1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-18 19:05:06 +00:00
serenity/Userland/Libraries/LibVideo/VP9/Parser.cpp

1751 lines
65 KiB
C++

/*
* Copyright (c) 2021, Hunter Salyer <thefalsehonesty@gmail.com>
* Copyright (c) 2022, Gregory Bertilson <zaggy1024@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/String.h>
#include <LibGfx/Point.h>
#include <LibGfx/Size.h>
#include "Decoder.h"
#include "Parser.h"
#include "Utilities.h"
namespace Video::VP9 {
#define TRY_READ(expression) DECODER_TRY(DecoderErrorCategory::Corrupted, expression)
Parser::Parser(Decoder& decoder)
: m_probability_tables(make<ProbabilityTables>())
, m_tree_parser(make<TreeParser>(*this))
, m_decoder(decoder)
{
}
Parser::~Parser()
{
}
Vector<size_t> Parser::parse_superframe_sizes(ReadonlyBytes frame_data)
{
if (frame_data.size() < 1)
return {};
// The decoder determines the presence of a superframe by:
// 1. parsing the final byte of the chunk and checking that the superframe_marker equals 0b110,
// If the checks in steps 1 and 3 both pass, then the chunk is determined to contain a superframe and each
// frame in the superframe is passed to the decoding process in turn.
// Otherwise, the chunk is determined to not contain a superframe, and the whole chunk is passed to the
// decoding process.
// NOTE: Reading from span data will be quicker than spinning up a BitStream.
u8 superframe_byte = frame_data[frame_data.size() - 1];
// NOTE: We have to read out of the byte from the little end first, hence the padding bits in the masks below.
u8 superframe_marker = superframe_byte & 0b1110'0000;
if (superframe_marker == 0b1100'0000) {
u8 bytes_per_framesize = ((superframe_byte >> 3) & 0b11) + 1;
u8 frames_in_superframe = (superframe_byte & 0b111) + 1;
// 2. setting the total size of the superframe_index SzIndex equal to 2 + NumFrames * SzBytes,
size_t index_size = 2 + bytes_per_framesize * frames_in_superframe;
if (index_size > frame_data.size())
return {};
auto superframe_header_data = frame_data.data() + frame_data.size() - index_size;
u8 start_superframe_byte = *(superframe_header_data++);
// 3. checking that the first byte of the superframe_index matches the final byte.
if (superframe_byte != start_superframe_byte)
return {};
Vector<size_t> result;
for (u8 i = 0; i < frames_in_superframe; i++) {
size_t frame_size = 0;
for (u8 j = 0; j < bytes_per_framesize; j++)
frame_size |= (static_cast<size_t>(*(superframe_header_data++)) << (j * 8));
result.append(frame_size);
}
return result;
}
return {};
}
/* (6.1) */
DecoderErrorOr<void> Parser::parse_frame(ReadonlyBytes frame_data)
{
m_bit_stream = make<BitStream>(frame_data.data(), frame_data.size());
m_syntax_element_counter = make<SyntaxElementCounter>();
TRY(uncompressed_header());
if (!trailing_bits())
return DecoderError::corrupted("Trailing bits were non-zero"sv);
if (m_header_size_in_bytes == 0)
return DecoderError::corrupted("Frame header is zero-sized"sv);
m_probability_tables->load_probs(m_frame_context_idx);
m_probability_tables->load_probs2(m_frame_context_idx);
m_syntax_element_counter->clear_counts();
TRY_READ(m_bit_stream->init_bool(m_header_size_in_bytes));
TRY(compressed_header());
TRY_READ(m_bit_stream->exit_bool());
TRY(m_decoder.allocate_buffers());
TRY(decode_tiles());
TRY(refresh_probs());
return {};
}
bool Parser::trailing_bits()
{
while (m_bit_stream->bits_remaining() & 7u) {
if (MUST(m_bit_stream->read_bit()))
return false;
}
return true;
}
DecoderErrorOr<void> Parser::refresh_probs()
{
if (!m_error_resilient_mode && !m_frame_parallel_decoding_mode) {
m_probability_tables->load_probs(m_frame_context_idx);
TRY(m_decoder.adapt_coef_probs());
if (!m_frame_is_intra) {
m_probability_tables->load_probs2(m_frame_context_idx);
TRY(m_decoder.adapt_non_coef_probs());
}
}
if (m_refresh_frame_context)
m_probability_tables->save_probs(m_frame_context_idx);
return {};
}
DecoderErrorOr<FrameType> Parser::read_frame_type()
{
if (TRY_READ(m_bit_stream->read_bit()))
return NonKeyFrame;
return KeyFrame;
}
DecoderErrorOr<ColorRange> Parser::read_color_range()
{
if (TRY_READ(m_bit_stream->read_bit()))
return ColorRange::Full;
return ColorRange::Studio;
}
/* (6.2) */
DecoderErrorOr<void> Parser::uncompressed_header()
{
auto frame_marker = TRY_READ(m_bit_stream->read_bits(2));
if (frame_marker != 2)
return DecoderError::corrupted("uncompressed_header: Frame marker must be 2"sv);
auto profile_low_bit = TRY_READ(m_bit_stream->read_bit());
auto profile_high_bit = TRY_READ(m_bit_stream->read_bit());
m_profile = (profile_high_bit << 1u) + profile_low_bit;
if (m_profile == 3 && TRY_READ(m_bit_stream->read_bit()))
return DecoderError::corrupted("uncompressed_header: Profile 3 reserved bit was non-zero"sv);
m_show_existing_frame = TRY_READ(m_bit_stream->read_bit());
if (m_show_existing_frame) {
m_frame_to_show_map_index = TRY_READ(m_bit_stream->read_bits(3));
m_header_size_in_bytes = 0;
m_refresh_frame_flags = 0;
m_loop_filter_level = 0;
return {};
}
m_last_frame_type = m_frame_type;
m_frame_type = TRY(read_frame_type());
m_show_frame = TRY_READ(m_bit_stream->read_bit());
m_error_resilient_mode = TRY_READ(m_bit_stream->read_bit());
if (m_frame_type == KeyFrame) {
TRY(frame_sync_code());
TRY(color_config());
m_frame_size = TRY(frame_size());
m_render_size = TRY(render_size(m_frame_size));
m_refresh_frame_flags = 0xFF;
m_frame_is_intra = true;
} else {
m_frame_is_intra = !m_show_frame && TRY_READ(m_bit_stream->read_bit());
if (!m_error_resilient_mode) {
m_reset_frame_context = TRY_READ(m_bit_stream->read_bits(2));
} else {
m_reset_frame_context = 0;
}
if (m_frame_is_intra) {
TRY(frame_sync_code());
if (m_profile > 0) {
TRY(color_config());
} else {
m_color_space = Bt601;
m_subsampling_x = true;
m_subsampling_y = true;
m_bit_depth = 8;
}
m_refresh_frame_flags = TRY_READ(m_bit_stream->read_f8());
m_frame_size = TRY(frame_size());
m_render_size = TRY(render_size(m_frame_size));
} else {
m_refresh_frame_flags = TRY_READ(m_bit_stream->read_f8());
for (auto i = 0; i < 3; i++) {
m_ref_frame_idx[i] = TRY_READ(m_bit_stream->read_bits(3));
m_ref_frame_sign_bias[LastFrame + i] = TRY_READ(m_bit_stream->read_bit());
}
m_frame_size = TRY(frame_size_with_refs());
m_render_size = TRY(render_size(m_frame_size));
m_allow_high_precision_mv = TRY_READ(m_bit_stream->read_bit());
TRY(read_interpolation_filter());
}
}
compute_image_size();
if (!m_error_resilient_mode) {
m_refresh_frame_context = TRY_READ(m_bit_stream->read_bit());
m_frame_parallel_decoding_mode = TRY_READ(m_bit_stream->read_bit());
} else {
m_refresh_frame_context = false;
m_frame_parallel_decoding_mode = true;
}
m_frame_context_idx = TRY_READ(m_bit_stream->read_bits(2));
if (m_frame_is_intra || m_error_resilient_mode) {
setup_past_independence();
if (m_frame_type == KeyFrame || m_error_resilient_mode || m_reset_frame_context == 3) {
for (auto i = 0; i < 4; i++) {
m_probability_tables->save_probs(i);
}
} else if (m_reset_frame_context == 2) {
m_probability_tables->save_probs(m_frame_context_idx);
}
m_frame_context_idx = 0;
}
TRY(loop_filter_params());
TRY(quantization_params());
TRY(segmentation_params());
TRY(tile_info());
m_header_size_in_bytes = TRY_READ(m_bit_stream->read_f16());
return {};
}
DecoderErrorOr<void> Parser::frame_sync_code()
{
if (TRY_READ(m_bit_stream->read_f8()) != 0x49)
return DecoderError::corrupted("frame_sync_code: Byte 0 was not 0x49."sv);
if (TRY_READ(m_bit_stream->read_f8()) != 0x83)
return DecoderError::corrupted("frame_sync_code: Byte 1 was not 0x83."sv);
if (TRY_READ(m_bit_stream->read_f8()) != 0x42)
return DecoderError::corrupted("frame_sync_code: Byte 2 was not 0x42."sv);
return {};
}
DecoderErrorOr<void> Parser::color_config()
{
if (m_profile >= 2) {
m_bit_depth = TRY_READ(m_bit_stream->read_bit()) ? 12 : 10;
} else {
m_bit_depth = 8;
}
auto color_space = TRY_READ(m_bit_stream->read_bits(3));
VERIFY(color_space <= RGB);
m_color_space = static_cast<ColorSpace>(color_space);
if (color_space != RGB) {
m_color_range = TRY(read_color_range());
if (m_profile == 1 || m_profile == 3) {
m_subsampling_x = TRY_READ(m_bit_stream->read_bit());
m_subsampling_y = TRY_READ(m_bit_stream->read_bit());
if (TRY_READ(m_bit_stream->read_bit()))
return DecoderError::corrupted("color_config: Subsampling reserved zero was set"sv);
} else {
m_subsampling_x = true;
m_subsampling_y = true;
}
} else {
m_color_range = ColorRange::Full;
if (m_profile == 1 || m_profile == 3) {
m_subsampling_x = false;
m_subsampling_y = false;
if (TRY_READ(m_bit_stream->read_bit()))
return DecoderError::corrupted("color_config: RGB reserved zero was set"sv);
}
}
return {};
}
DecoderErrorOr<Gfx::Size<u32>> Parser::frame_size()
{
return Gfx::Size<u32> { TRY_READ(m_bit_stream->read_f16()) + 1, TRY_READ(m_bit_stream->read_f16()) + 1 };
}
DecoderErrorOr<Gfx::Size<u32>> Parser::render_size(Gfx::Size<u32> frame_size)
{
if (!TRY_READ(m_bit_stream->read_bit()))
return frame_size;
return Gfx::Size<u32> { TRY_READ(m_bit_stream->read_f16()) + 1, TRY_READ(m_bit_stream->read_f16()) + 1 };
}
DecoderErrorOr<Gfx::Size<u32>> Parser::frame_size_with_refs()
{
Optional<Gfx::Size<u32>> size;
for (auto frame_index : m_ref_frame_idx) {
if (TRY_READ(m_bit_stream->read_bit())) {
size.emplace(m_ref_frame_size[frame_index]);
break;
}
}
if (size.has_value())
return size.value();
return TRY(frame_size());
}
void Parser::compute_image_size()
{
auto new_cols = (m_frame_size.width() + 7u) >> 3u;
auto new_rows = (m_frame_size.height() + 7u) >> 3u;
// 7.2.6 Compute image size semantics
// When compute_image_size is invoked, the following ordered steps occur:
// 1. If this is the first time compute_image_size is invoked, or if either FrameWidth or FrameHeight have
// changed in value compared to the previous time this function was invoked, then the segmentation map is
// cleared to all zeros by setting SegmentId[ row ][ col ] equal to 0 for row = 0..MiRows-1 and col =
// 0..MiCols-1.
bool first_invoke = !m_mi_cols && !m_mi_rows;
bool same_size = m_mi_cols == new_cols && m_mi_rows == new_rows;
if (first_invoke || !same_size) {
// m_segment_ids will be resized from decode_tiles() later.
m_segment_ids.clear_with_capacity();
}
// 2. The variable UsePrevFrameMvs is set equal to 1 if all of the following conditions are true:
// a. This is not the first time compute_image_size is invoked.
// b. Both FrameWidth and FrameHeight have the same value compared to the previous time this function
// was invoked.
// c. show_frame was equal to 1 the previous time this function was invoked.
// d. error_resilient_mode is equal to 0.
// e. FrameIsIntra is equal to 0.
// Otherwise, UsePrevFrameMvs is set equal to 0.
m_use_prev_frame_mvs = !first_invoke && same_size && m_prev_show_frame && !m_error_resilient_mode && !m_frame_is_intra;
m_prev_show_frame = m_show_frame;
m_mi_cols = new_cols;
m_mi_rows = new_rows;
m_sb64_cols = (m_mi_cols + 7u) >> 3u;
m_sb64_rows = (m_mi_rows + 7u) >> 3u;
}
DecoderErrorOr<void> Parser::read_interpolation_filter()
{
if (TRY_READ(m_bit_stream->read_bit())) {
m_interpolation_filter = Switchable;
} else {
m_interpolation_filter = literal_to_type[TRY_READ(m_bit_stream->read_bits(2))];
}
return {};
}
DecoderErrorOr<void> Parser::loop_filter_params()
{
m_loop_filter_level = TRY_READ(m_bit_stream->read_bits(6));
m_loop_filter_sharpness = TRY_READ(m_bit_stream->read_bits(3));
m_loop_filter_delta_enabled = TRY_READ(m_bit_stream->read_bit());
if (m_loop_filter_delta_enabled) {
if (TRY_READ(m_bit_stream->read_bit())) {
for (auto& loop_filter_ref_delta : m_loop_filter_ref_deltas) {
if (TRY_READ(m_bit_stream->read_bit()))
loop_filter_ref_delta = TRY_READ(m_bit_stream->read_s(6));
}
for (auto& loop_filter_mode_delta : m_loop_filter_mode_deltas) {
if (TRY_READ(m_bit_stream->read_bit()))
loop_filter_mode_delta = TRY_READ(m_bit_stream->read_s(6));
}
}
}
return {};
}
DecoderErrorOr<void> Parser::quantization_params()
{
m_base_q_idx = TRY_READ(m_bit_stream->read_f8());
m_delta_q_y_dc = TRY(read_delta_q());
m_delta_q_uv_dc = TRY(read_delta_q());
m_delta_q_uv_ac = TRY(read_delta_q());
m_lossless = m_base_q_idx == 0 && m_delta_q_y_dc == 0 && m_delta_q_uv_dc == 0 && m_delta_q_uv_ac == 0;
return {};
}
DecoderErrorOr<i8> Parser::read_delta_q()
{
if (TRY_READ(m_bit_stream->read_bit()))
return TRY_READ(m_bit_stream->read_s(4));
return 0;
}
DecoderErrorOr<void> Parser::segmentation_params()
{
m_segmentation_enabled = TRY_READ(m_bit_stream->read_bit());
if (!m_segmentation_enabled)
return {};
m_segmentation_update_map = TRY_READ(m_bit_stream->read_bit());
if (m_segmentation_update_map) {
for (auto& segmentation_tree_prob : m_segmentation_tree_probs)
segmentation_tree_prob = TRY(read_prob());
m_segmentation_temporal_update = TRY_READ(m_bit_stream->read_bit());
for (auto& segmentation_pred_prob : m_segmentation_pred_prob)
segmentation_pred_prob = m_segmentation_temporal_update ? TRY(read_prob()) : 255;
}
auto segmentation_update_data = (TRY_READ(m_bit_stream->read_bit()));
if (!segmentation_update_data)
return {};
m_segmentation_abs_or_delta_update = TRY_READ(m_bit_stream->read_bit());
for (auto i = 0; i < MAX_SEGMENTS; i++) {
for (auto j = 0; j < SEG_LVL_MAX; j++) {
auto feature_value = 0;
auto feature_enabled = TRY_READ(m_bit_stream->read_bit());
m_feature_enabled[i][j] = feature_enabled;
if (feature_enabled) {
auto bits_to_read = segmentation_feature_bits[j];
feature_value = TRY_READ(m_bit_stream->read_bits(bits_to_read));
if (segmentation_feature_signed[j]) {
if (TRY_READ(m_bit_stream->read_bit()))
feature_value = -feature_value;
}
}
m_feature_data[i][j] = feature_value;
}
}
return {};
}
DecoderErrorOr<u8> Parser::read_prob()
{
if (TRY_READ(m_bit_stream->read_bit()))
return TRY_READ(m_bit_stream->read_f8());
return 255;
}
DecoderErrorOr<void> Parser::tile_info()
{
auto min_log2_tile_cols = calc_min_log2_tile_cols();
auto max_log2_tile_cols = calc_max_log2_tile_cols();
m_tile_cols_log2 = min_log2_tile_cols;
while (m_tile_cols_log2 < max_log2_tile_cols) {
if (TRY_READ(m_bit_stream->read_bit()))
m_tile_cols_log2++;
else
break;
}
m_tile_rows_log2 = TRY_READ(m_bit_stream->read_bit());
if (m_tile_rows_log2) {
m_tile_rows_log2 += TRY_READ(m_bit_stream->read_bit());
}
return {};
}
u16 Parser::calc_min_log2_tile_cols()
{
auto min_log_2 = 0u;
while ((u32)(MAX_TILE_WIDTH_B64 << min_log_2) < m_sb64_cols)
min_log_2++;
return min_log_2;
}
u16 Parser::calc_max_log2_tile_cols()
{
u16 max_log_2 = 1;
while ((m_sb64_cols >> max_log_2) >= MIN_TILE_WIDTH_B64)
max_log_2++;
return max_log_2 - 1;
}
void Parser::setup_past_independence()
{
for (auto i = 0; i < 8; i++) {
for (auto j = 0; j < 4; j++) {
m_feature_data[i][j] = 0;
m_feature_enabled[i][j] = false;
}
}
m_segmentation_abs_or_delta_update = false;
m_prev_segment_ids.clear_with_capacity();
m_prev_segment_ids.resize_and_keep_capacity(m_mi_rows * m_mi_cols);
m_loop_filter_delta_enabled = true;
m_loop_filter_ref_deltas[IntraFrame] = 1;
m_loop_filter_ref_deltas[LastFrame] = 0;
m_loop_filter_ref_deltas[GoldenFrame] = -1;
m_loop_filter_ref_deltas[AltRefFrame] = -1;
for (auto& loop_filter_mode_delta : m_loop_filter_mode_deltas)
loop_filter_mode_delta = 0;
m_probability_tables->reset_probs();
}
DecoderErrorOr<void> Parser::compressed_header()
{
TRY(read_tx_mode());
if (m_tx_mode == TXModeSelect)
TRY(tx_mode_probs());
TRY(read_coef_probs());
TRY(read_skip_prob());
if (!m_frame_is_intra) {
TRY(read_inter_mode_probs());
if (m_interpolation_filter == Switchable)
TRY(read_interp_filter_probs());
TRY(read_is_inter_probs());
TRY(frame_reference_mode());
TRY(frame_reference_mode_probs());
TRY(read_y_mode_probs());
TRY(read_partition_probs());
TRY(mv_probs());
}
return {};
}
DecoderErrorOr<void> Parser::read_tx_mode()
{
if (m_lossless) {
m_tx_mode = Only_4x4;
} else {
auto tx_mode = TRY_READ(m_bit_stream->read_literal(2));
if (tx_mode == Allow_32x32)
tx_mode += TRY_READ(m_bit_stream->read_literal(1));
m_tx_mode = static_cast<TXMode>(tx_mode);
}
return {};
}
DecoderErrorOr<void> Parser::tx_mode_probs()
{
auto& tx_probs = m_probability_tables->tx_probs();
for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) {
for (auto j = 0; j < TX_SIZES - 3; j++)
tx_probs[TX_8x8][i][j] = TRY(diff_update_prob(tx_probs[TX_8x8][i][j]));
}
for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) {
for (auto j = 0; j < TX_SIZES - 2; j++)
tx_probs[TX_16x16][i][j] = TRY(diff_update_prob(tx_probs[TX_16x16][i][j]));
}
for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) {
for (auto j = 0; j < TX_SIZES - 1; j++)
tx_probs[TX_32x32][i][j] = TRY(diff_update_prob(tx_probs[TX_32x32][i][j]));
}
return {};
}
DecoderErrorOr<u8> Parser::diff_update_prob(u8 prob)
{
auto update_prob = TRY_READ(m_bit_stream->read_bool(252));
if (update_prob) {
auto delta_prob = TRY(decode_term_subexp());
prob = inv_remap_prob(delta_prob, prob);
}
return prob;
}
DecoderErrorOr<u8> Parser::decode_term_subexp()
{
if (TRY_READ(m_bit_stream->read_literal(1)) == 0)
return TRY_READ(m_bit_stream->read_literal(4));
if (TRY_READ(m_bit_stream->read_literal(1)) == 0)
return TRY_READ(m_bit_stream->read_literal(4)) + 16;
if (TRY_READ(m_bit_stream->read_literal(1)) == 0)
return TRY_READ(m_bit_stream->read_literal(5)) + 32;
auto v = TRY_READ(m_bit_stream->read_literal(7));
if (v < 65)
return v + 64;
return (v << 1u) - 1 + TRY_READ(m_bit_stream->read_literal(1));
}
u8 Parser::inv_remap_prob(u8 delta_prob, u8 prob)
{
u8 m = prob - 1;
auto v = inv_map_table[delta_prob];
if ((m << 1u) <= 255)
return 1 + inv_recenter_nonneg(v, m);
return 255 - inv_recenter_nonneg(v, 254 - m);
}
u8 Parser::inv_recenter_nonneg(u8 v, u8 m)
{
if (v > 2 * m)
return v;
if (v & 1u)
return m - ((v + 1u) >> 1u);
return m + (v >> 1u);
}
DecoderErrorOr<void> Parser::read_coef_probs()
{
m_max_tx_size = tx_mode_to_biggest_tx_size[m_tx_mode];
for (u8 tx_size = 0; tx_size <= m_max_tx_size; tx_size++) {
auto update_probs = TRY_READ(m_bit_stream->read_literal(1));
if (update_probs == 1) {
for (auto i = 0; i < 2; i++) {
for (auto j = 0; j < 2; j++) {
for (auto k = 0; k < 6; k++) {
auto max_l = (k == 0) ? 3 : 6;
for (auto l = 0; l < max_l; l++) {
for (auto m = 0; m < 3; m++) {
auto& prob = m_probability_tables->coef_probs()[tx_size][i][j][k][l][m];
prob = TRY(diff_update_prob(prob));
}
}
}
}
}
}
}
return {};
}
DecoderErrorOr<void> Parser::read_skip_prob()
{
for (auto i = 0; i < SKIP_CONTEXTS; i++)
m_probability_tables->skip_prob()[i] = TRY(diff_update_prob(m_probability_tables->skip_prob()[i]));
return {};
}
DecoderErrorOr<void> Parser::read_inter_mode_probs()
{
for (auto i = 0; i < INTER_MODE_CONTEXTS; i++) {
for (auto j = 0; j < INTER_MODES - 1; j++)
m_probability_tables->inter_mode_probs()[i][j] = TRY(diff_update_prob(m_probability_tables->inter_mode_probs()[i][j]));
}
return {};
}
DecoderErrorOr<void> Parser::read_interp_filter_probs()
{
for (auto i = 0; i < INTERP_FILTER_CONTEXTS; i++) {
for (auto j = 0; j < SWITCHABLE_FILTERS - 1; j++)
m_probability_tables->interp_filter_probs()[i][j] = TRY(diff_update_prob(m_probability_tables->interp_filter_probs()[i][j]));
}
return {};
}
DecoderErrorOr<void> Parser::read_is_inter_probs()
{
for (auto i = 0; i < IS_INTER_CONTEXTS; i++)
m_probability_tables->is_inter_prob()[i] = TRY(diff_update_prob(m_probability_tables->is_inter_prob()[i]));
return {};
}
DecoderErrorOr<void> Parser::frame_reference_mode()
{
auto compound_reference_allowed = false;
for (size_t i = 2; i <= REFS_PER_FRAME; i++) {
if (m_ref_frame_sign_bias[i] != m_ref_frame_sign_bias[1])
compound_reference_allowed = true;
}
if (compound_reference_allowed) {
auto non_single_reference = TRY_READ(m_bit_stream->read_literal(1));
if (non_single_reference == 0) {
m_reference_mode = SingleReference;
} else {
auto reference_select = TRY_READ(m_bit_stream->read_literal(1));
if (reference_select == 0)
m_reference_mode = CompoundReference;
else
m_reference_mode = ReferenceModeSelect;
setup_compound_reference_mode();
}
} else {
m_reference_mode = SingleReference;
}
return {};
}
DecoderErrorOr<void> Parser::frame_reference_mode_probs()
{
if (m_reference_mode == ReferenceModeSelect) {
for (auto i = 0; i < COMP_MODE_CONTEXTS; i++) {
auto& comp_mode_prob = m_probability_tables->comp_mode_prob();
comp_mode_prob[i] = TRY(diff_update_prob(comp_mode_prob[i]));
}
}
if (m_reference_mode != CompoundReference) {
for (auto i = 0; i < REF_CONTEXTS; i++) {
auto& single_ref_prob = m_probability_tables->single_ref_prob();
single_ref_prob[i][0] = TRY(diff_update_prob(single_ref_prob[i][0]));
single_ref_prob[i][1] = TRY(diff_update_prob(single_ref_prob[i][1]));
}
}
if (m_reference_mode != SingleReference) {
for (auto i = 0; i < REF_CONTEXTS; i++) {
auto& comp_ref_prob = m_probability_tables->comp_ref_prob();
comp_ref_prob[i] = TRY(diff_update_prob(comp_ref_prob[i]));
}
}
return {};
}
DecoderErrorOr<void> Parser::read_y_mode_probs()
{
for (auto i = 0; i < BLOCK_SIZE_GROUPS; i++) {
for (auto j = 0; j < INTRA_MODES - 1; j++) {
auto& y_mode_probs = m_probability_tables->y_mode_probs();
y_mode_probs[i][j] = TRY(diff_update_prob(y_mode_probs[i][j]));
}
}
return {};
}
DecoderErrorOr<void> Parser::read_partition_probs()
{
for (auto i = 0; i < PARTITION_CONTEXTS; i++) {
for (auto j = 0; j < PARTITION_TYPES - 1; j++) {
auto& partition_probs = m_probability_tables->partition_probs();
partition_probs[i][j] = TRY(diff_update_prob(partition_probs[i][j]));
}
}
return {};
}
DecoderErrorOr<void> Parser::mv_probs()
{
for (auto j = 0; j < MV_JOINTS - 1; j++) {
auto& mv_joint_probs = m_probability_tables->mv_joint_probs();
mv_joint_probs[j] = TRY(update_mv_prob(mv_joint_probs[j]));
}
for (auto i = 0; i < 2; i++) {
auto& mv_sign_prob = m_probability_tables->mv_sign_prob();
mv_sign_prob[i] = TRY(update_mv_prob(mv_sign_prob[i]));
for (auto j = 0; j < MV_CLASSES - 1; j++) {
auto& mv_class_probs = m_probability_tables->mv_class_probs();
mv_class_probs[i][j] = TRY(update_mv_prob(mv_class_probs[i][j]));
}
auto& mv_class0_bit_prob = m_probability_tables->mv_class0_bit_prob();
mv_class0_bit_prob[i] = TRY(update_mv_prob(mv_class0_bit_prob[i]));
for (auto j = 0; j < MV_OFFSET_BITS; j++) {
auto& mv_bits_prob = m_probability_tables->mv_bits_prob();
mv_bits_prob[i][j] = TRY(update_mv_prob(mv_bits_prob[i][j]));
}
}
for (auto i = 0; i < 2; i++) {
for (auto j = 0; j < CLASS0_SIZE; j++) {
for (auto k = 0; k < MV_FR_SIZE - 1; k++) {
auto& mv_class0_fr_probs = m_probability_tables->mv_class0_fr_probs();
mv_class0_fr_probs[i][j][k] = TRY(update_mv_prob(mv_class0_fr_probs[i][j][k]));
}
}
for (auto k = 0; k < MV_FR_SIZE - 1; k++) {
auto& mv_fr_probs = m_probability_tables->mv_fr_probs();
mv_fr_probs[i][k] = TRY(update_mv_prob(mv_fr_probs[i][k]));
}
}
if (m_allow_high_precision_mv) {
for (auto i = 0; i < 2; i++) {
auto& mv_class0_hp_prob = m_probability_tables->mv_class0_hp_prob();
auto& mv_hp_prob = m_probability_tables->mv_hp_prob();
mv_class0_hp_prob[i] = TRY(update_mv_prob(mv_class0_hp_prob[i]));
mv_hp_prob[i] = TRY(update_mv_prob(mv_hp_prob[i]));
}
}
return {};
}
DecoderErrorOr<u8> Parser::update_mv_prob(u8 prob)
{
if (TRY_READ(m_bit_stream->read_bool(252))) {
return (TRY_READ(m_bit_stream->read_literal(7)) << 1u) | 1u;
}
return prob;
}
void Parser::setup_compound_reference_mode()
{
if (m_ref_frame_sign_bias[LastFrame] == m_ref_frame_sign_bias[GoldenFrame]) {
m_comp_fixed_ref = AltRefFrame;
m_comp_var_ref[0] = LastFrame;
m_comp_var_ref[1] = GoldenFrame;
} else if (m_ref_frame_sign_bias[LastFrame] == m_ref_frame_sign_bias[AltRefFrame]) {
m_comp_fixed_ref = GoldenFrame;
m_comp_var_ref[0] = LastFrame;
m_comp_var_ref[1] = AltRefFrame;
} else {
m_comp_fixed_ref = LastFrame;
m_comp_var_ref[0] = GoldenFrame;
m_comp_var_ref[1] = AltRefFrame;
}
}
void Parser::cleanup_tile_allocations()
{
// FIXME: Is this necessary? Data should be truncated and
// overwritten by the next tile.
m_skips.clear_with_capacity();
m_tx_sizes.clear_with_capacity();
m_mi_sizes.clear_with_capacity();
m_y_modes.clear_with_capacity();
m_segment_ids.clear_with_capacity();
m_ref_frames.clear_with_capacity();
m_interp_filters.clear_with_capacity();
m_mvs.clear_with_capacity();
m_sub_mvs.clear_with_capacity();
m_sub_modes.clear_with_capacity();
}
DecoderErrorOr<void> Parser::allocate_tile_data()
{
auto dimensions = m_mi_rows * m_mi_cols;
cleanup_tile_allocations();
DECODER_TRY_ALLOC(m_skips.try_resize_and_keep_capacity(dimensions));
DECODER_TRY_ALLOC(m_tx_sizes.try_resize_and_keep_capacity(dimensions));
DECODER_TRY_ALLOC(m_mi_sizes.try_resize_and_keep_capacity(dimensions));
DECODER_TRY_ALLOC(m_y_modes.try_resize_and_keep_capacity(dimensions));
DECODER_TRY_ALLOC(m_segment_ids.try_resize_and_keep_capacity(dimensions));
DECODER_TRY_ALLOC(m_ref_frames.try_resize_and_keep_capacity(dimensions));
DECODER_TRY_ALLOC(m_interp_filters.try_resize_and_keep_capacity(dimensions));
DECODER_TRY_ALLOC(m_mvs.try_resize_and_keep_capacity(dimensions));
DECODER_TRY_ALLOC(m_sub_mvs.try_resize_and_keep_capacity(dimensions));
DECODER_TRY_ALLOC(m_sub_modes.try_resize_and_keep_capacity(dimensions));
return {};
}
DecoderErrorOr<void> Parser::decode_tiles()
{
auto tile_cols = 1 << m_tile_cols_log2;
auto tile_rows = 1 << m_tile_rows_log2;
TRY(allocate_tile_data());
clear_above_context();
for (auto tile_row = 0; tile_row < tile_rows; tile_row++) {
for (auto tile_col = 0; tile_col < tile_cols; tile_col++) {
auto last_tile = (tile_row == tile_rows - 1) && (tile_col == tile_cols - 1);
u64 tile_size;
if (last_tile)
tile_size = m_bit_stream->bytes_remaining();
else
tile_size = TRY_READ(m_bit_stream->read_bits(32));
m_mi_row_start = get_tile_offset(tile_row, m_mi_rows, m_tile_rows_log2);
m_mi_row_end = get_tile_offset(tile_row + 1, m_mi_rows, m_tile_rows_log2);
m_mi_col_start = get_tile_offset(tile_col, m_mi_cols, m_tile_cols_log2);
m_mi_col_end = get_tile_offset(tile_col + 1, m_mi_cols, m_tile_cols_log2);
TRY_READ(m_bit_stream->init_bool(tile_size));
TRY(decode_tile());
TRY_READ(m_bit_stream->exit_bool());
}
}
return {};
}
template<typename T>
void Parser::clear_context(Vector<T>& context, size_t size)
{
context.resize_and_keep_capacity(size);
__builtin_memset(context.data(), 0, sizeof(T) * size);
}
template<typename T>
void Parser::clear_context(Vector<Vector<T>>& context, size_t outer_size, size_t inner_size)
{
if (context.size() < outer_size)
context.resize(outer_size);
for (auto& sub_vector : context)
clear_context(sub_vector, inner_size);
}
void Parser::clear_above_context()
{
for (auto i = 0u; i < m_above_nonzero_context.size(); i++)
clear_context(m_above_nonzero_context[i], 2 * m_mi_cols);
clear_context(m_above_seg_pred_context, m_mi_cols);
clear_context(m_above_partition_context, m_sb64_cols * 8);
}
u32 Parser::get_tile_offset(u32 tile_num, u32 mis, u32 tile_size_log2)
{
u32 super_blocks = (mis + 7) >> 3u;
u32 offset = ((tile_num * super_blocks) >> tile_size_log2) << 3u;
return min(offset, mis);
}
DecoderErrorOr<void> Parser::decode_tile()
{
for (auto row = m_mi_row_start; row < m_mi_row_end; row += 8) {
clear_left_context();
for (auto col = m_mi_col_start; col < m_mi_col_end; col += 8) {
TRY(decode_partition(row, col, Block_64x64));
}
}
return {};
}
void Parser::clear_left_context()
{
for (auto i = 0u; i < m_left_nonzero_context.size(); i++)
clear_context(m_left_nonzero_context[i], 2 * m_mi_rows);
clear_context(m_left_seg_pred_context, m_mi_rows);
clear_context(m_left_partition_context, m_sb64_rows * 8);
}
DecoderErrorOr<void> Parser::decode_partition(u32 row, u32 col, BlockSubsize block_subsize)
{
if (row >= m_mi_rows || col >= m_mi_cols)
return {};
m_block_subsize = block_subsize;
m_num_8x8 = num_8x8_blocks_wide_lookup[block_subsize];
auto half_block_8x8 = m_num_8x8 >> 1;
m_has_rows = (row + half_block_8x8) < m_mi_rows;
m_has_cols = (col + half_block_8x8) < m_mi_cols;
m_row = row;
m_col = col;
auto partition = TRY_READ(TreeParser::parse_partition(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, m_has_rows, m_has_cols, m_block_subsize, m_num_8x8, m_above_partition_context, m_left_partition_context, row, col, m_frame_is_intra));
auto subsize = subsize_lookup[partition][block_subsize];
if (subsize < Block_8x8 || partition == PartitionNone) {
TRY(decode_block(row, col, subsize));
} else if (partition == PartitionHorizontal) {
TRY(decode_block(row, col, subsize));
if (m_has_rows)
TRY(decode_block(row + half_block_8x8, col, subsize));
} else if (partition == PartitionVertical) {
TRY(decode_block(row, col, subsize));
if (m_has_cols)
TRY(decode_block(row, col + half_block_8x8, subsize));
} else {
TRY(decode_partition(row, col, subsize));
TRY(decode_partition(row, col + half_block_8x8, subsize));
TRY(decode_partition(row + half_block_8x8, col, subsize));
TRY(decode_partition(row + half_block_8x8, col + half_block_8x8, subsize));
}
if (block_subsize == Block_8x8 || partition != PartitionSplit) {
auto above_context = 15 >> b_width_log2_lookup[subsize];
auto left_context = 15 >> b_height_log2_lookup[subsize];
for (size_t i = 0; i < m_num_8x8; i++) {
m_above_partition_context[col + i] = above_context;
m_left_partition_context[row + i] = left_context;
}
}
return {};
}
size_t Parser::get_image_index(u32 row, u32 column)
{
VERIFY(row < m_mi_rows && column < m_mi_cols);
return row * m_mi_cols + column;
}
DecoderErrorOr<void> Parser::decode_block(u32 row, u32 col, BlockSubsize subsize)
{
m_mi_row = row;
m_mi_col = col;
m_mi_size = subsize;
m_available_u = row > 0;
m_available_l = col > m_mi_col_start;
TRY(mode_info());
m_eob_total = 0;
TRY(residual());
if (m_is_inter && subsize >= Block_8x8 && m_eob_total == 0)
m_skip = true;
// Spec doesn't specify whether it might index outside the frame here, but it seems that it can. Ensure that we don't
// write out of bounds. This check seems consistent with libvpx.
// See here:
// https://github.com/webmproject/libvpx/blob/705bf9de8c96cfe5301451f1d7e5c90a41c64e5f/vp9/decoder/vp9_decodeframe.c#L917
auto maximum_block_y = min<u32>(num_8x8_blocks_high_lookup[subsize], m_mi_rows - row);
auto maximum_block_x = min<u32>(num_8x8_blocks_wide_lookup[subsize], m_mi_cols - col);
for (size_t y = 0; y < maximum_block_y; y++) {
for (size_t x = 0; x < maximum_block_x; x++) {
auto pos = get_image_index(row + y, col + x);
m_skips[pos] = m_skip;
m_tx_sizes[pos] = m_tx_size;
m_mi_sizes[pos] = m_mi_size;
m_y_modes[pos] = m_y_mode;
m_segment_ids[pos] = m_segment_id;
for (size_t ref_list = 0; ref_list < 2; ref_list++)
m_ref_frames[pos][ref_list] = m_ref_frame[ref_list];
if (m_is_inter) {
m_interp_filters[pos] = m_interp_filter;
for (size_t ref_list = 0; ref_list < 2; ref_list++) {
// FIXME: Can we just store all the sub_mvs and then look up
// the main one by index 3?
m_mvs[pos][ref_list] = m_block_mvs[ref_list][3];
for (size_t b = 0; b < 4; b++)
m_sub_mvs[pos][ref_list][b] = m_block_mvs[ref_list][b];
}
} else {
for (size_t b = 0; b < 4; b++)
m_sub_modes[pos][b] = static_cast<PredictionMode>(m_block_sub_modes[b]);
}
}
}
return {};
}
DecoderErrorOr<void> Parser::mode_info()
{
if (m_frame_is_intra)
TRY(intra_frame_mode_info());
else
TRY(inter_frame_mode_info());
return {};
}
DecoderErrorOr<void> Parser::intra_frame_mode_info()
{
TRY(intra_segment_id());
TRY(read_skip());
TRY(read_tx_size(true));
m_ref_frame[0] = IntraFrame;
m_ref_frame[1] = None;
m_is_inter = false;
// FIXME: This if statement is also present in parse_default_intra_mode. The selection of parameters for
// the probability table lookup should be inlined here.
if (m_mi_size >= Block_8x8) {
// FIXME: This context should be available in the block setup. Make a struct to store the context
// that is needed to call the tree parses and set it in decode_block().
auto above_context = Optional<Array<PredictionMode, 4> const&>();
auto left_context = Optional<Array<PredictionMode, 4> const&>();
if (m_available_u)
above_context = m_sub_modes[get_image_index(m_mi_row - 1, m_mi_col)];
if (m_available_l)
left_context = m_sub_modes[get_image_index(m_mi_row, m_mi_col - 1)];
m_default_intra_mode = TRY_READ(TreeParser::parse_default_intra_mode(*m_bit_stream, *m_probability_tables, m_mi_size, above_context, left_context, m_block_sub_modes, 0, 0));
m_y_mode = m_default_intra_mode;
for (auto& block_sub_mode : m_block_sub_modes)
block_sub_mode = m_y_mode;
} else {
m_num_4x4_w = num_4x4_blocks_wide_lookup[m_mi_size];
m_num_4x4_h = num_4x4_blocks_high_lookup[m_mi_size];
for (auto idy = 0; idy < 2; idy += m_num_4x4_h) {
for (auto idx = 0; idx < 2; idx += m_num_4x4_w) {
// FIXME: See the FIXME above.
auto above_context = Optional<Array<PredictionMode, 4> const&>();
auto left_context = Optional<Array<PredictionMode, 4> const&>();
if (m_available_u)
above_context = m_sub_modes[get_image_index(m_mi_row - 1, m_mi_col)];
if (m_available_l)
left_context = m_sub_modes[get_image_index(m_mi_row, m_mi_col - 1)];
m_default_intra_mode = TRY_READ(TreeParser::parse_default_intra_mode(*m_bit_stream, *m_probability_tables, m_mi_size, above_context, left_context, m_block_sub_modes, idx, idy));
for (auto y = 0; y < m_num_4x4_h; y++) {
for (auto x = 0; x < m_num_4x4_w; x++) {
auto index = (idy + y) * 2 + idx + x;
m_block_sub_modes[index] = m_default_intra_mode;
}
}
}
}
m_y_mode = m_default_intra_mode;
}
m_uv_mode = TRY_READ(TreeParser::parse_default_uv_mode(*m_bit_stream, *m_probability_tables, m_y_mode));
return {};
}
DecoderErrorOr<void> Parser::intra_segment_id()
{
if (m_segmentation_enabled && m_segmentation_update_map)
m_segment_id = TRY_READ(TreeParser::parse_segment_id(*m_bit_stream, m_segmentation_tree_probs));
else
m_segment_id = 0;
return {};
}
DecoderErrorOr<void> Parser::read_skip()
{
if (seg_feature_active(SEG_LVL_SKIP)) {
m_skip = true;
} else {
Optional<bool> above_skip = m_available_u ? m_skips[get_image_index(m_mi_row - 1, m_mi_col)] : Optional<bool>();
Optional<bool> left_skip = m_available_l ? m_skips[get_image_index(m_mi_row, m_mi_col - 1)] : Optional<bool>();
m_skip = TRY_READ(TreeParser::parse_skip(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, above_skip, left_skip));
}
return {};
}
bool Parser::seg_feature_active(u8 feature)
{
return m_segmentation_enabled && m_feature_enabled[m_segment_id][feature];
}
DecoderErrorOr<void> Parser::read_tx_size(bool allow_select)
{
m_max_tx_size = max_txsize_lookup[m_mi_size];
if (allow_select && m_tx_mode == TXModeSelect && m_mi_size >= Block_8x8)
m_tx_size = TRY_READ(m_tree_parser->parse_tree<TXSize>(SyntaxElementType::TXSize));
else
m_tx_size = min(m_max_tx_size, tx_mode_to_biggest_tx_size[m_tx_mode]);
return {};
}
DecoderErrorOr<void> Parser::inter_frame_mode_info()
{
m_left_ref_frame[0] = m_available_l ? m_ref_frames[get_image_index(m_mi_row, m_mi_col - 1)][0] : IntraFrame;
m_above_ref_frame[0] = m_available_u ? m_ref_frames[get_image_index(m_mi_row - 1, m_mi_col)][0] : IntraFrame;
m_left_ref_frame[1] = m_available_l ? m_ref_frames[get_image_index(m_mi_row, m_mi_col - 1)][1] : None;
m_above_ref_frame[1] = m_available_u ? m_ref_frames[get_image_index(m_mi_row - 1, m_mi_col)][1] : None;
m_left_intra = m_left_ref_frame[0] <= IntraFrame;
m_above_intra = m_above_ref_frame[0] <= IntraFrame;
m_left_single = m_left_ref_frame[1] <= None;
m_above_single = m_above_ref_frame[1] <= None;
TRY(inter_segment_id());
TRY(read_skip());
TRY(read_is_inter());
TRY(read_tx_size(!m_skip || !m_is_inter));
if (m_is_inter) {
TRY(inter_block_mode_info());
} else {
TRY(intra_block_mode_info());
}
return {};
}
DecoderErrorOr<void> Parser::inter_segment_id()
{
if (!m_segmentation_enabled) {
m_segment_id = 0;
return {};
}
auto predicted_segment_id = get_segment_id();
if (!m_segmentation_update_map) {
m_segment_id = predicted_segment_id;
return {};
}
if (!m_segmentation_temporal_update) {
m_segment_id = TRY_READ(TreeParser::parse_segment_id(*m_bit_stream, m_segmentation_tree_probs));
return {};
}
auto seg_id_predicted = TRY_READ(TreeParser::parse_segment_id_predicted(*m_bit_stream, m_segmentation_pred_prob, m_left_seg_pred_context[m_mi_row], m_above_seg_pred_context[m_mi_col]));
if (seg_id_predicted)
m_segment_id = predicted_segment_id;
else
m_segment_id = TRY_READ(TreeParser::parse_segment_id(*m_bit_stream, m_segmentation_tree_probs));
for (size_t i = 0; i < num_8x8_blocks_wide_lookup[m_mi_size]; i++) {
auto index = m_mi_col + i;
// (7.4.1) AboveSegPredContext[ i ] only needs to be set to 0 for i = 0..MiCols-1.
if (index < m_above_seg_pred_context.size())
m_above_seg_pred_context[index] = seg_id_predicted;
}
for (size_t i = 0; i < num_8x8_blocks_high_lookup[m_mi_size]; i++) {
auto index = m_mi_row + i;
// (7.4.1) LeftSegPredContext[ i ] only needs to be set to 0 for i = 0..MiRows-1.
if (index < m_above_seg_pred_context.size())
m_left_seg_pred_context[m_mi_row + i] = seg_id_predicted;
}
return {};
}
u8 Parser::get_segment_id()
{
auto bw = num_8x8_blocks_wide_lookup[m_mi_size];
auto bh = num_8x8_blocks_high_lookup[m_mi_size];
auto xmis = min(m_mi_cols - m_mi_col, (u32)bw);
auto ymis = min(m_mi_rows - m_mi_row, (u32)bh);
u8 segment = 7;
for (size_t y = 0; y < ymis; y++) {
for (size_t x = 0; x < xmis; x++) {
segment = min(segment, m_prev_segment_ids[(m_mi_row + y) + (m_mi_col + x)]);
}
}
return segment;
}
DecoderErrorOr<void> Parser::read_is_inter()
{
if (seg_feature_active(SEG_LVL_REF_FRAME))
m_is_inter = m_feature_data[m_segment_id][SEG_LVL_REF_FRAME] != IntraFrame;
else
m_is_inter = TRY_READ(m_tree_parser->parse_tree<bool>(SyntaxElementType::IsInter));
return {};
}
DecoderErrorOr<void> Parser::intra_block_mode_info()
{
m_ref_frame[0] = IntraFrame;
m_ref_frame[1] = None;
if (m_mi_size >= Block_8x8) {
m_y_mode = TRY_READ(TreeParser::parse_intra_mode(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, m_mi_size));
for (auto& block_sub_mode : m_block_sub_modes)
block_sub_mode = m_y_mode;
} else {
m_num_4x4_w = num_4x4_blocks_wide_lookup[m_mi_size];
m_num_4x4_h = num_4x4_blocks_high_lookup[m_mi_size];
PredictionMode sub_intra_mode;
for (auto idy = 0; idy < 2; idy += m_num_4x4_h) {
for (auto idx = 0; idx < 2; idx += m_num_4x4_w) {
sub_intra_mode = TRY_READ(TreeParser::parse_sub_intra_mode(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter));
for (auto y = 0; y < m_num_4x4_h; y++) {
for (auto x = 0; x < m_num_4x4_w; x++)
m_block_sub_modes[(idy + y) * 2 + idx + x] = sub_intra_mode;
}
}
}
m_y_mode = sub_intra_mode;
}
m_uv_mode = TRY_READ(TreeParser::parse_uv_mode(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, m_y_mode));
return {};
}
DecoderErrorOr<void> Parser::inter_block_mode_info()
{
TRY(read_ref_frames());
for (auto j = 0; j < 2; j++) {
if (m_ref_frame[j] > IntraFrame) {
find_mv_refs(m_ref_frame[j], -1);
find_best_ref_mvs(j);
}
}
auto is_compound = m_ref_frame[1] > IntraFrame;
if (seg_feature_active(SEG_LVL_SKIP)) {
m_y_mode = PredictionMode::ZeroMv;
} else if (m_mi_size >= Block_8x8) {
m_y_mode = TRY_READ(TreeParser::parse_inter_mode(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, m_mode_context[m_ref_frame[0]]));
}
if (m_interpolation_filter == Switchable) {
Optional<ReferenceFrameType> above_ref_frame = m_available_u ? m_ref_frames[get_image_index(m_mi_row - 1, m_mi_col)][0] : Optional<ReferenceFrameType>();
Optional<ReferenceFrameType> left_ref_frame = m_available_l ? m_ref_frames[get_image_index(m_mi_row, m_mi_col - 1)][0] : Optional<ReferenceFrameType>();
Optional<InterpolationFilter> above_interpolation_filter = m_available_u ? m_interp_filters[get_image_index(m_mi_row - 1, m_mi_col)] : Optional<InterpolationFilter>();
Optional<InterpolationFilter> left_interpolation_filter = m_available_l ? m_interp_filters[get_image_index(m_mi_row, m_mi_col - 1)] : Optional<InterpolationFilter>();
m_interp_filter = TRY_READ(TreeParser::parse_interpolation_filter(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, above_ref_frame, left_ref_frame, above_interpolation_filter, left_interpolation_filter));
} else {
m_interp_filter = m_interpolation_filter;
}
if (m_mi_size < Block_8x8) {
m_num_4x4_w = num_4x4_blocks_wide_lookup[m_mi_size];
m_num_4x4_h = num_4x4_blocks_high_lookup[m_mi_size];
for (auto idy = 0; idy < 2; idy += m_num_4x4_h) {
for (auto idx = 0; idx < 2; idx += m_num_4x4_w) {
m_y_mode = TRY_READ(TreeParser::parse_inter_mode(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, m_mode_context[m_ref_frame[0]]));
if (m_y_mode == PredictionMode::NearestMv || m_y_mode == PredictionMode::NearMv) {
for (auto j = 0; j < 1 + is_compound; j++)
append_sub8x8_mvs(idy * 2 + idx, j);
}
TRY(assign_mv(is_compound));
for (auto y = 0; y < m_num_4x4_h; y++) {
for (auto x = 0; x < m_num_4x4_w; x++) {
auto block = (idy + y) * 2 + idx + x;
for (auto ref_list = 0; ref_list < 1 + is_compound; ref_list++) {
m_block_mvs[ref_list][block] = m_mv[ref_list];
}
}
}
}
}
return {};
}
TRY(assign_mv(is_compound));
for (auto ref_list = 0; ref_list < 1 + is_compound; ref_list++) {
for (auto block = 0; block < 4; block++) {
m_block_mvs[ref_list][block] = m_mv[ref_list];
}
}
return {};
}
DecoderErrorOr<void> Parser::read_ref_frames()
{
if (seg_feature_active(SEG_LVL_REF_FRAME)) {
m_ref_frame[0] = static_cast<ReferenceFrameType>(m_feature_data[m_segment_id][SEG_LVL_REF_FRAME]);
m_ref_frame[1] = None;
return {};
}
ReferenceMode comp_mode;
if (m_reference_mode == ReferenceModeSelect)
comp_mode = TRY_READ(m_tree_parser->parse_tree<ReferenceMode>(SyntaxElementType::CompMode));
else
comp_mode = m_reference_mode;
if (comp_mode == CompoundReference) {
auto idx = m_ref_frame_sign_bias[m_comp_fixed_ref];
auto comp_ref = TRY_READ(m_tree_parser->parse_tree(SyntaxElementType::CompRef));
m_ref_frame[idx] = m_comp_fixed_ref;
m_ref_frame[!idx] = m_comp_var_ref[comp_ref];
return {};
}
auto single_ref_p1 = TRY_READ(m_tree_parser->parse_tree<bool>(SyntaxElementType::SingleRefP1));
if (single_ref_p1) {
auto single_ref_p2 = TRY_READ(m_tree_parser->parse_tree<bool>(SyntaxElementType::SingleRefP2));
m_ref_frame[0] = single_ref_p2 ? AltRefFrame : GoldenFrame;
} else {
m_ref_frame[0] = LastFrame;
}
m_ref_frame[1] = None;
return {};
}
DecoderErrorOr<void> Parser::assign_mv(bool is_compound)
{
m_mv[1] = {};
for (auto i = 0; i < 1 + is_compound; i++) {
if (m_y_mode == PredictionMode::NewMv) {
TRY(read_mv(i));
} else if (m_y_mode == PredictionMode::NearestMv) {
m_mv[i] = m_nearest_mv[i];
} else if (m_y_mode == PredictionMode::NearMv) {
m_mv[i] = m_near_mv[i];
} else {
m_mv[i] = {};
}
}
return {};
}
DecoderErrorOr<void> Parser::read_mv(u8 ref)
{
m_use_hp = m_allow_high_precision_mv && use_mv_hp(m_best_mv[ref]);
MotionVector diff_mv;
auto mv_joint = TRY_READ(m_tree_parser->parse_tree<MvJoint>(SyntaxElementType::MVJoint));
if (mv_joint == MvJointHzvnz || mv_joint == MvJointHnzvnz)
diff_mv.set_row(TRY(read_mv_component(0)));
if (mv_joint == MvJointHnzvz || mv_joint == MvJointHnzvnz)
diff_mv.set_column(TRY(read_mv_component(1)));
// FIXME: We probably don't need to assign MVs to a field, these can just
// be returned and assigned where they are requested.
m_mv[ref] = m_best_mv[ref] + diff_mv;
return {};
}
DecoderErrorOr<i32> Parser::read_mv_component(u8 component)
{
m_tree_parser->set_mv_component(component);
auto mv_sign = TRY_READ(m_tree_parser->parse_tree<bool>(SyntaxElementType::MVSign));
auto mv_class = TRY_READ(m_tree_parser->parse_tree<MvClass>(SyntaxElementType::MVClass));
u32 mag;
if (mv_class == MvClass0) {
u32 mv_class0_bit = TRY_READ(m_tree_parser->parse_tree<bool>(SyntaxElementType::MVClass0Bit));
u32 mv_class0_fr = TRY_READ(m_tree_parser->parse_mv_class0_fr(mv_class0_bit));
u32 mv_class0_hp = TRY_READ(m_tree_parser->parse_tree<bool>(SyntaxElementType::MVClass0HP));
mag = ((mv_class0_bit << 3) | (mv_class0_fr << 1) | mv_class0_hp) + 1;
} else {
u32 d = 0;
for (u8 i = 0; i < mv_class; i++) {
u32 mv_bit = TRY_READ(m_tree_parser->parse_mv_bit(i));
d |= mv_bit << i;
}
mag = CLASS0_SIZE << (mv_class + 2);
u32 mv_fr = TRY_READ(m_tree_parser->parse_tree<u8>(SyntaxElementType::MVFR));
u32 mv_hp = TRY_READ(m_tree_parser->parse_tree<bool>(SyntaxElementType::MVHP));
mag += ((d << 3) | (mv_fr << 1) | mv_hp) + 1;
}
return (mv_sign ? -1 : 1) * static_cast<i32>(mag);
}
Gfx::Point<size_t> Parser::get_decoded_point_for_plane(u32 column, u32 row, u8 plane)
{
if (plane == 0)
return { column * 8, row * 8 };
return { (column * 8) >> m_subsampling_x, (row * 8) >> m_subsampling_y };
}
Gfx::Size<size_t> Parser::get_decoded_size_for_plane(u8 plane)
{
auto point = get_decoded_point_for_plane(m_mi_cols, m_mi_rows, plane);
return { point.x(), point.y() };
}
DecoderErrorOr<void> Parser::residual()
{
auto block_size = m_mi_size < Block_8x8 ? Block_8x8 : static_cast<BlockSubsize>(m_mi_size);
for (u8 plane = 0; plane < 3; plane++) {
auto tx_size = (plane > 0) ? get_uv_tx_size() : m_tx_size;
auto step = 1 << tx_size;
auto plane_size = get_plane_block_size(block_size, plane);
auto num_4x4_w = num_4x4_blocks_wide_lookup[plane_size];
auto num_4x4_h = num_4x4_blocks_high_lookup[plane_size];
auto sub_x = (plane > 0) ? m_subsampling_x : 0;
auto sub_y = (plane > 0) ? m_subsampling_y : 0;
auto base_x = (m_mi_col * 8) >> sub_x;
auto base_y = (m_mi_row * 8) >> sub_y;
if (m_is_inter) {
if (m_mi_size < Block_8x8) {
for (auto y = 0; y < num_4x4_h; y++) {
for (auto x = 0; x < num_4x4_w; x++) {
TRY(m_decoder.predict_inter(plane, base_x + (4 * x), base_y + (4 * y), 4, 4, (y * num_4x4_w) + x));
}
}
} else {
TRY(m_decoder.predict_inter(plane, base_x, base_y, num_4x4_w * 4, num_4x4_h * 4, 0));
}
}
auto max_x = (m_mi_cols * 8) >> sub_x;
auto max_y = (m_mi_rows * 8) >> sub_y;
auto block_index = 0;
for (auto y = 0; y < num_4x4_h; y += step) {
for (auto x = 0; x < num_4x4_w; x += step) {
auto start_x = base_x + (4 * x);
auto start_y = base_y + (4 * y);
auto non_zero = false;
if (start_x < max_x && start_y < max_y) {
if (!m_is_inter)
TRY(m_decoder.predict_intra(plane, start_x, start_y, m_available_l || x > 0, m_available_u || y > 0, (x + step) < num_4x4_w, tx_size, block_index));
if (!m_skip) {
non_zero = TRY(tokens(plane, start_x, start_y, tx_size, block_index));
TRY(m_decoder.reconstruct(plane, start_x, start_y, tx_size));
}
}
auto& above_sub_context = m_above_nonzero_context[plane];
auto above_sub_context_index = start_x >> 2;
auto above_sub_context_end = min(above_sub_context_index + step, above_sub_context.size());
for (; above_sub_context_index < above_sub_context_end; above_sub_context_index++)
above_sub_context[above_sub_context_index] = non_zero;
auto& left_sub_context = m_left_nonzero_context[plane];
auto left_sub_context_index = start_y >> 2;
auto left_sub_context_end = min(left_sub_context_index + step, left_sub_context.size());
for (; left_sub_context_index < left_sub_context_end; left_sub_context_index++)
left_sub_context[left_sub_context_index] = non_zero;
block_index++;
}
}
}
return {};
}
TXSize Parser::get_uv_tx_size()
{
if (m_mi_size < Block_8x8)
return TX_4x4;
return min(m_tx_size, max_txsize_lookup[get_plane_block_size(m_mi_size, 1)]);
}
BlockSubsize Parser::get_plane_block_size(u32 subsize, u8 plane)
{
auto sub_x = (plane > 0) ? m_subsampling_x : 0;
auto sub_y = (plane > 0) ? m_subsampling_y : 0;
return ss_size_lookup[subsize][sub_x][sub_y];
}
DecoderErrorOr<bool> Parser::tokens(size_t plane, u32 start_x, u32 start_y, TXSize tx_size, u32 block_index)
{
m_tree_parser->set_start_x_and_y(start_x, start_y);
size_t segment_eob = 16 << (tx_size << 1);
auto scan = get_scan(plane, tx_size, block_index);
auto check_eob = true;
size_t c = 0;
for (; c < segment_eob; c++) {
auto pos = scan[c];
auto band = (tx_size == TX_4x4) ? coefband_4x4[c] : coefband_8x8plus[c];
m_tree_parser->set_tokens_variables(band, c, plane, tx_size, pos);
if (check_eob) {
auto more_coefs = TRY_READ(m_tree_parser->parse_tree<bool>(SyntaxElementType::MoreCoefs));
if (!more_coefs)
break;
}
auto token = TRY_READ(m_tree_parser->parse_tree<Token>(SyntaxElementType::Token));
m_token_cache[pos] = energy_class[token];
if (token == ZeroToken) {
m_tokens[pos] = 0;
check_eob = false;
} else {
i32 coef = TRY(read_coef(token));
auto sign_bit = TRY_READ(m_bit_stream->read_literal(1));
m_tokens[pos] = sign_bit ? -coef : coef;
check_eob = true;
}
}
auto non_zero = c > 0;
m_eob_total += non_zero;
for (size_t i = c; i < segment_eob; i++)
m_tokens[scan[i]] = 0;
return non_zero;
}
u32 const* Parser::get_scan(size_t plane, TXSize tx_size, u32 block_index)
{
if (plane > 0 || tx_size == TX_32x32) {
m_tx_type = DCT_DCT;
} else if (tx_size == TX_4x4) {
if (m_lossless || m_is_inter)
m_tx_type = DCT_DCT;
else
m_tx_type = mode_to_txfm_map[to_underlying(m_mi_size < Block_8x8 ? m_block_sub_modes[block_index] : m_y_mode)];
} else {
m_tx_type = mode_to_txfm_map[to_underlying(m_y_mode)];
}
if (tx_size == TX_4x4) {
if (m_tx_type == ADST_DCT)
return row_scan_4x4;
if (m_tx_type == DCT_ADST)
return col_scan_4x4;
return default_scan_4x4;
}
if (tx_size == TX_8x8) {
if (m_tx_type == ADST_DCT)
return row_scan_8x8;
if (m_tx_type == DCT_ADST)
return col_scan_8x8;
return default_scan_8x8;
}
if (tx_size == TX_16x16) {
if (m_tx_type == ADST_DCT)
return row_scan_16x16;
if (m_tx_type == DCT_ADST)
return col_scan_16x16;
return default_scan_16x16;
}
return default_scan_32x32;
}
DecoderErrorOr<i32> Parser::read_coef(Token token)
{
auto cat = extra_bits[token][0];
auto num_extra = extra_bits[token][1];
u32 coef = extra_bits[token][2];
if (token == DctValCat6) {
for (size_t e = 0; e < (u8)(m_bit_depth - 8); e++) {
auto high_bit = TRY_READ(m_bit_stream->read_bool(255));
coef += high_bit << (5 + m_bit_depth - e);
}
}
for (size_t e = 0; e < num_extra; e++) {
auto coef_bit = TRY_READ(m_bit_stream->read_bool(cat_probs[cat][e]));
coef += coef_bit << (num_extra - 1 - e);
}
return coef;
}
bool Parser::is_inside(i32 row, i32 column)
{
if (row < 0)
return false;
if (column < 0)
return false;
u32 row_positive = row;
u32 column_positive = column;
return row_positive < m_mi_rows && column_positive >= m_mi_col_start && column_positive < m_mi_col_end;
}
void Parser::add_mv_ref_list(u8 ref_list)
{
if (m_ref_mv_count >= 2)
return;
if (m_ref_mv_count > 0 && m_candidate_mv[ref_list] == m_ref_list_mv[0])
return;
m_ref_list_mv[m_ref_mv_count] = m_candidate_mv[ref_list];
m_ref_mv_count++;
}
void Parser::get_block_mv(u32 candidate_row, u32 candidate_column, u8 ref_list, bool use_prev)
{
auto index = get_image_index(candidate_row, candidate_column);
if (use_prev) {
m_candidate_mv[ref_list] = m_prev_mvs[index][ref_list];
m_candidate_frame[ref_list] = m_prev_ref_frames[index][ref_list];
} else {
m_candidate_mv[ref_list] = m_mvs[index][ref_list];
m_candidate_frame[ref_list] = m_ref_frames[index][ref_list];
}
}
void Parser::if_same_ref_frame_add_mv(u32 candidate_row, u32 candidate_column, ReferenceFrameType ref_frame, bool use_prev)
{
for (auto ref_list = 0u; ref_list < 2; ref_list++) {
get_block_mv(candidate_row, candidate_column, ref_list, use_prev);
if (m_candidate_frame[ref_list] == ref_frame) {
add_mv_ref_list(ref_list);
return;
}
}
}
void Parser::scale_mv(u8 ref_list, ReferenceFrameType ref_frame)
{
auto candidate_frame = m_candidate_frame[ref_list];
if (m_ref_frame_sign_bias[candidate_frame] != m_ref_frame_sign_bias[ref_frame])
m_candidate_mv[ref_list] *= -1;
}
void Parser::if_diff_ref_frame_add_mv(u32 candidate_row, u32 candidate_column, ReferenceFrameType ref_frame, bool use_prev)
{
for (auto ref_list = 0u; ref_list < 2; ref_list++)
get_block_mv(candidate_row, candidate_column, ref_list, use_prev);
auto mvs_are_same = m_candidate_mv[0] == m_candidate_mv[1];
if (m_candidate_frame[0] > ReferenceFrameType::IntraFrame && m_candidate_frame[0] != ref_frame) {
scale_mv(0, ref_frame);
add_mv_ref_list(0);
}
if (m_candidate_frame[1] > ReferenceFrameType::IntraFrame && m_candidate_frame[1] != ref_frame && !mvs_are_same) {
scale_mv(1, ref_frame);
add_mv_ref_list(1);
}
}
MotionVector Parser::clamp_mv(MotionVector vector, i32 border)
{
i32 blocks_high = num_8x8_blocks_high_lookup[m_mi_size];
// Casts must be done here to prevent subtraction underflow from wrapping the values.
i32 mb_to_top_edge = -8 * (static_cast<i32>(m_mi_row) * MI_SIZE);
i32 mb_to_bottom_edge = 8 * ((static_cast<i32>(m_mi_rows) - blocks_high - static_cast<i32>(m_mi_row)) * MI_SIZE);
i32 blocks_wide = num_8x8_blocks_wide_lookup[m_mi_size];
i32 mb_to_left_edge = -8 * (static_cast<i32>(m_mi_col) * MI_SIZE);
i32 mb_to_right_edge = 8 * ((static_cast<i32>(m_mi_cols) - blocks_wide - static_cast<i32>(m_mi_col)) * MI_SIZE);
return {
clip_3(mb_to_top_edge - border, mb_to_bottom_edge + border, vector.row()),
clip_3(mb_to_left_edge - border, mb_to_right_edge + border, vector.column())
};
}
void Parser::clamp_mv_ref(u8 i)
{
MotionVector& vector = m_ref_list_mv[i];
vector = clamp_mv(vector, MV_BORDER);
}
// 6.5.1 Find MV refs syntax
void Parser::find_mv_refs(ReferenceFrameType reference_frame, i32 block)
{
m_ref_mv_count = 0;
bool different_ref_found = false;
u8 context_counter = 0;
m_ref_list_mv[0] = {};
m_ref_list_mv[1] = {};
MotionVector base_coordinates = MotionVector(m_mi_row, m_mi_col);
for (auto i = 0u; i < 2; i++) {
auto offset_vector = mv_ref_blocks[m_mi_size][i];
auto candidate = base_coordinates + offset_vector;
if (is_inside(candidate.row(), candidate.column())) {
auto candidate_index = get_image_index(candidate.row(), candidate.column());
auto index = get_image_index(candidate.row(), candidate.column());
different_ref_found = true;
context_counter += mode_2_counter[to_underlying(m_y_modes[index])];
for (auto ref_list = 0u; ref_list < 2; ref_list++) {
if (m_ref_frames[candidate_index][ref_list] == reference_frame) {
// This section up until add_mv_ref_list() is defined in spec as get_sub_block_mv().
constexpr u8 idx_n_column_to_subblock[4][2] = {
{ 1, 2 },
{ 1, 3 },
{ 3, 2 },
{ 3, 3 }
};
auto index = block >= 0 ? idx_n_column_to_subblock[block][offset_vector.column() == 0] : 3;
m_candidate_mv[ref_list] = m_sub_mvs[candidate_index][ref_list][index];
add_mv_ref_list(ref_list);
break;
}
}
}
}
for (auto i = 2u; i < MVREF_NEIGHBOURS; i++) {
MotionVector candidate = base_coordinates + mv_ref_blocks[m_mi_size][i];
if (is_inside(candidate.row(), candidate.column())) {
different_ref_found = true;
if_same_ref_frame_add_mv(candidate.row(), candidate.column(), reference_frame, false);
}
}
if (m_use_prev_frame_mvs)
if_same_ref_frame_add_mv(m_mi_row, m_mi_col, reference_frame, true);
if (different_ref_found) {
for (auto i = 0u; i < MVREF_NEIGHBOURS; i++) {
MotionVector candidate = base_coordinates + mv_ref_blocks[m_mi_size][i];
if (is_inside(candidate.row(), candidate.column()))
if_diff_ref_frame_add_mv(candidate.row(), candidate.column(), reference_frame, false);
}
}
if (m_use_prev_frame_mvs)
if_diff_ref_frame_add_mv(m_mi_row, m_mi_col, reference_frame, true);
m_mode_context[reference_frame] = counter_to_context[context_counter];
for (auto i = 0u; i < MAX_MV_REF_CANDIDATES; i++)
clamp_mv_ref(i);
}
bool Parser::use_mv_hp(MotionVector const& vector)
{
return (abs(vector.row()) >> 3) < COMPANDED_MVREF_THRESH && (abs(vector.column()) >> 3) < COMPANDED_MVREF_THRESH;
}
void Parser::find_best_ref_mvs(u8 ref_list)
{
for (auto i = 0u; i < MAX_MV_REF_CANDIDATES; i++) {
auto delta = m_ref_list_mv[i];
auto delta_row = delta.row();
auto delta_column = delta.column();
if (!m_allow_high_precision_mv || !use_mv_hp(delta)) {
if (delta_row & 1)
delta_row += delta_row > 0 ? -1 : 1;
if (delta_column & 1)
delta_column += delta_column > 0 ? -1 : 1;
}
delta = { delta_row, delta_column };
m_ref_list_mv[i] = clamp_mv(delta, (BORDERINPIXELS - INTERP_EXTEND) << 3);
}
m_nearest_mv[ref_list] = m_ref_list_mv[0];
m_near_mv[ref_list] = m_ref_list_mv[1];
m_best_mv[ref_list] = m_ref_list_mv[0];
}
void Parser::append_sub8x8_mvs(i32 block, u8 ref_list)
{
MotionVector sub_8x8_mvs[2];
find_mv_refs(m_ref_frame[ref_list], block);
auto destination_index = 0;
if (block == 0) {
for (auto i = 0u; i < 2; i++)
sub_8x8_mvs[destination_index++] = m_ref_list_mv[i];
} else if (block <= 2) {
sub_8x8_mvs[destination_index++] = m_block_mvs[ref_list][0];
} else {
sub_8x8_mvs[destination_index++] = m_block_mvs[ref_list][2];
for (auto index = 1; index >= 0 && destination_index < 2; index--) {
auto block_vector = m_block_mvs[ref_list][index];
if (block_vector != sub_8x8_mvs[0])
sub_8x8_mvs[destination_index++] = block_vector;
}
}
for (auto n = 0u; n < 2 && destination_index < 2; n++) {
auto ref_list_vector = m_ref_list_mv[n];
if (ref_list_vector != sub_8x8_mvs[0])
sub_8x8_mvs[destination_index++] = ref_list_vector;
}
if (destination_index < 2)
sub_8x8_mvs[destination_index++] = {};
m_nearest_mv[ref_list] = sub_8x8_mvs[0];
m_near_mv[ref_list] = sub_8x8_mvs[1];
}
void Parser::dump_info()
{
outln("Frame dimensions: {}x{}", m_frame_size.width(), m_frame_size.height());
outln("Render dimensions: {}x{}", m_render_size.width(), m_render_size.height());
outln("Bit depth: {}", m_bit_depth);
outln("Show frame: {}", m_show_frame);
}
}