86::Instruction&) { TODO(); }
void SoftCPU::wrap_0xD1_16(const X86::Instruction&) { TODO(); }
void SoftCPU::wrap_0xD1_32(const X86::Instruction&) { TODO(); }
void SoftCPU::wrap_0xD2(const X86::Instruction&) { TODO(); }
void SoftCPU::wrap_0xD3_16(const X86::Instruction&) { TODO(); }
void SoftCPU::wrap_0xD3_32(const X86::Instruction&) { TODO(); }
}