mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 13:32:45 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1211 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1211 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
 | |
|  * Copyright (c) 2020-2021, Linus Groh <linusg@serenityos.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/String.h>
 | |
| #include <AK/TemporaryChange.h>
 | |
| #include <LibJS/Interpreter.h>
 | |
| #include <LibJS/Runtime/AbstractOperations.h>
 | |
| #include <LibJS/Runtime/Accessor.h>
 | |
| #include <LibJS/Runtime/Array.h>
 | |
| #include <LibJS/Runtime/Error.h>
 | |
| #include <LibJS/Runtime/GlobalObject.h>
 | |
| #include <LibJS/Runtime/NativeFunction.h>
 | |
| #include <LibJS/Runtime/Object.h>
 | |
| #include <LibJS/Runtime/PropertyDescriptor.h>
 | |
| #include <LibJS/Runtime/ProxyObject.h>
 | |
| #include <LibJS/Runtime/Shape.h>
 | |
| #include <LibJS/Runtime/TemporaryClearException.h>
 | |
| #include <LibJS/Runtime/Value.h>
 | |
| 
 | |
| namespace JS {
 | |
| 
 | |
| // 10.1.12 OrdinaryObjectCreate ( proto [ , additionalInternalSlotsList ] ), https://tc39.es/ecma262/#sec-ordinaryobjectcreate
 | |
| Object* Object::create(GlobalObject& global_object, Object* prototype)
 | |
| {
 | |
|     if (!prototype)
 | |
|         return global_object.heap().allocate<Object>(global_object, *global_object.empty_object_shape());
 | |
|     else if (prototype == global_object.object_prototype())
 | |
|         return global_object.heap().allocate<Object>(global_object, *global_object.new_object_shape());
 | |
|     else
 | |
|         return global_object.heap().allocate<Object>(global_object, *prototype);
 | |
| }
 | |
| 
 | |
| Object::Object(GlobalObjectTag)
 | |
| {
 | |
|     // This is the global object
 | |
|     m_shape = heap().allocate_without_global_object<Shape>(*this);
 | |
| }
 | |
| 
 | |
| Object::Object(ConstructWithoutPrototypeTag, GlobalObject& global_object)
 | |
| {
 | |
|     m_shape = heap().allocate_without_global_object<Shape>(global_object);
 | |
| }
 | |
| 
 | |
| Object::Object(Object& prototype)
 | |
| {
 | |
|     m_shape = prototype.global_object().empty_object_shape();
 | |
|     auto success = internal_set_prototype_of(&prototype);
 | |
|     VERIFY(success);
 | |
| }
 | |
| 
 | |
| Object::Object(Shape& shape)
 | |
|     : m_shape(&shape)
 | |
| {
 | |
|     m_storage.resize(shape.property_count());
 | |
| }
 | |
| 
 | |
| void Object::initialize(GlobalObject&)
 | |
| {
 | |
| }
 | |
| 
 | |
| Object::~Object()
 | |
| {
 | |
| }
 | |
| 
 | |
| // 7.2 Testing and Comparison Operations, https://tc39.es/ecma262/#sec-testing-and-comparison-operations
 | |
| 
 | |
| // 7.2.5 IsExtensible ( O ), https://tc39.es/ecma262/#sec-isextensible-o
 | |
| bool Object::is_extensible() const
 | |
| {
 | |
|     return internal_is_extensible();
 | |
| }
 | |
| 
 | |
| // 7.3 Operations on Objects, https://tc39.es/ecma262/#sec-operations-on-objects
 | |
| 
 | |
| // 7.3.2 Get ( O, P ), https://tc39.es/ecma262/#sec-get-o-p
 | |
| Value Object::get(PropertyName const& property_name) const
 | |
| {
 | |
|     // 1. Assert: Type(O) is Object.
 | |
| 
 | |
|     // 2. Assert: IsPropertyKey(P) is true.
 | |
|     VERIFY(property_name.is_valid());
 | |
| 
 | |
|     // 3. Return ? O.[[Get]](P, O).
 | |
|     return internal_get(property_name, this);
 | |
| }
 | |
| 
 | |
| // 7.3.3 GetV ( V, P ) is defined as Value::get().
 | |
| 
 | |
| // 7.3.4 Set ( O, P, V, Throw ), https://tc39.es/ecma262/#sec-set-o-p-v-throw
 | |
| bool Object::set(PropertyName const& property_name, Value value, ShouldThrowExceptions throw_exceptions)
 | |
| {
 | |
|     VERIFY(!value.is_empty());
 | |
|     auto& vm = this->vm();
 | |
| 
 | |
|     // 1. Assert: Type(O) is Object.
 | |
| 
 | |
|     // 2. Assert: IsPropertyKey(P) is true.
 | |
|     VERIFY(property_name.is_valid());
 | |
| 
 | |
|     // 3. Assert: Type(Throw) is Boolean.
 | |
| 
 | |
|     // 4. Let success be ? O.[[Set]](P, V, O).
 | |
|     auto success = internal_set(property_name, value, this);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
| 
 | |
|     // 5. If success is false and Throw is true, throw a TypeError exception.
 | |
|     if (!success && throw_exceptions == ShouldThrowExceptions::Yes) {
 | |
|         // FIXME: Improve/contextualize error message
 | |
|         vm.throw_exception<TypeError>(global_object(), ErrorType::ObjectSetReturnedFalse);
 | |
|         return {};
 | |
|     }
 | |
| 
 | |
|     // 6. Return success.
 | |
|     return success;
 | |
| }
 | |
| 
 | |
| // 7.3.5 CreateDataProperty ( O, P, V ), https://tc39.es/ecma262/#sec-createdataproperty
 | |
| bool Object::create_data_property(PropertyName const& property_name, Value value)
 | |
| {
 | |
|     // 1. Assert: Type(O) is Object.
 | |
| 
 | |
|     // 2. Assert: IsPropertyKey(P) is true.
 | |
|     VERIFY(property_name.is_valid());
 | |
| 
 | |
|     // 3. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true }.
 | |
|     auto new_descriptor = PropertyDescriptor {
 | |
|         .value = value,
 | |
|         .writable = true,
 | |
|         .enumerable = true,
 | |
|         .configurable = true,
 | |
|     };
 | |
| 
 | |
|     // 4. Return ? O.[[DefineOwnProperty]](P, newDesc).
 | |
|     return internal_define_own_property(property_name, new_descriptor);
 | |
| }
 | |
| 
 | |
| // 7.3.6 CreateMethodProperty ( O, P, V ), https://tc39.es/ecma262/#sec-createmethodproperty
 | |
| bool Object::create_method_property(PropertyName const& property_name, Value value)
 | |
| {
 | |
|     VERIFY(!value.is_empty());
 | |
| 
 | |
|     // 1. Assert: Type(O) is Object.
 | |
| 
 | |
|     // 2. Assert: IsPropertyKey(P) is true.
 | |
|     VERIFY(property_name.is_valid());
 | |
| 
 | |
|     // 3. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }.
 | |
|     auto new_descriptor = PropertyDescriptor {
 | |
|         .value = value,
 | |
|         .writable = true,
 | |
|         .enumerable = false,
 | |
|         .configurable = true,
 | |
|     };
 | |
| 
 | |
|     // 4. Return ? O.[[DefineOwnProperty]](P, newDesc).
 | |
|     return internal_define_own_property(property_name, new_descriptor);
 | |
| }
 | |
| 
 | |
| // 7.3.7 CreateDataPropertyOrThrow ( O, P, V ), https://tc39.es/ecma262/#sec-createdatapropertyorthrow
 | |
| bool Object::create_data_property_or_throw(PropertyName const& property_name, Value value)
 | |
| {
 | |
|     VERIFY(!value.is_empty());
 | |
|     auto& vm = this->vm();
 | |
| 
 | |
|     // 1. Assert: Type(O) is Object.
 | |
| 
 | |
|     // 2. Assert: IsPropertyKey(P) is true.
 | |
|     VERIFY(property_name.is_valid());
 | |
| 
 | |
|     // 3. Let success be ? CreateDataProperty(O, P, V).
 | |
|     auto success = create_data_property(property_name, value);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
| 
 | |
|     // 4. If success is false, throw a TypeError exception.
 | |
|     if (!success) {
 | |
|         // FIXME: Improve/contextualize error message
 | |
|         vm.throw_exception<TypeError>(global_object(), ErrorType::ObjectDefineOwnPropertyReturnedFalse);
 | |
|         return {};
 | |
|     }
 | |
| 
 | |
|     // 5. Return success.
 | |
|     return success;
 | |
| }
 | |
| 
 | |
| // 7.3.6 CreateNonEnumerableDataPropertyOrThrow ( O, P, V ), https://tc39.es/proposal-error-cause/#sec-createnonenumerabledatapropertyorthrow
 | |
| bool Object::create_non_enumerable_data_property_or_throw(PropertyName const& property_name, Value value)
 | |
| {
 | |
|     VERIFY(!value.is_empty());
 | |
|     VERIFY(property_name.is_valid());
 | |
| 
 | |
|     // 1. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }.
 | |
|     auto new_description = PropertyDescriptor { .value = value, .writable = true, .enumerable = false, .configurable = true };
 | |
| 
 | |
|     // 2. Return ? DefinePropertyOrThrow(O, P, newDesc).
 | |
|     return define_property_or_throw(property_name, new_description);
 | |
| }
 | |
| 
 | |
| // 7.3.8 DefinePropertyOrThrow ( O, P, desc ), https://tc39.es/ecma262/#sec-definepropertyorthrow
 | |
| bool Object::define_property_or_throw(PropertyName const& property_name, PropertyDescriptor const& property_descriptor)
 | |
| {
 | |
|     auto& vm = this->vm();
 | |
| 
 | |
|     // 1. Assert: Type(O) is Object.
 | |
| 
 | |
|     // 2. Assert: IsPropertyKey(P) is true.
 | |
|     VERIFY(property_name.is_valid());
 | |
| 
 | |
|     // 3. Let success be ? O.[[DefineOwnProperty]](P, desc).
 | |
|     auto success = internal_define_own_property(property_name, property_descriptor);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
| 
 | |
|     // 4. If success is false, throw a TypeError exception.
 | |
|     if (!success) {
 | |
|         // FIXME: Improve/contextualize error message
 | |
|         vm.throw_exception<TypeError>(global_object(), ErrorType::ObjectDefineOwnPropertyReturnedFalse);
 | |
|         return {};
 | |
|     }
 | |
| 
 | |
|     // 5. Return success.
 | |
|     return success;
 | |
| }
 | |
| 
 | |
| // 7.3.9 DeletePropertyOrThrow ( O, P ), https://tc39.es/ecma262/#sec-deletepropertyorthrow
 | |
| bool Object::delete_property_or_throw(PropertyName const& property_name)
 | |
| {
 | |
|     auto& vm = this->vm();
 | |
| 
 | |
|     // 1. Assert: Type(O) is Object.
 | |
| 
 | |
|     // 2. Assert: IsPropertyKey(P) is true.
 | |
|     VERIFY(property_name.is_valid());
 | |
| 
 | |
|     // 3. Let success be ? O.[[Delete]](P).
 | |
|     auto success = internal_delete(property_name);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
| 
 | |
|     // 4. If success is false, throw a TypeError exception.
 | |
|     if (!success) {
 | |
|         // FIXME: Improve/contextualize error message
 | |
|         vm.throw_exception<TypeError>(global_object(), ErrorType::ObjectDeleteReturnedFalse);
 | |
|         return {};
 | |
|     }
 | |
| 
 | |
|     // 5. Return success.
 | |
|     return success;
 | |
| }
 | |
| 
 | |
| // 7.3.11 HasProperty ( O, P ), https://tc39.es/ecma262/#sec-hasproperty
 | |
| bool Object::has_property(PropertyName const& property_name) const
 | |
| {
 | |
|     // 1. Assert: Type(O) is Object.
 | |
| 
 | |
|     // 2. Assert: IsPropertyKey(P) is true.
 | |
|     VERIFY(property_name.is_valid());
 | |
| 
 | |
|     // 3. Return ? O.[[HasProperty]](P).
 | |
|     return internal_has_property(property_name);
 | |
| }
 | |
| 
 | |
| // 7.3.12 HasOwnProperty ( O, P ), https://tc39.es/ecma262/#sec-hasownproperty
 | |
| bool Object::has_own_property(PropertyName const& property_name) const
 | |
| {
 | |
|     auto& vm = this->vm();
 | |
| 
 | |
|     // 1. Assert: Type(O) is Object.
 | |
| 
 | |
|     // 2. Assert: IsPropertyKey(P) is true.
 | |
|     VERIFY(property_name.is_valid());
 | |
| 
 | |
|     // 3. Let desc be ? O.[[GetOwnProperty]](P).
 | |
|     auto descriptor = internal_get_own_property(property_name);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
| 
 | |
|     // 4. If desc is undefined, return false.
 | |
|     if (!descriptor.has_value())
 | |
|         return false;
 | |
| 
 | |
|     // 5. Return true.
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // 7.3.15 SetIntegrityLevel ( O, level ), https://tc39.es/ecma262/#sec-setintegritylevel
 | |
| bool Object::set_integrity_level(IntegrityLevel level)
 | |
| {
 | |
|     auto& vm = this->vm();
 | |
|     auto& global_object = this->global_object();
 | |
| 
 | |
|     // 1. Assert: Type(O) is Object.
 | |
| 
 | |
|     // 2. Assert: level is either sealed or frozen.
 | |
|     VERIFY(level == IntegrityLevel::Sealed || level == IntegrityLevel::Frozen);
 | |
| 
 | |
|     // 3. Let status be ? O.[[PreventExtensions]]().
 | |
|     auto status = internal_prevent_extensions();
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
| 
 | |
|     // 4. If status is false, return false.
 | |
|     if (!status)
 | |
|         return false;
 | |
| 
 | |
|     // 5. Let keys be ? O.[[OwnPropertyKeys]]().
 | |
|     auto keys = internal_own_property_keys();
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
| 
 | |
|     // 6. If level is sealed, then
 | |
|     if (level == IntegrityLevel::Sealed) {
 | |
|         // a. For each element k of keys, do
 | |
|         for (auto& key : keys) {
 | |
|             auto property_name = PropertyName::from_value(global_object, key);
 | |
| 
 | |
|             // i. Perform ? DefinePropertyOrThrow(O, k, PropertyDescriptor { [[Configurable]]: false }).
 | |
|             define_property_or_throw(property_name, { .configurable = false });
 | |
|             if (vm.exception())
 | |
|                 return {};
 | |
|         }
 | |
|     }
 | |
|     // 7. Else,
 | |
|     else {
 | |
|         // a. Assert: level is frozen.
 | |
| 
 | |
|         // b. For each element k of keys, do
 | |
|         for (auto& key : keys) {
 | |
|             auto property_name = PropertyName::from_value(global_object, key);
 | |
| 
 | |
|             // i. Let currentDesc be ? O.[[GetOwnProperty]](k).
 | |
|             auto current_descriptor = internal_get_own_property(property_name);
 | |
|             if (vm.exception())
 | |
|                 return {};
 | |
| 
 | |
|             // ii. If currentDesc is not undefined, then
 | |
|             if (!current_descriptor.has_value())
 | |
|                 continue;
 | |
| 
 | |
|             PropertyDescriptor descriptor;
 | |
| 
 | |
|             // 1. If IsAccessorDescriptor(currentDesc) is true, then
 | |
|             if (current_descriptor->is_accessor_descriptor()) {
 | |
|                 // a. Let desc be the PropertyDescriptor { [[Configurable]]: false }.
 | |
|                 descriptor = { .configurable = false };
 | |
|             }
 | |
|             // 2. Else,
 | |
|             else {
 | |
|                 // a. Let desc be the PropertyDescriptor { [[Configurable]]: false, [[Writable]]: false }.
 | |
|                 descriptor = { .writable = false, .configurable = false };
 | |
|             }
 | |
| 
 | |
|             // 3. Perform ? DefinePropertyOrThrow(O, k, desc).
 | |
|             define_property_or_throw(property_name, descriptor);
 | |
|             if (vm.exception())
 | |
|                 return {};
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // 8. Return true.
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // 7.3.16 TestIntegrityLevel ( O, level ), https://tc39.es/ecma262/#sec-testintegritylevel
 | |
| bool Object::test_integrity_level(IntegrityLevel level) const
 | |
| {
 | |
|     auto& vm = this->vm();
 | |
| 
 | |
|     // 1. Assert: Type(O) is Object.
 | |
| 
 | |
|     // 2. Assert: level is either sealed or frozen.
 | |
|     VERIFY(level == IntegrityLevel::Sealed || level == IntegrityLevel::Frozen);
 | |
| 
 | |
|     // 3. Let extensible be ? IsExtensible(O).
 | |
|     auto extensible = is_extensible();
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
| 
 | |
|     // 4. If extensible is true, return false.
 | |
|     // 5. NOTE: If the object is extensible, none of its properties are examined.
 | |
|     if (extensible)
 | |
|         return false;
 | |
| 
 | |
|     // 6. Let keys be ? O.[[OwnPropertyKeys]]().
 | |
|     auto keys = internal_own_property_keys();
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
| 
 | |
|     // 7. For each element k of keys, do
 | |
|     for (auto& key : keys) {
 | |
|         auto property_name = PropertyName::from_value(global_object(), key);
 | |
| 
 | |
|         // a. Let currentDesc be ? O.[[GetOwnProperty]](k).
 | |
|         auto current_descriptor = internal_get_own_property(property_name);
 | |
|         if (vm.exception())
 | |
|             return {};
 | |
| 
 | |
|         // b. If currentDesc is not undefined, then
 | |
|         if (!current_descriptor.has_value())
 | |
|             continue;
 | |
|         // i. If currentDesc.[[Configurable]] is true, return false.
 | |
|         if (*current_descriptor->configurable)
 | |
|             return false;
 | |
| 
 | |
|         // ii. If level is frozen and IsDataDescriptor(currentDesc) is true, then
 | |
|         if (level == IntegrityLevel::Frozen && current_descriptor->is_data_descriptor()) {
 | |
|             // 1. If currentDesc.[[Writable]] is true, return false.
 | |
|             if (*current_descriptor->writable)
 | |
|                 return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // 8. Return true.
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // 7.3.23 EnumerableOwnPropertyNames ( O, kind ), https://tc39.es/ecma262/#sec-enumerableownpropertynames
 | |
| MarkedValueList Object::enumerable_own_property_names(PropertyKind kind) const
 | |
| {
 | |
|     // NOTE: This has been flattened for readability, so some `else` branches in the
 | |
|     //       spec text have been replaced with `continue`s in the loop below.
 | |
| 
 | |
|     auto& vm = this->vm();
 | |
|     auto& global_object = this->global_object();
 | |
| 
 | |
|     // 1. Assert: Type(O) is Object.
 | |
| 
 | |
|     // 2. Let ownKeys be ? O.[[OwnPropertyKeys]]().
 | |
|     auto own_keys = internal_own_property_keys();
 | |
|     if (vm.exception())
 | |
|         return MarkedValueList { heap() };
 | |
| 
 | |
|     // 3. Let properties be a new empty List.
 | |
|     auto properties = MarkedValueList { heap() };
 | |
| 
 | |
|     // 4. For each element key of ownKeys, do
 | |
|     for (auto& key : own_keys) {
 | |
|         // a. If Type(key) is String, then
 | |
|         if (!key.is_string())
 | |
|             continue;
 | |
|         auto property_name = PropertyName::from_value(global_object, key);
 | |
| 
 | |
|         // i. Let desc be ? O.[[GetOwnProperty]](key).
 | |
|         auto descriptor = internal_get_own_property(property_name);
 | |
|         if (vm.exception())
 | |
|             return MarkedValueList { heap() };
 | |
| 
 | |
|         // ii. If desc is not undefined and desc.[[Enumerable]] is true, then
 | |
|         if (descriptor.has_value() && *descriptor->enumerable) {
 | |
|             // 1. If kind is key, append key to properties.
 | |
|             if (kind == PropertyKind::Key) {
 | |
|                 properties.append(key);
 | |
|                 continue;
 | |
|             }
 | |
|             // 2. Else,
 | |
| 
 | |
|             // a. Let value be ? Get(O, key).
 | |
|             auto value = get(property_name);
 | |
|             if (vm.exception())
 | |
|                 return MarkedValueList { heap() };
 | |
| 
 | |
|             // b. If kind is value, append value to properties.
 | |
|             if (kind == PropertyKind::Value) {
 | |
|                 properties.append(value);
 | |
|                 continue;
 | |
|             }
 | |
|             // c. Else,
 | |
| 
 | |
|             // i. Assert: kind is key+value.
 | |
|             VERIFY(kind == PropertyKind::KeyAndValue);
 | |
| 
 | |
|             // ii. Let entry be ! CreateArrayFromList(« key, value »).
 | |
|             auto entry = Array::create_from(global_object, { key, value });
 | |
| 
 | |
|             // iii. Append entry to properties.
 | |
|             properties.append(entry);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // 5. Return properties.
 | |
|     return properties;
 | |
| }
 | |
| 
 | |
| // 10.1 Ordinary Object Internal Methods and Internal Slots, https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots
 | |
| 
 | |
| // 10.1.1 [[GetPrototypeOf]] ( ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-getprototypeof
 | |
| Object* Object::internal_get_prototype_of() const
 | |
| {
 | |
|     // 1. Return O.[[Prototype]].
 | |
|     return const_cast<Object*>(prototype());
 | |
| }
 | |
| 
 | |
| // 10.1.2 [[SetPrototypeOf]] ( V ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-setprototypeof-v
 | |
| bool Object::internal_set_prototype_of(Object* new_prototype)
 | |
| {
 | |
|     // 1. Assert: Either Type(V) is Object or Type(V) is Null.
 | |
| 
 | |
|     // 2. Let current be O.[[Prototype]].
 | |
|     // 3. If SameValue(V, current) is true, return true.
 | |
|     if (prototype() == new_prototype)
 | |
|         return true;
 | |
| 
 | |
|     // 4. Let extensible be O.[[Extensible]].
 | |
|     // 5. If extensible is false, return false.
 | |
|     if (!m_is_extensible)
 | |
|         return false;
 | |
| 
 | |
|     // 6. Let p be V.
 | |
|     auto* prototype = new_prototype;
 | |
| 
 | |
|     // 7. Let done be false.
 | |
|     // 8. Repeat, while done is false,
 | |
|     while (prototype) {
 | |
|         // a. If p is null, set done to true.
 | |
| 
 | |
|         // b. Else if SameValue(p, O) is true, return false.
 | |
|         if (prototype == this)
 | |
|             return false;
 | |
|         // c. Else,
 | |
| 
 | |
|         // i. If p.[[GetPrototypeOf]] is not the ordinary object internal method defined in 10.1.1, set done to true.
 | |
|         // NOTE: This is a best-effort implementation; we don't have a good way of detecting whether certain virtual
 | |
|         // Object methods have been overridden by a given object, but as ProxyObject is the only one doing that for
 | |
|         // [[SetPrototypeOf]], this check does the trick.
 | |
|         if (is<ProxyObject>(prototype))
 | |
|             break;
 | |
| 
 | |
|         // ii. Else, set p to p.[[Prototype]].
 | |
|         prototype = prototype->prototype();
 | |
|     }
 | |
| 
 | |
|     // 9. Set O.[[Prototype]] to V.
 | |
|     auto& shape = this->shape();
 | |
|     if (shape.is_unique())
 | |
|         shape.set_prototype_without_transition(new_prototype);
 | |
|     else
 | |
|         m_shape = shape.create_prototype_transition(new_prototype);
 | |
| 
 | |
|     // 10. Return true.
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // 10.1.3 [[IsExtensible]] ( ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-isextensible
 | |
| bool Object::internal_is_extensible() const
 | |
| {
 | |
|     // 1. Return O.[[Extensible]].
 | |
|     return m_is_extensible;
 | |
| }
 | |
| 
 | |
| // 10.1.4 [[PreventExtensions]] ( ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-preventextensions
 | |
| bool Object::internal_prevent_extensions()
 | |
| {
 | |
|     // 1. Set O.[[Extensible]] to false.
 | |
|     m_is_extensible = false;
 | |
| 
 | |
|     // 2. Return true.
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // 10.1.5 [[GetOwnProperty]] ( P ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-getownproperty-p
 | |
| Optional<PropertyDescriptor> Object::internal_get_own_property(PropertyName const& property_name) const
 | |
| {
 | |
|     // 1. Assert: IsPropertyKey(P) is true.
 | |
|     VERIFY(property_name.is_valid());
 | |
| 
 | |
|     // 2. If O does not have an own property with key P, return undefined.
 | |
|     if (!storage_has(property_name))
 | |
|         return {};
 | |
| 
 | |
|     // 3. Let D be a newly created Property Descriptor with no fields.
 | |
|     PropertyDescriptor descriptor;
 | |
| 
 | |
|     // 4. Let X be O's own property whose key is P.
 | |
|     auto [value, attributes] = *storage_get(property_name);
 | |
| 
 | |
|     // 5. If X is a data property, then
 | |
|     if (!value.is_accessor()) {
 | |
|         // a. Set D.[[Value]] to the value of X's [[Value]] attribute.
 | |
|         descriptor.value = value.value_or(js_undefined());
 | |
| 
 | |
|         // b. Set D.[[Writable]] to the value of X's [[Writable]] attribute.
 | |
|         descriptor.writable = attributes.is_writable();
 | |
|     }
 | |
|     // 6. Else,
 | |
|     else {
 | |
|         // a. Assert: X is an accessor property.
 | |
| 
 | |
|         // b. Set D.[[Get]] to the value of X's [[Get]] attribute.
 | |
|         descriptor.get = value.as_accessor().getter();
 | |
| 
 | |
|         // c. Set D.[[Set]] to the value of X's [[Set]] attribute.
 | |
|         descriptor.set = value.as_accessor().setter();
 | |
|     }
 | |
| 
 | |
|     // 7. Set D.[[Enumerable]] to the value of X's [[Enumerable]] attribute.
 | |
|     descriptor.enumerable = attributes.is_enumerable();
 | |
| 
 | |
|     // 8. Set D.[[Configurable]] to the value of X's [[Configurable]] attribute.
 | |
|     descriptor.configurable = attributes.is_configurable();
 | |
| 
 | |
|     // 9. Return D.
 | |
|     return descriptor;
 | |
| }
 | |
| 
 | |
| // 10.1.6 [[DefineOwnProperty]] ( P, Desc ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-defineownproperty-p-desc
 | |
| bool Object::internal_define_own_property(PropertyName const& property_name, PropertyDescriptor const& property_descriptor)
 | |
| {
 | |
|     VERIFY(property_name.is_valid());
 | |
|     auto& vm = this->vm();
 | |
| 
 | |
|     // 1. Let current be ? O.[[GetOwnProperty]](P).
 | |
|     auto current = internal_get_own_property(property_name);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
| 
 | |
|     // 2. Let extensible be ? IsExtensible(O).
 | |
|     auto extensible = is_extensible();
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
| 
 | |
|     // 3. Return ValidateAndApplyPropertyDescriptor(O, P, extensible, Desc, current).
 | |
|     return validate_and_apply_property_descriptor(this, property_name, extensible, property_descriptor, current);
 | |
| }
 | |
| 
 | |
| // 10.1.7 [[HasProperty]] ( P ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-hasproperty-p
 | |
| bool Object::internal_has_property(PropertyName const& property_name) const
 | |
| {
 | |
|     auto& vm = this->vm();
 | |
| 
 | |
|     // 1. Assert: IsPropertyKey(P) is true.
 | |
|     VERIFY(property_name.is_valid());
 | |
| 
 | |
|     // 2. Let hasOwn be ? O.[[GetOwnProperty]](P).
 | |
|     auto has_own = internal_get_own_property(property_name);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
| 
 | |
|     // 3. If hasOwn is not undefined, return true.
 | |
|     if (has_own.has_value())
 | |
|         return true;
 | |
| 
 | |
|     // 4. Let parent be ? O.[[GetPrototypeOf]]().
 | |
|     auto parent = internal_get_prototype_of();
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
| 
 | |
|     // 5. If parent is not null, then
 | |
|     if (parent) {
 | |
|         // a. Return ? parent.[[HasProperty]](P).
 | |
|         return parent->internal_has_property(property_name);
 | |
|     }
 | |
| 
 | |
|     // 6. Return false.
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // 10.1.8 [[Get]] ( P, Receiver ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-get-p-receiver
 | |
| Value Object::internal_get(PropertyName const& property_name, Value receiver) const
 | |
| {
 | |
|     VERIFY(!receiver.is_empty());
 | |
|     auto& vm = this->vm();
 | |
| 
 | |
|     // 1. Assert: IsPropertyKey(P) is true.
 | |
|     VERIFY(property_name.is_valid());
 | |
| 
 | |
|     // 2. Let desc be ? O.[[GetOwnProperty]](P).
 | |
|     auto descriptor = internal_get_own_property(property_name);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
| 
 | |
|     // 3. If desc is undefined, then
 | |
|     if (!descriptor.has_value()) {
 | |
|         // a. Let parent be ? O.[[GetPrototypeOf]]().
 | |
|         auto parent = internal_get_prototype_of();
 | |
|         if (vm.exception())
 | |
|             return {};
 | |
| 
 | |
|         // b. If parent is null, return undefined.
 | |
|         if (!parent)
 | |
|             return js_undefined();
 | |
| 
 | |
|         // c. Return ? parent.[[Get]](P, Receiver).
 | |
|         return parent->internal_get(property_name, receiver);
 | |
|     }
 | |
| 
 | |
|     // 4. If IsDataDescriptor(desc) is true, return desc.[[Value]].
 | |
|     if (descriptor->is_data_descriptor())
 | |
|         return *descriptor->value;
 | |
| 
 | |
|     // 5. Assert: IsAccessorDescriptor(desc) is true.
 | |
|     VERIFY(descriptor->is_accessor_descriptor());
 | |
| 
 | |
|     // 6. Let getter be desc.[[Get]].
 | |
|     auto* getter = *descriptor->get;
 | |
| 
 | |
|     // 7. If getter is undefined, return undefined.
 | |
|     if (!getter)
 | |
|         return js_undefined();
 | |
| 
 | |
|     // 8. Return ? Call(getter, Receiver).
 | |
|     return TRY_OR_DISCARD(vm.call(*getter, receiver));
 | |
| }
 | |
| 
 | |
| static bool ordinary_set_with_own_descriptor(Object&, PropertyName const&, Value, Value, Optional<PropertyDescriptor>);
 | |
| 
 | |
| // 10.1.9 [[Set]] ( P, V, Receiver ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-set-p-v-receiver
 | |
| bool Object::internal_set(PropertyName const& property_name, Value value, Value receiver)
 | |
| {
 | |
|     VERIFY(!value.is_empty());
 | |
|     VERIFY(!receiver.is_empty());
 | |
|     auto& vm = this->vm();
 | |
| 
 | |
|     // 1. Assert: IsPropertyKey(P) is true.
 | |
|     VERIFY(property_name.is_valid());
 | |
| 
 | |
|     // 2. Let ownDesc be ? O.[[GetOwnProperty]](P).
 | |
|     auto own_descriptor = internal_get_own_property(property_name);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
| 
 | |
|     // 3. Return OrdinarySetWithOwnDescriptor(O, P, V, Receiver, ownDesc).
 | |
|     return ordinary_set_with_own_descriptor(*this, property_name, value, receiver, own_descriptor);
 | |
| }
 | |
| 
 | |
| // 10.1.9.2 OrdinarySetWithOwnDescriptor ( O, P, V, Receiver, ownDesc ), https://tc39.es/ecma262/#sec-ordinarysetwithowndescriptor
 | |
| bool ordinary_set_with_own_descriptor(Object& object, PropertyName const& property_name, Value value, Value receiver, Optional<PropertyDescriptor> own_descriptor)
 | |
| {
 | |
|     auto& vm = object.vm();
 | |
| 
 | |
|     // 1. Assert: IsPropertyKey(P) is true.
 | |
|     VERIFY(property_name.is_valid());
 | |
| 
 | |
|     // 2. If ownDesc is undefined, then
 | |
|     if (!own_descriptor.has_value()) {
 | |
|         // a. Let parent be ? O.[[GetPrototypeOf]]().
 | |
|         auto parent = object.internal_get_prototype_of();
 | |
|         if (vm.exception())
 | |
|             return {};
 | |
| 
 | |
|         // b. If parent is not null, then
 | |
|         if (parent) {
 | |
|             // i. Return ? parent.[[Set]](P, V, Receiver).
 | |
|             return parent->internal_set(property_name, value, receiver);
 | |
|         }
 | |
|         // c. Else,
 | |
|         else {
 | |
|             // i. Set ownDesc to the PropertyDescriptor { [[Value]]: undefined, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true }.
 | |
|             own_descriptor = PropertyDescriptor {
 | |
|                 .value = js_undefined(),
 | |
|                 .writable = true,
 | |
|                 .enumerable = true,
 | |
|                 .configurable = true,
 | |
|             };
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // 3. If IsDataDescriptor(ownDesc) is true, then
 | |
|     if (own_descriptor->is_data_descriptor()) {
 | |
|         // a. If ownDesc.[[Writable]] is false, return false.
 | |
|         if (!*own_descriptor->writable)
 | |
|             return false;
 | |
| 
 | |
|         // b. If Type(Receiver) is not Object, return false.
 | |
|         if (!receiver.is_object())
 | |
|             return false;
 | |
| 
 | |
|         // c. Let existingDescriptor be ? Receiver.[[GetOwnProperty]](P).
 | |
|         auto existing_descriptor = receiver.as_object().internal_get_own_property(property_name);
 | |
|         if (vm.exception())
 | |
|             return {};
 | |
| 
 | |
|         // d. If existingDescriptor is not undefined, then
 | |
|         if (existing_descriptor.has_value()) {
 | |
|             // i. If IsAccessorDescriptor(existingDescriptor) is true, return false.
 | |
|             if (existing_descriptor->is_accessor_descriptor())
 | |
|                 return false;
 | |
| 
 | |
|             // ii. If existingDescriptor.[[Writable]] is false, return false.
 | |
|             if (!*existing_descriptor->writable)
 | |
|                 return false;
 | |
| 
 | |
|             // iii. Let valueDesc be the PropertyDescriptor { [[Value]]: V }.
 | |
|             auto value_descriptor = PropertyDescriptor { .value = value };
 | |
| 
 | |
|             // iv. Return ? Receiver.[[DefineOwnProperty]](P, valueDesc).
 | |
|             return receiver.as_object().internal_define_own_property(property_name, value_descriptor);
 | |
|         }
 | |
|         // e. Else,
 | |
|         else {
 | |
|             // i. Assert: Receiver does not currently have a property P.
 | |
|             VERIFY(!receiver.as_object().storage_has(property_name));
 | |
| 
 | |
|             // ii. Return ? CreateDataProperty(Receiver, P, V).
 | |
|             return receiver.as_object().create_data_property(property_name, value);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // 4. Assert: IsAccessorDescriptor(ownDesc) is true.
 | |
|     VERIFY(own_descriptor->is_accessor_descriptor());
 | |
| 
 | |
|     // 5. Let setter be ownDesc.[[Set]].
 | |
|     auto* setter = *own_descriptor->set;
 | |
| 
 | |
|     // 6. If setter is undefined, return false.
 | |
|     if (!setter)
 | |
|         return false;
 | |
| 
 | |
|     // 7. Perform ? Call(setter, Receiver, « V »).
 | |
|     (void)vm.call(*setter, receiver, value);
 | |
| 
 | |
|     // 8. Return true.
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // 10.1.10 [[Delete]] ( P ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-delete-p
 | |
| bool Object::internal_delete(PropertyName const& property_name)
 | |
| {
 | |
|     auto& vm = this->vm();
 | |
| 
 | |
|     // 1. Assert: IsPropertyKey(P) is true.
 | |
|     VERIFY(property_name.is_valid());
 | |
| 
 | |
|     // 2. Let desc be ? O.[[GetOwnProperty]](P).
 | |
|     auto descriptor = internal_get_own_property(property_name);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
| 
 | |
|     // 3. If desc is undefined, return true.
 | |
|     if (!descriptor.has_value())
 | |
|         return true;
 | |
| 
 | |
|     // 4. If desc.[[Configurable]] is true, then
 | |
|     if (*descriptor->configurable) {
 | |
|         // a. Remove the own property with name P from O.
 | |
|         storage_delete(property_name);
 | |
| 
 | |
|         // b. Return true.
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     // 5. Return false.
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // 10.1.11 [[OwnPropertyKeys]] ( ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-ownpropertykeys
 | |
| MarkedValueList Object::internal_own_property_keys() const
 | |
| {
 | |
|     auto& vm = this->vm();
 | |
| 
 | |
|     // 1. Let keys be a new empty List.
 | |
|     MarkedValueList keys { heap() };
 | |
| 
 | |
|     // 2. For each own property key P of O such that P is an array index, in ascending numeric index order, do
 | |
|     for (auto& entry : m_indexed_properties) {
 | |
|         // a. Add P as the last element of keys.
 | |
|         keys.append(js_string(vm, String::number(entry.index())));
 | |
|     }
 | |
| 
 | |
|     // 3. For each own property key P of O such that Type(P) is String and P is not an array index, in ascending chronological order of property creation, do
 | |
|     for (auto& it : shape().property_table_ordered()) {
 | |
|         if (it.key.is_string()) {
 | |
|             // a. Add P as the last element of keys.
 | |
|             keys.append(it.key.to_value(vm));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // 4. For each own property key P of O such that Type(P) is Symbol, in ascending chronological order of property creation, do
 | |
|     for (auto& it : shape().property_table_ordered()) {
 | |
|         if (it.key.is_symbol()) {
 | |
|             // a. Add P as the last element of keys.
 | |
|             keys.append(it.key.to_value(vm));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // 5. Return keys.
 | |
|     return keys;
 | |
| }
 | |
| 
 | |
| // 10.4.7.2 SetImmutablePrototype ( O, V ), https://tc39.es/ecma262/#sec-set-immutable-prototype
 | |
| bool Object::set_immutable_prototype(Object* prototype)
 | |
| {
 | |
|     auto& vm = this->vm();
 | |
| 
 | |
|     // 1. Assert: Either Type(V) is Object or Type(V) is Null.
 | |
| 
 | |
|     // 2. Let current be ? O.[[GetPrototypeOf]]().
 | |
|     auto* current = internal_get_prototype_of();
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
| 
 | |
|     // 3. If SameValue(V, current) is true, return true.
 | |
|     if (prototype == current)
 | |
|         return true;
 | |
| 
 | |
|     // 4. Return false.
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| Optional<ValueAndAttributes> Object::storage_get(PropertyName const& property_name) const
 | |
| {
 | |
|     VERIFY(property_name.is_valid());
 | |
| 
 | |
|     Value value;
 | |
|     PropertyAttributes attributes;
 | |
| 
 | |
|     if (property_name.is_number()) {
 | |
|         auto value_and_attributes = m_indexed_properties.get(property_name.as_number());
 | |
|         if (!value_and_attributes.has_value())
 | |
|             return {};
 | |
|         value = value_and_attributes->value;
 | |
|         attributes = value_and_attributes->attributes;
 | |
|     } else {
 | |
|         auto metadata = shape().lookup(property_name.to_string_or_symbol());
 | |
|         if (!metadata.has_value())
 | |
|             return {};
 | |
|         value = m_storage[metadata->offset];
 | |
|         attributes = metadata->attributes;
 | |
|     }
 | |
|     return ValueAndAttributes { .value = value, .attributes = attributes };
 | |
| }
 | |
| 
 | |
| bool Object::storage_has(PropertyName const& property_name) const
 | |
| {
 | |
|     VERIFY(property_name.is_valid());
 | |
|     if (property_name.is_number())
 | |
|         return m_indexed_properties.has_index(property_name.as_number());
 | |
|     return shape().lookup(property_name.to_string_or_symbol()).has_value();
 | |
| }
 | |
| 
 | |
| void Object::storage_set(PropertyName const& property_name, ValueAndAttributes const& value_and_attributes)
 | |
| {
 | |
|     VERIFY(property_name.is_valid());
 | |
| 
 | |
|     auto [value, attributes] = value_and_attributes;
 | |
| 
 | |
|     if (property_name.is_number()) {
 | |
|         auto index = property_name.as_number();
 | |
|         m_indexed_properties.put(index, value, attributes);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     auto property_name_string_or_symbol = property_name.to_string_or_symbol();
 | |
| 
 | |
|     // NOTE: We don't do transitions or check for attribute changes during object initialization,
 | |
|     // which makes building common runtime objects significantly faster. Transitions are primarily
 | |
|     // interesting when scripts add properties to objects.
 | |
|     if (!m_initialized) {
 | |
|         if (m_shape->is_unique())
 | |
|             m_shape->add_property_to_unique_shape(property_name_string_or_symbol, attributes);
 | |
|         else
 | |
|             m_shape->add_property_without_transition(property_name_string_or_symbol, attributes);
 | |
| 
 | |
|         m_storage.append(value);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     auto metadata = shape().lookup(property_name_string_or_symbol);
 | |
| 
 | |
|     if (!metadata.has_value()) {
 | |
|         if (!m_shape->is_unique() && shape().property_count() > 100) {
 | |
|             // If you add more than 100 properties to an object, let's stop doing
 | |
|             // transitions to avoid filling up the heap with shapes.
 | |
|             ensure_shape_is_unique();
 | |
|         }
 | |
| 
 | |
|         if (m_shape->is_unique())
 | |
|             m_shape->add_property_to_unique_shape(property_name_string_or_symbol, attributes);
 | |
|         else if (!m_transitions_enabled)
 | |
|             m_shape->add_property_without_transition(property_name_string_or_symbol, attributes);
 | |
|         else
 | |
|             set_shape(*m_shape->create_put_transition(property_name_string_or_symbol, attributes));
 | |
| 
 | |
|         m_storage.append(value);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (attributes != metadata->attributes) {
 | |
|         if (m_shape->is_unique())
 | |
|             m_shape->reconfigure_property_in_unique_shape(property_name_string_or_symbol, attributes);
 | |
|         else if (!m_transitions_enabled)
 | |
|             VERIFY_NOT_REACHED(); // We currently don't have a way of doing this, and it's not used anywhere either.
 | |
|         else
 | |
|             set_shape(*m_shape->create_configure_transition(property_name_string_or_symbol, attributes));
 | |
|     }
 | |
| 
 | |
|     m_storage[metadata->offset] = value;
 | |
| }
 | |
| 
 | |
| void Object::storage_delete(PropertyName const& property_name)
 | |
| {
 | |
|     VERIFY(property_name.is_valid());
 | |
|     VERIFY(storage_has(property_name));
 | |
| 
 | |
|     if (property_name.is_number())
 | |
|         return m_indexed_properties.remove(property_name.as_number());
 | |
| 
 | |
|     auto metadata = shape().lookup(property_name.to_string_or_symbol());
 | |
|     VERIFY(metadata.has_value());
 | |
| 
 | |
|     ensure_shape_is_unique();
 | |
| 
 | |
|     shape().remove_property_from_unique_shape(property_name.to_string_or_symbol(), metadata->offset);
 | |
|     m_storage.remove(metadata->offset);
 | |
| }
 | |
| 
 | |
| void Object::define_native_accessor(PropertyName const& property_name, Function<Value(VM&, GlobalObject&)> getter, Function<Value(VM&, GlobalObject&)> setter, PropertyAttributes attribute)
 | |
| {
 | |
|     auto& vm = this->vm();
 | |
|     String formatted_property_name;
 | |
|     if (property_name.is_number()) {
 | |
|         formatted_property_name = property_name.to_string();
 | |
|     } else if (property_name.is_string()) {
 | |
|         formatted_property_name = property_name.as_string();
 | |
|     } else {
 | |
|         formatted_property_name = String::formatted("[{}]", property_name.as_symbol()->description());
 | |
|     }
 | |
|     FunctionObject* getter_function = nullptr;
 | |
|     if (getter) {
 | |
|         auto name = String::formatted("get {}", formatted_property_name);
 | |
|         getter_function = NativeFunction::create(global_object(), name, move(getter));
 | |
|         getter_function->define_direct_property_without_transition(vm.names.length, Value(0), Attribute::Configurable);
 | |
|         getter_function->define_direct_property_without_transition(vm.names.name, js_string(vm, name), Attribute::Configurable);
 | |
|     }
 | |
|     FunctionObject* setter_function = nullptr;
 | |
|     if (setter) {
 | |
|         auto name = String::formatted("set {}", formatted_property_name);
 | |
|         setter_function = NativeFunction::create(global_object(), name, move(setter));
 | |
|         setter_function->define_direct_property_without_transition(vm.names.length, Value(1), Attribute::Configurable);
 | |
|         setter_function->define_direct_property_without_transition(vm.names.name, js_string(vm, name), Attribute::Configurable);
 | |
|     }
 | |
|     return define_direct_accessor(property_name, getter_function, setter_function, attribute);
 | |
| }
 | |
| 
 | |
| void Object::define_direct_accessor(PropertyName const& property_name, FunctionObject* getter, FunctionObject* setter, PropertyAttributes attributes)
 | |
| {
 | |
|     VERIFY(property_name.is_valid());
 | |
| 
 | |
|     auto existing_property = storage_get(property_name).value_or({}).value;
 | |
|     auto* accessor = existing_property.is_accessor() ? &existing_property.as_accessor() : nullptr;
 | |
|     if (!accessor) {
 | |
|         accessor = Accessor::create(vm(), getter, setter);
 | |
|         define_direct_property(property_name, accessor, attributes);
 | |
|     } else {
 | |
|         if (getter)
 | |
|             accessor->set_getter(getter);
 | |
|         if (setter)
 | |
|             accessor->set_setter(setter);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Object::define_direct_property_without_transition(PropertyName const& property_name, Value value, PropertyAttributes attributes)
 | |
| {
 | |
|     TemporaryChange disable_transitions(m_transitions_enabled, false);
 | |
|     define_direct_property(property_name, value, attributes);
 | |
| }
 | |
| 
 | |
| void Object::define_direct_accessor_without_transition(PropertyName const& property_name, FunctionObject* getter, FunctionObject* setter, PropertyAttributes attributes)
 | |
| {
 | |
|     TemporaryChange disable_transitions(m_transitions_enabled, false);
 | |
|     define_direct_accessor(property_name, getter, setter, attributes);
 | |
| }
 | |
| 
 | |
| void Object::ensure_shape_is_unique()
 | |
| {
 | |
|     if (shape().is_unique())
 | |
|         return;
 | |
| 
 | |
|     m_shape = m_shape->create_unique_clone();
 | |
| }
 | |
| 
 | |
| // Simple side-effect free property lookup, following the prototype chain. Non-standard.
 | |
| Value Object::get_without_side_effects(const PropertyName& property_name) const
 | |
| {
 | |
|     auto* object = this;
 | |
|     while (object) {
 | |
|         auto value_and_attributes = object->storage_get(property_name);
 | |
|         if (value_and_attributes.has_value())
 | |
|             return value_and_attributes->value;
 | |
|         object = object->prototype();
 | |
|     }
 | |
|     return {};
 | |
| }
 | |
| 
 | |
| void Object::define_native_function(PropertyName const& property_name, Function<Value(VM&, GlobalObject&)> native_function, i32 length, PropertyAttributes attribute)
 | |
| {
 | |
|     auto& vm = this->vm();
 | |
|     String function_name;
 | |
|     if (property_name.is_string()) {
 | |
|         function_name = property_name.as_string();
 | |
|     } else {
 | |
|         function_name = String::formatted("[{}]", property_name.as_symbol()->description());
 | |
|     }
 | |
|     auto* function = NativeFunction::create(global_object(), function_name, move(native_function));
 | |
|     function->define_direct_property_without_transition(vm.names.length, Value(length), Attribute::Configurable);
 | |
|     function->define_direct_property_without_transition(vm.names.name, js_string(vm, function_name), Attribute::Configurable);
 | |
|     define_direct_property(property_name, function, attribute);
 | |
| }
 | |
| 
 | |
| // 20.1.2.3.1 ObjectDefineProperties ( O, Properties ), https://tc39.es/ecma262/#sec-objectdefineproperties
 | |
| Object* Object::define_properties(Value properties)
 | |
| {
 | |
|     auto& vm = this->vm();
 | |
|     auto& global_object = this->global_object();
 | |
| 
 | |
|     // 1. Assert: Type(O) is Object.
 | |
| 
 | |
|     // 2. Let props be ? ToObject(Properties).
 | |
|     auto* props = properties.to_object(global_object);
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
| 
 | |
|     // 3. Let keys be ? props.[[OwnPropertyKeys]]().
 | |
|     auto keys = props->internal_own_property_keys();
 | |
|     if (vm.exception())
 | |
|         return {};
 | |
| 
 | |
|     struct NameAndDescriptor {
 | |
|         PropertyName name;
 | |
|         PropertyDescriptor descriptor;
 | |
|     };
 | |
| 
 | |
|     // 4. Let descriptors be a new empty List.
 | |
|     Vector<NameAndDescriptor> descriptors;
 | |
| 
 | |
|     // 5. For each element nextKey of keys, do
 | |
|     for (auto& next_key : keys) {
 | |
|         auto property_name = PropertyName::from_value(global_object, next_key);
 | |
| 
 | |
|         // a. Let propDesc be ? props.[[GetOwnProperty]](nextKey).
 | |
|         auto property_descriptor = props->internal_get_own_property(property_name);
 | |
|         if (vm.exception())
 | |
|             return {};
 | |
| 
 | |
|         // b. If propDesc is not undefined and propDesc.[[Enumerable]] is true, then
 | |
|         if (property_descriptor.has_value() && *property_descriptor->enumerable) {
 | |
|             // i. Let descObj be ? Get(props, nextKey).
 | |
|             auto descriptor_object = props->get(property_name);
 | |
|             if (vm.exception())
 | |
|                 return {};
 | |
| 
 | |
|             // ii. Let desc be ? ToPropertyDescriptor(descObj).
 | |
|             auto descriptor = to_property_descriptor(global_object, descriptor_object);
 | |
|             if (vm.exception())
 | |
|                 return {};
 | |
| 
 | |
|             // iii. Append the pair (a two element List) consisting of nextKey and desc to the end of descriptors.
 | |
|             descriptors.append({ property_name, descriptor });
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // 6. For each element pair of descriptors, do
 | |
|     for (auto& [name, descriptor] : descriptors) {
 | |
|         // a. Let P be the first element of pair.
 | |
|         // b. Let desc be the second element of pair.
 | |
| 
 | |
|         // c. Perform ? DefinePropertyOrThrow(O, P, desc).
 | |
|         define_property_or_throw(name, descriptor);
 | |
|         if (vm.exception())
 | |
|             return {};
 | |
|     }
 | |
| 
 | |
|     // 7. Return O.
 | |
|     return this;
 | |
| }
 | |
| 
 | |
| void Object::visit_edges(Cell::Visitor& visitor)
 | |
| {
 | |
|     Cell::visit_edges(visitor);
 | |
|     visitor.visit(m_shape);
 | |
| 
 | |
|     for (auto& value : m_storage)
 | |
|         visitor.visit(value);
 | |
| 
 | |
|     m_indexed_properties.for_each_value([&visitor](auto& value) {
 | |
|         visitor.visit(value);
 | |
|     });
 | |
| }
 | |
| 
 | |
| // 7.1.1.1 OrdinaryToPrimitive ( O, hint ), https://tc39.es/ecma262/#sec-ordinarytoprimitive
 | |
| Value Object::ordinary_to_primitive(Value::PreferredType preferred_type) const
 | |
| {
 | |
|     VERIFY(preferred_type == Value::PreferredType::String || preferred_type == Value::PreferredType::Number);
 | |
| 
 | |
|     auto& vm = this->vm();
 | |
| 
 | |
|     AK::Array<PropertyName, 2> method_names;
 | |
|     if (preferred_type == Value::PreferredType::String)
 | |
|         method_names = { vm.names.toString, vm.names.valueOf };
 | |
|     else
 | |
|         method_names = { vm.names.valueOf, vm.names.toString };
 | |
| 
 | |
|     for (auto& method_name : method_names) {
 | |
|         auto method = get(method_name);
 | |
|         if (vm.exception())
 | |
|             return {};
 | |
|         if (method.is_function()) {
 | |
|             auto result = TRY_OR_DISCARD(vm.call(method.as_function(), const_cast<Object*>(this)));
 | |
|             if (!result.is_object())
 | |
|                 return result;
 | |
|         }
 | |
|     }
 | |
|     vm.throw_exception<TypeError>(global_object(), ErrorType::Convert, "object", preferred_type == Value::PreferredType::String ? "string" : "number");
 | |
|     return {};
 | |
| }
 | |
| 
 | |
| }
 | 
