1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-20 23:15:07 +00:00
serenity/Libraries/LibJS/Heap/Heap.cpp
Andreas Kling 48f13b7c3f LibJS: Split Heap into per-cell-size allocators
Instead of keeping all the HeapBlocks in one big list, we now split it
into two levels:

- Heap has a set of Allocators, each with a specific cell size.
- Allocators have two lists of blocks, "full" and "usable".

Allocating a new cell no longer has to scan the entire set of blocks,
but instead just needs to find the right allocator and then pop a cell
from its freelist. If all the blocks in the allocator are full, a new
block will be created.

Blocks are moved from the "full" to "usable" list after sweeping has
determined that they are not completely empty and not completely full.

There are certainly many ways we can improve on this. This patch is
mostly about getting the new allocator architecture in place. :^)
2020-10-06 18:50:47 +02:00

376 lines
11 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Badge.h>
#include <AK/HashTable.h>
#include <LibCore/ElapsedTimer.h>
#include <LibJS/Heap/Allocator.h>
#include <LibJS/Heap/Handle.h>
#include <LibJS/Heap/Heap.h>
#include <LibJS/Heap/HeapBlock.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Runtime/Object.h>
#include <setjmp.h>
#include <stdio.h>
#ifdef __serenity__
# include <serenity.h>
#elif __linux__ or __APPLE__
# include <pthread.h>
#endif
#ifdef __serenity__
//#define HEAP_DEBUG
#endif
namespace JS {
Heap::Heap(VM& vm)
: m_vm(vm)
{
m_allocators.append(make<Allocator>(16));
m_allocators.append(make<Allocator>(32));
m_allocators.append(make<Allocator>(64));
m_allocators.append(make<Allocator>(128));
m_allocators.append(make<Allocator>(256));
m_allocators.append(make<Allocator>(512));
m_allocators.append(make<Allocator>(1024));
m_allocators.append(make<Allocator>(3172));
}
Heap::~Heap()
{
collect_garbage(CollectionType::CollectEverything);
}
ALWAYS_INLINE Allocator& Heap::allocator_for_size(size_t cell_size)
{
for (auto& allocator : m_allocators) {
if (allocator->cell_size() >= cell_size)
return *allocator;
}
ASSERT_NOT_REACHED();
}
Cell* Heap::allocate_cell(size_t size)
{
if (should_collect_on_every_allocation()) {
collect_garbage();
} else if (m_allocations_since_last_gc > m_max_allocations_between_gc) {
m_allocations_since_last_gc = 0;
collect_garbage();
} else {
++m_allocations_since_last_gc;
}
auto& allocator = allocator_for_size(size);
return allocator.allocate_cell(*this);
}
void Heap::collect_garbage(CollectionType collection_type, bool print_report)
{
ASSERT(!m_collecting_garbage);
TemporaryChange change(m_collecting_garbage, true);
Core::ElapsedTimer collection_measurement_timer;
collection_measurement_timer.start();
if (collection_type == CollectionType::CollectGarbage) {
if (m_gc_deferrals) {
m_should_gc_when_deferral_ends = true;
return;
}
HashTable<Cell*> roots;
gather_roots(roots);
mark_live_cells(roots);
}
sweep_dead_cells(print_report, collection_measurement_timer);
}
void Heap::gather_roots(HashTable<Cell*>& roots)
{
vm().gather_roots(roots);
gather_conservative_roots(roots);
for (auto* handle : m_handles)
roots.set(handle->cell());
for (auto* list : m_marked_value_lists) {
for (auto& value : list->values()) {
if (value.is_cell())
roots.set(value.as_cell());
}
}
#ifdef HEAP_DEBUG
dbg() << "gather_roots:";
for (auto* root : roots) {
dbg() << " + " << root;
}
#endif
}
void Heap::gather_conservative_roots(HashTable<Cell*>& roots)
{
FlatPtr dummy;
#ifdef HEAP_DEBUG
dbg() << "gather_conservative_roots:";
#endif
jmp_buf buf;
setjmp(buf);
HashTable<FlatPtr> possible_pointers;
const FlatPtr* raw_jmp_buf = reinterpret_cast<const FlatPtr*>(buf);
for (size_t i = 0; i < ((size_t)sizeof(buf)) / sizeof(FlatPtr); i += sizeof(FlatPtr))
possible_pointers.set(raw_jmp_buf[i]);
FlatPtr stack_base;
size_t stack_size;
#ifdef __serenity__
if (get_stack_bounds(&stack_base, &stack_size) < 0) {
perror("get_stack_bounds");
ASSERT_NOT_REACHED();
}
#elif __linux__
pthread_attr_t attr = {};
if (int rc = pthread_getattr_np(pthread_self(), &attr) != 0) {
fprintf(stderr, "pthread_getattr_np: %s\n", strerror(-rc));
ASSERT_NOT_REACHED();
}
if (int rc = pthread_attr_getstack(&attr, (void**)&stack_base, &stack_size) != 0) {
fprintf(stderr, "pthread_attr_getstack: %s\n", strerror(-rc));
ASSERT_NOT_REACHED();
}
pthread_attr_destroy(&attr);
#elif __APPLE__
stack_base = (FlatPtr)pthread_get_stackaddr_np(pthread_self());
pthread_attr_t attr = {};
if (int rc = pthread_attr_getstacksize(&attr, &stack_size) != 0) {
fprintf(stderr, "pthread_attr_getstacksize: %s\n", strerror(-rc));
ASSERT_NOT_REACHED();
}
pthread_attr_destroy(&attr);
#endif
FlatPtr stack_reference = reinterpret_cast<FlatPtr>(&dummy);
FlatPtr stack_top = stack_base + stack_size;
for (FlatPtr stack_address = stack_reference; stack_address < stack_top; stack_address += sizeof(FlatPtr)) {
auto data = *reinterpret_cast<FlatPtr*>(stack_address);
possible_pointers.set(data);
}
for (auto possible_pointer : possible_pointers) {
if (!possible_pointer)
continue;
#ifdef HEAP_DEBUG
dbg() << " ? " << (const void*)possible_pointer;
#endif
if (auto* cell = cell_from_possible_pointer(possible_pointer)) {
if (cell->is_live()) {
#ifdef HEAP_DEBUG
dbg() << " ?-> " << (const void*)cell;
#endif
roots.set(cell);
} else {
#ifdef HEAP_DEBUG
dbg() << " #-> " << (const void*)cell;
#endif
}
}
}
}
Cell* Heap::cell_from_possible_pointer(FlatPtr pointer)
{
auto* possible_heap_block = HeapBlock::from_cell(reinterpret_cast<const Cell*>(pointer));
bool found = false;
for_each_block([&](auto& block) {
if (&block == possible_heap_block) {
found = true;
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
if (!found)
return nullptr;
return possible_heap_block->cell_from_possible_pointer(pointer);
}
class MarkingVisitor final : public Cell::Visitor {
public:
MarkingVisitor() { }
virtual void visit_impl(Cell* cell)
{
if (cell->is_marked())
return;
#ifdef HEAP_DEBUG
dbg() << " ! " << cell;
#endif
cell->set_marked(true);
cell->visit_children(*this);
}
};
void Heap::mark_live_cells(const HashTable<Cell*>& roots)
{
#ifdef HEAP_DEBUG
dbg() << "mark_live_cells:";
#endif
MarkingVisitor visitor;
for (auto* root : roots)
visitor.visit(root);
}
void Heap::sweep_dead_cells(bool print_report, const Core::ElapsedTimer& measurement_timer)
{
#ifdef HEAP_DEBUG
dbg() << "sweep_dead_cells:";
#endif
Vector<HeapBlock*, 32> empty_blocks;
Vector<HeapBlock*, 32> full_blocks_that_became_usable;
size_t collected_cells = 0;
size_t live_cells = 0;
size_t collected_cell_bytes = 0;
size_t live_cell_bytes = 0;
for_each_block([&](auto& block) {
bool block_has_live_cells = false;
bool block_was_full = block.is_full();
block.for_each_cell([&](Cell* cell) {
if (cell->is_live()) {
if (!cell->is_marked()) {
#ifdef HEAP_DEBUG
dbg() << " ~ " << cell;
#endif
block.deallocate(cell);
++collected_cells;
collected_cell_bytes += block.cell_size();
} else {
cell->set_marked(false);
block_has_live_cells = true;
++live_cells;
live_cell_bytes += block.cell_size();
}
}
});
if (!block_has_live_cells)
empty_blocks.append(&block);
else if (block_was_full != block.is_full())
full_blocks_that_became_usable.append(&block);
return IterationDecision::Continue;
});
for (auto* block : empty_blocks) {
#ifdef HEAP_DEBUG
dbg() << " - HeapBlock empty @ " << block << ": cell_size=" << block->cell_size();
#endif
allocator_for_size(block->cell_size()).block_did_become_empty({}, *block);
}
for (auto* block : full_blocks_that_became_usable) {
#ifdef HEAP_DEBUG
dbg() << " - HeapBlock usable again @ " << block << ": cell_size=" << block->cell_size();
#endif
allocator_for_size(block->cell_size()).block_did_become_usable({}, *block);
}
#ifdef HEAP_DEBUG
for_each_block([&](auto& block) {
dbg() << " > Live HeapBlock @ " << &block << ": cell_size=" << block.cell_size();
return IterationDecision::Continue;
});
#endif
int time_spent = measurement_timer.elapsed();
if (print_report) {
size_t live_block_count = 0;
for_each_block([&](auto&) {
++live_block_count;
return IterationDecision::Continue;
});
dbgln("Garbage collection report");
dbgln("=============================================");
dbgln(" Time spent: {} ms", time_spent);
dbgln(" Live cells: {} ({} bytes)", live_cells, live_cell_bytes);
dbgln("Collected cells: {} ({} bytes)", collected_cells, collected_cell_bytes);
dbgln(" Live blocks: {} ({} bytes)", live_block_count, live_block_count * HeapBlock::block_size);
dbgln(" Freed blocks: {} ({} bytes)", empty_blocks.size(), empty_blocks.size() * HeapBlock::block_size);
dbgln("=============================================");
}
}
void Heap::did_create_handle(Badge<HandleImpl>, HandleImpl& impl)
{
ASSERT(!m_handles.contains(&impl));
m_handles.set(&impl);
}
void Heap::did_destroy_handle(Badge<HandleImpl>, HandleImpl& impl)
{
ASSERT(m_handles.contains(&impl));
m_handles.remove(&impl);
}
void Heap::did_create_marked_value_list(Badge<MarkedValueList>, MarkedValueList& list)
{
ASSERT(!m_marked_value_lists.contains(&list));
m_marked_value_lists.set(&list);
}
void Heap::did_destroy_marked_value_list(Badge<MarkedValueList>, MarkedValueList& list)
{
ASSERT(m_marked_value_lists.contains(&list));
m_marked_value_lists.remove(&list);
}
void Heap::defer_gc(Badge<DeferGC>)
{
++m_gc_deferrals;
}
void Heap::undefer_gc(Badge<DeferGC>)
{
ASSERT(m_gc_deferrals > 0);
--m_gc_deferrals;
if (!m_gc_deferrals) {
if (m_should_gc_when_deferral_ends)
collect_garbage();
m_should_gc_when_deferral_ends = false;
}
}
}