1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-19 15:15:08 +00:00
serenity/Userland/DevTools/UserspaceEmulator/MallocTracer.cpp
Daniel Bertalan 87ef2718bc UserspaceEmulator+LibC: Use sys$emuctl() to disable auditing in malloc
It was fragile to use the address of the body of the memory management
functions to disable memory auditing within them. Functions called from
these did not get exempted from the audits, so in some cases
UserspaceEmulator reported bogus heap buffer overflows.

Memory auditing did not work at all on Clang because when querying the
addresses, their offset was taken relative to the base of `.text` which
is not the first segment in the `R/RX/RW(RELRO)/RW(non-RELRO)` layout
produced by LLD.

Similarly to when setting metadata about the allocations, we now use the
`emuctl` system call to selectively suppress auditing when we reach
these functions. This ensures that functions called from `malloc` are
affected too, and no issues occur because of the inconsistency between
Clang and GCC memory layouts.
2021-08-14 18:42:14 +02:00

430 lines
16 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Tobias Christiansen <tobyase@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "MallocTracer.h"
#include "Emulator.h"
#include "MmapRegion.h"
#include <AK/Debug.h>
#include <AK/TemporaryChange.h>
#include <mallocdefs.h>
#include <string.h>
#include <unistd.h>
namespace UserspaceEmulator {
MallocTracer::MallocTracer(Emulator& emulator)
: m_emulator(emulator)
{
}
template<typename Callback>
inline void MallocTracer::for_each_mallocation(Callback callback) const
{
m_emulator.mmu().for_each_region([&](auto& region) {
if (is<MmapRegion>(region) && static_cast<const MmapRegion&>(region).is_malloc_block()) {
auto* malloc_data = static_cast<MmapRegion&>(region).malloc_metadata();
for (auto& mallocation : malloc_data->mallocations) {
if (mallocation.used && callback(mallocation) == IterationDecision::Break)
return IterationDecision::Break;
}
}
return IterationDecision::Continue;
});
}
void MallocTracer::update_metadata(MmapRegion& mmap_region, size_t chunk_size)
{
mmap_region.set_malloc_metadata({},
adopt_own(*new MallocRegionMetadata {
.region = mmap_region,
.address = mmap_region.base(),
.chunk_size = chunk_size,
.mallocations = {},
}));
auto& malloc_data = *mmap_region.malloc_metadata();
bool is_chunked_block = malloc_data.chunk_size <= size_classes[num_size_classes - 1];
if (is_chunked_block)
malloc_data.mallocations.resize((ChunkedBlock::block_size - sizeof(ChunkedBlock)) / malloc_data.chunk_size);
else
malloc_data.mallocations.resize(1);
// Mark the containing mmap region as a malloc block!
mmap_region.set_malloc(true);
}
void MallocTracer::target_did_malloc(Badge<Emulator>, FlatPtr address, size_t size)
{
if (m_emulator.is_in_loader_code())
return;
auto* region = m_emulator.mmu().find_region({ 0x23, address });
VERIFY(region);
auto& mmap_region = verify_cast<MmapRegion>(*region);
auto* shadow_bits = mmap_region.shadow_data() + address - mmap_region.base();
memset(shadow_bits, 0, size);
if (auto* existing_mallocation = find_mallocation(address)) {
VERIFY(existing_mallocation->freed);
existing_mallocation->size = size;
existing_mallocation->freed = false;
existing_mallocation->malloc_backtrace = m_emulator.raw_backtrace();
existing_mallocation->free_backtrace.clear();
return;
}
if (!mmap_region.is_malloc_block()) {
auto chunk_size = mmap_region.read32(offsetof(CommonHeader, m_size)).value();
update_metadata(mmap_region, chunk_size);
}
auto* mallocation = mmap_region.malloc_metadata()->mallocation_for_address(address);
VERIFY(mallocation);
*mallocation = { address, size, true, false, m_emulator.raw_backtrace(), Vector<FlatPtr>() };
}
void MallocTracer::target_did_change_chunk_size(Badge<Emulator>, FlatPtr block, size_t chunk_size)
{
if (m_emulator.is_in_loader_code())
return;
auto* region = m_emulator.mmu().find_region({ 0x23, block });
VERIFY(region);
auto& mmap_region = verify_cast<MmapRegion>(*region);
update_metadata(mmap_region, chunk_size);
}
ALWAYS_INLINE Mallocation* MallocRegionMetadata::mallocation_for_address(FlatPtr address) const
{
auto index = chunk_index_for_address(address);
if (!index.has_value())
return nullptr;
return &const_cast<Mallocation&>(this->mallocations[index.value()]);
}
ALWAYS_INLINE Optional<size_t> MallocRegionMetadata::chunk_index_for_address(FlatPtr address) const
{
bool is_chunked_block = chunk_size <= size_classes[num_size_classes - 1];
if (!is_chunked_block) {
// This is a BigAllocationBlock
return 0;
}
auto offset_into_block = address - this->address;
if (offset_into_block < sizeof(ChunkedBlock))
return 0;
auto chunk_offset = offset_into_block - sizeof(ChunkedBlock);
auto chunk_index = chunk_offset / this->chunk_size;
if (chunk_index >= mallocations.size())
return {};
return chunk_index;
}
void MallocTracer::target_did_free(Badge<Emulator>, FlatPtr address)
{
if (!address)
return;
if (m_emulator.is_in_loader_code())
return;
if (auto* mallocation = find_mallocation(address)) {
if (mallocation->freed) {
reportln("\n=={}== \033[31;1mDouble free()\033[0m, {:p}", getpid(), address);
reportln("=={}== Address {} has already been passed to free()", getpid(), address);
m_emulator.dump_backtrace();
} else {
mallocation->freed = true;
mallocation->free_backtrace = m_emulator.raw_backtrace();
}
return;
}
reportln("\n=={}== \033[31;1mInvalid free()\033[0m, {:p}", getpid(), address);
reportln("=={}== Address {} has never been returned by malloc()", getpid(), address);
m_emulator.dump_backtrace();
}
void MallocTracer::target_did_realloc(Badge<Emulator>, FlatPtr address, size_t size)
{
if (m_emulator.is_in_loader_code())
return;
auto* region = m_emulator.mmu().find_region({ 0x23, address });
VERIFY(region);
auto& mmap_region = verify_cast<MmapRegion>(*region);
VERIFY(mmap_region.is_malloc_block());
auto* existing_mallocation = find_mallocation(address);
VERIFY(existing_mallocation);
VERIFY(!existing_mallocation->freed);
size_t old_size = existing_mallocation->size;
auto* shadow_bits = mmap_region.shadow_data() + address - mmap_region.base();
if (size > old_size) {
memset(shadow_bits + old_size, 1, size - old_size);
} else {
memset(shadow_bits + size, 1, old_size - size);
}
existing_mallocation->size = size;
// FIXME: Should we track malloc/realloc backtrace separately perhaps?
existing_mallocation->malloc_backtrace = m_emulator.raw_backtrace();
}
Mallocation* MallocTracer::find_mallocation(FlatPtr address)
{
auto* region = m_emulator.mmu().find_region({ 0x23, address });
if (!region)
return nullptr;
return find_mallocation(*region, address);
}
Mallocation* MallocTracer::find_mallocation_before(FlatPtr address)
{
Mallocation* found_mallocation = nullptr;
for_each_mallocation([&](auto& mallocation) {
if (mallocation.address >= address)
return IterationDecision::Continue;
if (!found_mallocation || (mallocation.address > found_mallocation->address))
found_mallocation = const_cast<Mallocation*>(&mallocation);
return IterationDecision::Continue;
});
return found_mallocation;
}
Mallocation* MallocTracer::find_mallocation_after(FlatPtr address)
{
Mallocation* found_mallocation = nullptr;
for_each_mallocation([&](auto& mallocation) {
if (mallocation.address <= address)
return IterationDecision::Continue;
if (!found_mallocation || (mallocation.address < found_mallocation->address))
found_mallocation = const_cast<Mallocation*>(&mallocation);
return IterationDecision::Continue;
});
return found_mallocation;
}
void MallocTracer::audit_read(const Region& region, FlatPtr address, size_t size)
{
if (!m_auditing_enabled)
return;
if (m_emulator.is_memory_auditing_suppressed()) {
return;
}
if (m_emulator.is_in_libsystem()) {
return;
}
if (m_emulator.is_in_loader_code()) {
return;
}
auto* mallocation = find_mallocation(region, address);
if (!mallocation) {
reportln("\n=={}== \033[31;1mHeap buffer overflow\033[0m, invalid {}-byte read at address {:p}", getpid(), size, address);
m_emulator.dump_backtrace();
auto* mallocation_before = find_mallocation_before(address);
auto* mallocation_after = find_mallocation_after(address);
size_t distance_to_mallocation_before = mallocation_before ? (address - mallocation_before->address - mallocation_before->size) : 0;
size_t distance_to_mallocation_after = mallocation_after ? (mallocation_after->address - address) : 0;
if (mallocation_before && (!mallocation_after || distance_to_mallocation_before < distance_to_mallocation_after)) {
reportln("=={}== Address is {} byte(s) after block of size {}, identity {:p}, allocated at:", getpid(), distance_to_mallocation_before, mallocation_before->size, mallocation_before->address);
m_emulator.dump_backtrace(mallocation_before->malloc_backtrace);
return;
}
if (mallocation_after && (!mallocation_before || distance_to_mallocation_after < distance_to_mallocation_before)) {
reportln("=={}== Address is {} byte(s) before block of size {}, identity {:p}, allocated at:", getpid(), distance_to_mallocation_after, mallocation_after->size, mallocation_after->address);
m_emulator.dump_backtrace(mallocation_after->malloc_backtrace);
}
return;
}
size_t offset_into_mallocation = address - mallocation->address;
if (mallocation->freed) {
reportln("\n=={}== \033[31;1mUse-after-free\033[0m, invalid {}-byte read at address {:p}", getpid(), size, address);
m_emulator.dump_backtrace();
reportln("=={}== Address is {} byte(s) into block of size {}, allocated at:", getpid(), offset_into_mallocation, mallocation->size);
m_emulator.dump_backtrace(mallocation->malloc_backtrace);
reportln("=={}== Later freed at:", getpid());
m_emulator.dump_backtrace(mallocation->free_backtrace);
return;
}
}
void MallocTracer::audit_write(const Region& region, FlatPtr address, size_t size)
{
if (!m_auditing_enabled)
return;
if (m_emulator.is_memory_auditing_suppressed()) {
return;
}
if (m_emulator.is_in_loader_code()) {
return;
}
auto* mallocation = find_mallocation(region, address);
if (!mallocation) {
reportln("\n=={}== \033[31;1mHeap buffer overflow\033[0m, invalid {}-byte write at address {:p}", getpid(), size, address);
m_emulator.dump_backtrace();
auto* mallocation_before = find_mallocation_before(address);
auto* mallocation_after = find_mallocation_after(address);
size_t distance_to_mallocation_before = mallocation_before ? (address - mallocation_before->address - mallocation_before->size) : 0;
size_t distance_to_mallocation_after = mallocation_after ? (mallocation_after->address - address) : 0;
if (mallocation_before && (!mallocation_after || distance_to_mallocation_before < distance_to_mallocation_after)) {
reportln("=={}== Address is {} byte(s) after block of size {}, identity {:p}, allocated at:", getpid(), distance_to_mallocation_before, mallocation_before->size, mallocation_before->address);
m_emulator.dump_backtrace(mallocation_before->malloc_backtrace);
return;
}
if (mallocation_after && (!mallocation_before || distance_to_mallocation_after < distance_to_mallocation_before)) {
reportln("=={}== Address is {} byte(s) before block of size {}, identity {:p}, allocated at:", getpid(), distance_to_mallocation_after, mallocation_after->size, mallocation_after->address);
m_emulator.dump_backtrace(mallocation_after->malloc_backtrace);
}
return;
}
size_t offset_into_mallocation = address - mallocation->address;
if (mallocation->freed) {
reportln("\n=={}== \033[31;1mUse-after-free\033[0m, invalid {}-byte write at address {:p}", getpid(), size, address);
m_emulator.dump_backtrace();
reportln("=={}== Address is {} byte(s) into block of size {}, allocated at:", getpid(), offset_into_mallocation, mallocation->size);
m_emulator.dump_backtrace(mallocation->malloc_backtrace);
reportln("=={}== Later freed at:", getpid());
m_emulator.dump_backtrace(mallocation->free_backtrace);
return;
}
}
void MallocTracer::populate_memory_graph()
{
// Create Node for each live Mallocation
for_each_mallocation([&](auto& mallocation) {
if (mallocation.freed)
return IterationDecision::Continue;
m_memory_graph.set(mallocation.address, {});
return IterationDecision::Continue;
});
// Find pointers from each memory region to another
for_each_mallocation([&](auto& mallocation) {
if (mallocation.freed)
return IterationDecision::Continue;
size_t pointers_in_mallocation = mallocation.size / sizeof(u32);
auto& edges_from_mallocation = m_memory_graph.find(mallocation.address)->value;
for (size_t i = 0; i < pointers_in_mallocation; ++i) {
auto value = m_emulator.mmu().read32({ 0x23, mallocation.address + i * sizeof(u32) });
auto other_address = value.value();
if (!value.is_uninitialized() && m_memory_graph.contains(value.value())) {
if constexpr (REACHABLE_DEBUG)
reportln("region/mallocation {:p} is reachable from other mallocation {:p}", other_address, mallocation.address);
edges_from_mallocation.edges_from_node.append(other_address);
}
}
return IterationDecision::Continue;
});
// Find mallocations that are pointed to by other regions
Vector<FlatPtr> reachable_mallocations = {};
m_emulator.mmu().for_each_region([&](auto& region) {
// Skip the stack
if (region.is_stack())
return IterationDecision::Continue;
if (region.is_text())
return IterationDecision::Continue;
if (!region.is_readable())
return IterationDecision::Continue;
// Skip malloc blocks
if (is<MmapRegion>(region) && static_cast<const MmapRegion&>(region).is_malloc_block())
return IterationDecision::Continue;
size_t pointers_in_region = region.size() / sizeof(u32);
for (size_t i = 0; i < pointers_in_region; ++i) {
auto value = region.read32(i * sizeof(u32));
auto other_address = value.value();
if (!value.is_uninitialized() && m_memory_graph.contains(value.value())) {
if constexpr (REACHABLE_DEBUG)
reportln("region/mallocation {:p} is reachable from region {:p}-{:p}", other_address, region.base(), region.end() - 1);
m_memory_graph.find(other_address)->value.is_reachable = true;
reachable_mallocations.append(other_address);
}
}
return IterationDecision::Continue;
});
// Propagate reachability
// There are probably better ways to do that
Vector<FlatPtr> visited = {};
for (size_t i = 0; i < reachable_mallocations.size(); ++i) {
auto reachable = reachable_mallocations.at(i);
if (visited.contains_slow(reachable))
continue;
visited.append(reachable);
auto& mallocation_node = m_memory_graph.find(reachable)->value;
if (!mallocation_node.is_reachable)
mallocation_node.is_reachable = true;
for (auto& edge : mallocation_node.edges_from_node) {
reachable_mallocations.append(edge);
}
}
}
void MallocTracer::dump_memory_graph()
{
for (auto& key : m_memory_graph.keys()) {
auto value = m_memory_graph.find(key)->value;
dbgln("Block {:p} [{}reachable] ({} edges)", key, !value.is_reachable ? "not " : "", value.edges_from_node.size());
for (auto& edge : value.edges_from_node) {
dbgln(" -> {:p}", edge);
}
}
}
void MallocTracer::dump_leak_report()
{
TemporaryChange change(m_auditing_enabled, false);
size_t bytes_leaked = 0;
size_t leaks_found = 0;
populate_memory_graph();
if constexpr (REACHABLE_DEBUG)
dump_memory_graph();
for_each_mallocation([&](auto& mallocation) {
if (mallocation.freed)
return IterationDecision::Continue;
auto& value = m_memory_graph.find(mallocation.address)->value;
if (value.is_reachable)
return IterationDecision::Continue;
++leaks_found;
bytes_leaked += mallocation.size;
reportln("\n=={}== \033[31;1mLeak\033[0m, {}-byte allocation at address {:p}", getpid(), mallocation.size, mallocation.address);
m_emulator.dump_backtrace(mallocation.malloc_backtrace);
return IterationDecision::Continue;
});
if (!leaks_found)
reportln("\n=={}== \033[32;1mNo leaks found!\033[0m", getpid());
else
reportln("\n=={}== \033[31;1m{} leak(s) found: {} byte(s) leaked\033[0m", getpid(), leaks_found, bytes_leaked);
}
}