1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-14 23:14:59 +00:00
serenity/Kernel/Scheduler.cpp
Tom c8d9f1b9c9 Kernel: Make copy_to/from_user safe and remove unnecessary checks
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.

So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.

To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.

Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.
2020-09-13 21:19:15 +02:00

746 lines
25 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/QuickSort.h>
#include <AK/ScopeGuard.h>
#include <AK/TemporaryChange.h>
#include <AK/Time.h>
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/Net/Socket.h>
#include <Kernel/Process.h>
#include <Kernel/Profiling.h>
#include <Kernel/RTC.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/TimerQueue.h>
//#define LOG_EVERY_CONTEXT_SWITCH
//#define SCHEDULER_DEBUG
//#define SCHEDULER_RUNNABLE_DEBUG
namespace Kernel {
class SchedulerPerProcessorData {
AK_MAKE_NONCOPYABLE(SchedulerPerProcessorData);
AK_MAKE_NONMOVABLE(SchedulerPerProcessorData);
public:
SchedulerPerProcessorData() = default;
bool m_in_scheduler { true };
};
SchedulerData* g_scheduler_data;
timeval g_timeofday;
RecursiveSpinLock g_scheduler_lock;
void Scheduler::init_thread(Thread& thread)
{
ASSERT(g_scheduler_data);
g_scheduler_data->m_nonrunnable_threads.append(thread);
}
static u32 time_slice_for(const Thread& thread)
{
// One time slice unit == 1ms
if (&thread == Processor::current().idle_thread())
return 1;
return 10;
}
timeval Scheduler::time_since_boot()
{
return { TimeManagement::the().seconds_since_boot(), (suseconds_t)TimeManagement::the().ticks_this_second() * 1000 };
}
Thread* g_finalizer;
WaitQueue* g_finalizer_wait_queue;
Atomic<bool> g_finalizer_has_work { false };
static Process* s_colonel_process;
u64 g_uptime;
Thread::JoinBlocker::JoinBlocker(Thread& joinee, void*& joinee_exit_value)
: m_joinee(joinee)
, m_joinee_exit_value(joinee_exit_value)
{
ASSERT(m_joinee.m_joiner == nullptr);
auto current_thread = Thread::current();
m_joinee.m_joiner = current_thread;
current_thread->m_joinee = &joinee;
}
bool Thread::JoinBlocker::should_unblock(Thread& joiner)
{
return !joiner.m_joinee;
}
Thread::FileDescriptionBlocker::FileDescriptionBlocker(const FileDescription& description)
: m_blocked_description(description)
{
}
const FileDescription& Thread::FileDescriptionBlocker::blocked_description() const
{
return m_blocked_description;
}
Thread::AcceptBlocker::AcceptBlocker(const FileDescription& description)
: FileDescriptionBlocker(description)
{
}
bool Thread::AcceptBlocker::should_unblock(Thread&)
{
auto& socket = *blocked_description().socket();
return socket.can_accept();
}
Thread::ConnectBlocker::ConnectBlocker(const FileDescription& description)
: FileDescriptionBlocker(description)
{
}
bool Thread::ConnectBlocker::should_unblock(Thread&)
{
auto& socket = *blocked_description().socket();
return socket.setup_state() == Socket::SetupState::Completed;
}
Thread::WriteBlocker::WriteBlocker(const FileDescription& description)
: FileDescriptionBlocker(description)
{
}
timespec* Thread::WriteBlocker::override_timeout(timespec* timeout)
{
auto& description = blocked_description();
if (description.is_socket()) {
auto& socket = *description.socket();
if (socket.has_send_timeout()) {
timeval_to_timespec(Scheduler::time_since_boot(), m_deadline);
timespec_add_timeval(m_deadline, socket.send_timeout(), m_deadline);
if (!timeout || m_deadline < *timeout)
return &m_deadline;
}
}
return timeout;
}
bool Thread::WriteBlocker::should_unblock(Thread&)
{
return blocked_description().can_write();
}
Thread::ReadBlocker::ReadBlocker(const FileDescription& description)
: FileDescriptionBlocker(description)
{
}
timespec* Thread::ReadBlocker::override_timeout(timespec* timeout)
{
auto& description = blocked_description();
if (description.is_socket()) {
auto& socket = *description.socket();
if (socket.has_receive_timeout()) {
timeval_to_timespec(Scheduler::time_since_boot(), m_deadline);
timespec_add_timeval(m_deadline, socket.receive_timeout(), m_deadline);
if (!timeout || m_deadline < *timeout)
return &m_deadline;
}
}
return timeout;
}
bool Thread::ReadBlocker::should_unblock(Thread&)
{
return blocked_description().can_read();
}
Thread::ConditionBlocker::ConditionBlocker(const char* state_string, Function<bool()>&& condition)
: m_block_until_condition(move(condition))
, m_state_string(state_string)
{
ASSERT(m_block_until_condition);
}
bool Thread::ConditionBlocker::should_unblock(Thread&)
{
return m_block_until_condition();
}
Thread::SleepBlocker::SleepBlocker(u64 wakeup_time)
: m_wakeup_time(wakeup_time)
{
}
bool Thread::SleepBlocker::should_unblock(Thread&)
{
return m_wakeup_time <= g_uptime;
}
Thread::SelectBlocker::SelectBlocker(const FDVector& read_fds, const FDVector& write_fds, const FDVector& except_fds)
: m_select_read_fds(read_fds)
, m_select_write_fds(write_fds)
, m_select_exceptional_fds(except_fds)
{
}
bool Thread::SelectBlocker::should_unblock(Thread& thread)
{
auto& process = thread.process();
for (int fd : m_select_read_fds) {
if (!process.m_fds[fd])
continue;
if (process.m_fds[fd].description()->can_read())
return true;
}
for (int fd : m_select_write_fds) {
if (!process.m_fds[fd])
continue;
if (process.m_fds[fd].description()->can_write())
return true;
}
return false;
}
Thread::WaitBlocker::WaitBlocker(int wait_options, ProcessID& waitee_pid)
: m_wait_options(wait_options)
, m_waitee_pid(waitee_pid)
{
}
bool Thread::WaitBlocker::should_unblock(Thread& thread)
{
bool should_unblock = m_wait_options & WNOHANG;
if (m_waitee_pid != -1) {
auto peer = Process::from_pid(m_waitee_pid);
if (!peer)
return true;
}
thread.process().for_each_child([&](Process& child) {
if (m_waitee_pid != -1 && m_waitee_pid != child.pid())
return IterationDecision::Continue;
bool child_exited = child.is_dead();
bool child_stopped = false;
if (child.thread_count()) {
child.for_each_thread([&](auto& child_thread) {
if (child_thread.state() == Thread::State::Stopped && !child_thread.has_pending_signal(SIGCONT)) {
child_stopped = true;
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
}
bool fits_the_spec = ((m_wait_options & WEXITED) && child_exited)
|| ((m_wait_options & WSTOPPED) && child_stopped);
if (!fits_the_spec)
return IterationDecision::Continue;
m_waitee_pid = child.pid();
should_unblock = true;
return IterationDecision::Break;
});
return should_unblock;
}
Thread::SemiPermanentBlocker::SemiPermanentBlocker(Reason reason)
: m_reason(reason)
{
}
bool Thread::SemiPermanentBlocker::should_unblock(Thread&)
{
// someone else has to unblock us
return false;
}
// Called by the scheduler on threads that are blocked for some reason.
// Make a decision as to whether to unblock them or not.
void Thread::consider_unblock(time_t now_sec, long now_usec)
{
ScopedSpinLock lock(m_lock);
switch (state()) {
case Thread::Invalid:
case Thread::Runnable:
case Thread::Running:
case Thread::Dead:
case Thread::Stopped:
case Thread::Queued:
case Thread::Dying:
/* don't know, don't care */
return;
case Thread::Blocked: {
ASSERT(m_blocker != nullptr);
timespec now;
now.tv_sec = now_sec,
now.tv_nsec = now_usec * 1000ull;
bool timed_out = m_blocker_timeout && now >= *m_blocker_timeout;
if (timed_out || m_blocker->should_unblock(*this))
unblock();
return;
}
}
}
void Scheduler::start()
{
ASSERT_INTERRUPTS_DISABLED();
// We need to acquire our scheduler lock, which will be released
// by the idle thread once control transferred there
g_scheduler_lock.lock();
auto& processor = Processor::current();
processor.set_scheduler_data(*new SchedulerPerProcessorData());
ASSERT(processor.is_initialized());
auto& idle_thread = *processor.idle_thread();
ASSERT(processor.current_thread() == &idle_thread);
ASSERT(processor.idle_thread() == &idle_thread);
idle_thread.set_ticks_left(time_slice_for(idle_thread));
idle_thread.did_schedule();
idle_thread.set_initialized(true);
processor.init_context(idle_thread, false);
idle_thread.set_state(Thread::Running);
ASSERT(idle_thread.affinity() == (1u << processor.id()));
processor.initialize_context_switching(idle_thread);
ASSERT_NOT_REACHED();
}
bool Scheduler::pick_next()
{
ASSERT_INTERRUPTS_DISABLED();
auto current_thread = Thread::current();
auto now = time_since_boot();
auto now_sec = now.tv_sec;
auto now_usec = now.tv_usec;
// Set the m_in_scheduler flag before acquiring the spinlock. This
// prevents a recursive call into Scheduler::invoke_async upon
// leaving the scheduler lock.
ScopedCritical critical;
Processor::current().get_scheduler_data().m_in_scheduler = true;
ScopeGuard guard(
[]() {
// We may be on a different processor after we got switched
// back to this thread!
auto& scheduler_data = Processor::current().get_scheduler_data();
ASSERT(scheduler_data.m_in_scheduler);
scheduler_data.m_in_scheduler = false;
});
ScopedSpinLock lock(g_scheduler_lock);
if (current_thread->should_die() && current_thread->state() == Thread::Running) {
// Rather than immediately killing threads, yanking the kernel stack
// away from them (which can lead to e.g. reference leaks), we always
// allow Thread::wait_on to return. This allows the kernel stack to
// clean up and eventually we'll get here shortly before transitioning
// back to user mode (from Processor::exit_trap). At this point we
// no longer want to schedule this thread. We can't wait until
// Scheduler::enter_current because we don't want to allow it to
// transition back to user mode.
#ifdef SCHEDULER_DEBUG
dbg() << "Scheduler[" << Processor::current().id() << "]: Thread " << *current_thread << " is dying";
#endif
current_thread->set_state(Thread::Dying);
}
// Check and unblock threads whose wait conditions have been met.
Scheduler::for_each_nonrunnable([&](Thread& thread) {
thread.consider_unblock(now_sec, now_usec);
return IterationDecision::Continue;
});
Process::for_each([&](Process& process) {
if (process.is_dead()) {
if (current_thread->process().pid() != process.pid() && (!process.ppid() || !Process::from_pid(process.ppid()))) {
auto name = process.name();
auto pid = process.pid();
auto exit_status = Process::reap(process);
dbg() << "Scheduler[" << Processor::current().id() << "]: Reaped unparented process " << name << "(" << pid.value() << "), exit status: " << exit_status.si_status;
}
return IterationDecision::Continue;
}
if (process.m_alarm_deadline && g_uptime > process.m_alarm_deadline) {
process.m_alarm_deadline = 0;
// FIXME: Should we observe this signal somehow?
(void)process.send_signal(SIGALRM, nullptr);
}
return IterationDecision::Continue;
});
// Dispatch any pending signals.
Thread::for_each_living([&](Thread& thread) -> IterationDecision {
ScopedSpinLock lock(thread.get_lock());
if (!thread.has_unmasked_pending_signals())
return IterationDecision::Continue;
// NOTE: dispatch_one_pending_signal() may unblock the process.
bool was_blocked = thread.is_blocked();
if (thread.dispatch_one_pending_signal() == ShouldUnblockThread::No)
return IterationDecision::Continue;
if (was_blocked) {
#ifdef SCHEDULER_DEBUG
dbg() << "Scheduler[" << Processor::current().id() << "]:Unblock " << thread << " due to signal";
#endif
ASSERT(thread.m_blocker != nullptr);
thread.m_blocker->set_interrupted_by_signal();
thread.unblock();
}
return IterationDecision::Continue;
});
#ifdef SCHEDULER_RUNNABLE_DEBUG
dbg() << "Non-runnables:";
Scheduler::for_each_nonrunnable([](Thread& thread) -> IterationDecision {
if (thread.state() == Thread::Queued)
dbg() << " " << String::format("%-12s", thread.state_string()) << " " << thread << " @ " << String::format("%w", thread.tss().cs) << ":" << String::format("%x", thread.tss().eip) << " Reason: " << (thread.wait_reason() ? thread.wait_reason() : "none");
else if (thread.state() == Thread::Dying)
dbg() << " " << String::format("%-12s", thread.state_string()) << " " << thread << " @ " << String::format("%w", thread.tss().cs) << ":" << String::format("%x", thread.tss().eip) << " Finalizable: " << thread.is_finalizable();
else
dbg() << " " << String::format("%-12s", thread.state_string()) << " " << thread << " @ " << String::format("%w", thread.tss().cs) << ":" << String::format("%x", thread.tss().eip);
return IterationDecision::Continue;
});
dbg() << "Runnables:";
Scheduler::for_each_runnable([](Thread& thread) -> IterationDecision {
dbg() << " " << String::format("%3u", thread.effective_priority()) << "/" << String::format("%2u", thread.priority()) << " " << String::format("%-12s", thread.state_string()) << " " << thread << " @ " << String::format("%w", thread.tss().cs) << ":" << String::format("%x", thread.tss().eip);
return IterationDecision::Continue;
});
#endif
Vector<Thread*, 128> sorted_runnables;
for_each_runnable([&sorted_runnables](auto& thread) {
if ((thread.affinity() & (1u << Processor::current().id())) != 0)
sorted_runnables.append(&thread);
return IterationDecision::Continue;
});
quick_sort(sorted_runnables, [](auto& a, auto& b) { return a->effective_priority() >= b->effective_priority(); });
Thread* thread_to_schedule = nullptr;
for (auto* thread : sorted_runnables) {
if (thread->process().exec_tid() && thread->process().exec_tid() != thread->tid())
continue;
ASSERT(thread->state() == Thread::Runnable || thread->state() == Thread::Running);
if (!thread_to_schedule) {
thread->m_extra_priority = 0;
thread_to_schedule = thread;
} else {
thread->m_extra_priority++;
}
}
if (!thread_to_schedule)
thread_to_schedule = Processor::current().idle_thread();
#ifdef SCHEDULER_DEBUG
dbg() << "Scheduler[" << Processor::current().id() << "]: Switch to " << *thread_to_schedule << " @ " << String::format("%04x:%08x", thread_to_schedule->tss().cs, thread_to_schedule->tss().eip);
#endif
// We need to leave our first critical section before switching context,
// but since we're still holding the scheduler lock we're still in a critical section
critical.leave();
return context_switch(thread_to_schedule);
}
bool Scheduler::yield()
{
InterruptDisabler disabler;
auto& proc = Processor::current();
auto current_thread = Thread::current();
#ifdef SCHEDULER_DEBUG
dbg() << "Scheduler[" << proc.id() << "]: yielding thread " << *current_thread << " in_irq: " << proc.in_irq();
#endif
ASSERT(current_thread != nullptr);
if (proc.in_irq() || proc.in_critical()) {
// If we're handling an IRQ we can't switch context, or we're in
// a critical section where we don't want to switch contexts, then
// delay until exiting the trap or critical section
proc.invoke_scheduler_async();
return false;
}
if (!Scheduler::pick_next())
return false;
#ifdef SCHEDULER_DEBUG
dbg() << "Scheduler[" << Processor::current().id() << "]: yield returns to thread " << *current_thread << " in_irq: " << Processor::current().in_irq();
#endif
return true;
}
bool Scheduler::donate_to(Thread* beneficiary, const char* reason)
{
ASSERT(beneficiary);
// Set the m_in_scheduler flag before acquiring the spinlock. This
// prevents a recursive call into Scheduler::invoke_async upon
// leaving the scheduler lock.
ScopedCritical critical;
auto& proc = Processor::current();
proc.get_scheduler_data().m_in_scheduler = true;
ScopeGuard guard(
[]() {
// We may be on a different processor after we got switched
// back to this thread!
auto& scheduler_data = Processor::current().get_scheduler_data();
ASSERT(scheduler_data.m_in_scheduler);
scheduler_data.m_in_scheduler = false;
});
ScopedSpinLock lock(g_scheduler_lock);
ASSERT(!proc.in_irq());
if (proc.in_critical()) {
proc.invoke_scheduler_async();
return false;
}
(void)reason;
unsigned ticks_left = Thread::current()->ticks_left();
if (!beneficiary || beneficiary->state() != Thread::Runnable || ticks_left <= 1)
return Scheduler::yield();
unsigned ticks_to_donate = min(ticks_left - 1, time_slice_for(*beneficiary));
#ifdef SCHEDULER_DEBUG
dbg() << "Scheduler[" << proc.id() << "]: Donating " << ticks_to_donate << " ticks to " << *beneficiary << ", reason=" << reason;
#endif
beneficiary->set_ticks_left(ticks_to_donate);
Scheduler::context_switch(beneficiary);
return false;
}
bool Scheduler::context_switch(Thread* thread)
{
thread->set_ticks_left(time_slice_for(*thread));
thread->did_schedule();
auto from_thread = Thread::current();
if (from_thread == thread)
return false;
if (from_thread) {
// If the last process hasn't blocked (still marked as running),
// mark it as runnable for the next round.
if (from_thread->state() == Thread::Running)
from_thread->set_state(Thread::Runnable);
#ifdef LOG_EVERY_CONTEXT_SWITCH
dbg() << "Scheduler[" << Processor::current().id() << "]: " << *from_thread << " -> " << *thread << " [" << thread->priority() << "] " << String::format("%w", thread->tss().cs) << ":" << String::format("%x", thread->tss().eip);
#endif
}
auto& proc = Processor::current();
if (!thread->is_initialized()) {
proc.init_context(*thread, false);
thread->set_initialized(true);
}
thread->set_state(Thread::Running);
// Mark it as active because we are using this thread. This is similar
// to comparing it with Processor::current_thread, but when there are
// multiple processors there's no easy way to check whether the thread
// is actually still needed. This prevents accidental finalization when
// a thread is no longer in Running state, but running on another core.
thread->set_active(true);
proc.switch_context(from_thread, thread);
// NOTE: from_thread at this point reflects the thread we were
// switched from, and thread reflects Thread::current()
enter_current(*from_thread);
ASSERT(thread == Thread::current());
return true;
}
void Scheduler::enter_current(Thread& prev_thread)
{
ASSERT(g_scheduler_lock.is_locked());
prev_thread.set_active(false);
if (prev_thread.state() == Thread::Dying) {
// If the thread we switched from is marked as dying, then notify
// the finalizer. Note that as soon as we leave the scheduler lock
// the finalizer may free from_thread!
notify_finalizer();
}
}
void Scheduler::leave_on_first_switch(u32 flags)
{
// This is called when a thread is swiched into for the first time.
// At this point, enter_current has already be called, but because
// Scheduler::context_switch is not in the call stack we need to
// clean up and release locks manually here
g_scheduler_lock.unlock(flags);
auto& scheduler_data = Processor::current().get_scheduler_data();
ASSERT(scheduler_data.m_in_scheduler);
scheduler_data.m_in_scheduler = false;
}
void Scheduler::prepare_after_exec()
{
// This is called after exec() when doing a context "switch" into
// the new process. This is called from Processor::assume_context
ASSERT(g_scheduler_lock.own_lock());
auto& scheduler_data = Processor::current().get_scheduler_data();
ASSERT(!scheduler_data.m_in_scheduler);
scheduler_data.m_in_scheduler = true;
}
void Scheduler::prepare_for_idle_loop()
{
// This is called when the CPU finished setting up the idle loop
// and is about to run it. We need to acquire he scheduler lock
ASSERT(!g_scheduler_lock.own_lock());
g_scheduler_lock.lock();
auto& scheduler_data = Processor::current().get_scheduler_data();
ASSERT(!scheduler_data.m_in_scheduler);
scheduler_data.m_in_scheduler = true;
}
Process* Scheduler::colonel()
{
ASSERT(s_colonel_process);
return s_colonel_process;
}
void Scheduler::initialize()
{
ASSERT(&Processor::current() != nullptr); // sanity check
Thread* idle_thread = nullptr;
g_scheduler_data = new SchedulerData;
g_finalizer_wait_queue = new WaitQueue;
g_finalizer_has_work.store(false, AK::MemoryOrder::memory_order_release);
s_colonel_process = &Process::create_kernel_process(idle_thread, "colonel", idle_loop, 1).leak_ref();
ASSERT(s_colonel_process);
ASSERT(idle_thread);
idle_thread->set_priority(THREAD_PRIORITY_MIN);
idle_thread->set_name(StringView("idle thread #0"));
set_idle_thread(idle_thread);
}
void Scheduler::set_idle_thread(Thread* idle_thread)
{
Processor::current().set_idle_thread(*idle_thread);
Processor::current().set_current_thread(*idle_thread);
}
Thread* Scheduler::create_ap_idle_thread(u32 cpu)
{
ASSERT(cpu != 0);
// This function is called on the bsp, but creates an idle thread for another AP
ASSERT(Processor::current().id() == 0);
ASSERT(s_colonel_process);
Thread* idle_thread = s_colonel_process->create_kernel_thread(idle_loop, THREAD_PRIORITY_MIN, String::format("idle thread #%u", cpu), 1 << cpu, false);
ASSERT(idle_thread);
return idle_thread;
}
void Scheduler::timer_tick(const RegisterState& regs)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(Processor::current().in_irq());
if (Processor::current().id() > 0)
return;
auto current_thread = Processor::current().current_thread();
if (!current_thread)
return;
++g_uptime;
g_timeofday = TimeManagement::now_as_timeval();
if (current_thread->process().is_profiling()) {
SmapDisabler disabler;
auto backtrace = current_thread->raw_backtrace(regs.ebp, regs.eip);
auto& sample = Profiling::next_sample_slot();
sample.pid = current_thread->process().pid();
sample.tid = current_thread->tid();
sample.timestamp = g_uptime;
for (size_t i = 0; i < min(backtrace.size(), Profiling::max_stack_frame_count); ++i) {
sample.frames[i] = backtrace[i];
}
}
TimerQueue::the().fire();
if (current_thread->tick())
return;
ASSERT_INTERRUPTS_DISABLED();
ASSERT(Processor::current().in_irq());
Processor::current().invoke_scheduler_async();
}
void Scheduler::invoke_async()
{
ASSERT_INTERRUPTS_DISABLED();
auto& proc = Processor::current();
ASSERT(!proc.in_irq());
// Since this function is called when leaving critical sections (such
// as a SpinLock), we need to check if we're not already doing this
// to prevent recursion
if (!proc.get_scheduler_data().m_in_scheduler)
pick_next();
}
void Scheduler::notify_finalizer()
{
if (g_finalizer_has_work.exchange(true, AK::MemoryOrder::memory_order_acq_rel) == false)
g_finalizer_wait_queue->wake_all();
}
void Scheduler::idle_loop()
{
dbg() << "Scheduler[" << Processor::current().id() << "]: idle loop running";
ASSERT(are_interrupts_enabled());
for (;;) {
asm("hlt");
if (Processor::current().id() == 0)
yield();
}
}
}