mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 20:52:45 +00:00 
			
		
		
		
	 60fa921daa
			
		
	
	
		60fa921daa
		
	
	
	
	
		
			
			According to the documentation, we should switch around vertices every other triangle to prevent front-face culling from removing them. This allows Tux in Tux Racer to render correctly.
		
			
				
	
	
		
			831 lines
		
	
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			831 lines
		
	
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@serenityos.org>
 | |
|  * Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/Function.h>
 | |
| #include <LibGfx/Painter.h>
 | |
| #include <LibGfx/Vector2.h>
 | |
| #include <LibGfx/Vector3.h>
 | |
| #include <LibSoftGPU/Device.h>
 | |
| 
 | |
| namespace SoftGPU {
 | |
| 
 | |
| using IntVector2 = Gfx::Vector2<int>;
 | |
| using IntVector3 = Gfx::Vector3<int>;
 | |
| 
 | |
| static constexpr int RASTERIZER_BLOCK_SIZE = 8;
 | |
| 
 | |
| constexpr static int edge_function(const IntVector2& a, const IntVector2& b, const IntVector2& c)
 | |
| {
 | |
|     return ((c.x() - a.x()) * (b.y() - a.y()) - (c.y() - a.y()) * (b.x() - a.x()));
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| constexpr static T interpolate(const T& v0, const T& v1, const T& v2, const FloatVector3& barycentric_coords)
 | |
| {
 | |
|     return v0 * barycentric_coords.x() + v1 * barycentric_coords.y() + v2 * barycentric_coords.z();
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| constexpr static T mix(const T& x, const T& y, float interp)
 | |
| {
 | |
|     return x * (1 - interp) + y * interp;
 | |
| }
 | |
| 
 | |
| ALWAYS_INLINE constexpr static Gfx::RGBA32 to_rgba32(const FloatVector4& v)
 | |
| {
 | |
|     auto clamped = v.clamped(0, 1);
 | |
|     u8 r = clamped.x() * 255;
 | |
|     u8 g = clamped.y() * 255;
 | |
|     u8 b = clamped.z() * 255;
 | |
|     u8 a = clamped.w() * 255;
 | |
|     return a << 24 | r << 16 | g << 8 | b;
 | |
| }
 | |
| 
 | |
| static FloatVector4 to_vec4(Gfx::RGBA32 rgba)
 | |
| {
 | |
|     return {
 | |
|         ((rgba >> 16) & 0xff) / 255.0f,
 | |
|         ((rgba >> 8) & 0xff) / 255.0f,
 | |
|         (rgba & 0xff) / 255.0f,
 | |
|         ((rgba >> 24) & 0xff) / 255.0f
 | |
|     };
 | |
| }
 | |
| 
 | |
| static Gfx::IntRect scissor_box_to_window_coordinates(Gfx::IntRect const& scissor_box, Gfx::IntRect const& window_rect)
 | |
| {
 | |
|     return scissor_box.translated(0, window_rect.height() - 2 * scissor_box.y() - scissor_box.height());
 | |
| }
 | |
| 
 | |
| static constexpr void setup_blend_factors(BlendFactor mode, FloatVector4& constant, float& src_alpha, float& dst_alpha, float& src_color, float& dst_color)
 | |
| {
 | |
|     constant = { 0.0f, 0.0f, 0.0f, 0.0f };
 | |
|     src_alpha = 0;
 | |
|     dst_alpha = 0;
 | |
|     src_color = 0;
 | |
|     dst_color = 0;
 | |
| 
 | |
|     switch (mode) {
 | |
|     case BlendFactor::Zero:
 | |
|         break;
 | |
|     case BlendFactor::One:
 | |
|         constant = { 1.0f, 1.0f, 1.0f, 1.0f };
 | |
|         break;
 | |
|     case BlendFactor::SrcColor:
 | |
|         src_color = 1;
 | |
|         break;
 | |
|     case BlendFactor::OneMinusSrcColor:
 | |
|         constant = { 1.0f, 1.0f, 1.0f, 1.0f };
 | |
|         src_color = -1;
 | |
|         break;
 | |
|     case BlendFactor::SrcAlpha:
 | |
|         src_alpha = 1;
 | |
|         break;
 | |
|     case BlendFactor::OneMinusSrcAlpha:
 | |
|         constant = { 1.0f, 1.0f, 1.0f, 1.0f };
 | |
|         src_alpha = -1;
 | |
|         break;
 | |
|     case BlendFactor::DstAlpha:
 | |
|         dst_alpha = 1;
 | |
|         break;
 | |
|     case BlendFactor::OneMinusDstAlpha:
 | |
|         constant = { 1.0f, 1.0f, 1.0f, 1.0f };
 | |
|         dst_alpha = -1;
 | |
|         break;
 | |
|     case BlendFactor::DstColor:
 | |
|         dst_color = 1;
 | |
|         break;
 | |
|     case BlendFactor::OneMinusDstColor:
 | |
|         constant = { 1.0f, 1.0f, 1.0f, 1.0f };
 | |
|         dst_color = -1;
 | |
|         break;
 | |
|     case BlendFactor::SrcAlphaSaturate:
 | |
|         // FIXME: How do we implement this?
 | |
|         break;
 | |
|     default:
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename PS>
 | |
| static void rasterize_triangle(const RasterizerOptions& options, Gfx::Bitmap& render_target, DepthBuffer& depth_buffer, const Triangle& triangle, PS pixel_shader)
 | |
| {
 | |
|     // Since the algorithm is based on blocks of uniform size, we need
 | |
|     // to ensure that our render_target size is actually a multiple of the block size
 | |
|     VERIFY((render_target.width() % RASTERIZER_BLOCK_SIZE) == 0);
 | |
|     VERIFY((render_target.height() % RASTERIZER_BLOCK_SIZE) == 0);
 | |
| 
 | |
|     // Calculate area of the triangle for later tests
 | |
|     IntVector2 v0 { (int)triangle.vertices[0].position.x(), (int)triangle.vertices[0].position.y() };
 | |
|     IntVector2 v1 { (int)triangle.vertices[1].position.x(), (int)triangle.vertices[1].position.y() };
 | |
|     IntVector2 v2 { (int)triangle.vertices[2].position.x(), (int)triangle.vertices[2].position.y() };
 | |
| 
 | |
|     int area = edge_function(v0, v1, v2);
 | |
|     if (area == 0)
 | |
|         return;
 | |
| 
 | |
|     float one_over_area = 1.0f / area;
 | |
| 
 | |
|     FloatVector4 src_constant {};
 | |
|     float src_factor_src_alpha = 0;
 | |
|     float src_factor_dst_alpha = 0;
 | |
|     float src_factor_src_color = 0;
 | |
|     float src_factor_dst_color = 0;
 | |
| 
 | |
|     FloatVector4 dst_constant {};
 | |
|     float dst_factor_src_alpha = 0;
 | |
|     float dst_factor_dst_alpha = 0;
 | |
|     float dst_factor_src_color = 0;
 | |
|     float dst_factor_dst_color = 0;
 | |
| 
 | |
|     if (options.enable_blending) {
 | |
|         setup_blend_factors(
 | |
|             options.blend_source_factor,
 | |
|             src_constant,
 | |
|             src_factor_src_alpha,
 | |
|             src_factor_dst_alpha,
 | |
|             src_factor_src_color,
 | |
|             src_factor_dst_color);
 | |
| 
 | |
|         setup_blend_factors(
 | |
|             options.blend_destination_factor,
 | |
|             dst_constant,
 | |
|             dst_factor_src_alpha,
 | |
|             dst_factor_dst_alpha,
 | |
|             dst_factor_src_color,
 | |
|             dst_factor_dst_color);
 | |
|     }
 | |
| 
 | |
|     // Obey top-left rule:
 | |
|     // This sets up "zero" for later pixel coverage tests.
 | |
|     // Depending on where on the triangle the edge is located
 | |
|     // it is either tested against 0 or 1, effectively
 | |
|     // turning "< 0" into "<= 0"
 | |
|     IntVector3 zero { 1, 1, 1 };
 | |
|     if (v1.y() > v0.y() || (v1.y() == v0.y() && v1.x() < v0.x()))
 | |
|         zero.set_z(0);
 | |
|     if (v2.y() > v1.y() || (v2.y() == v1.y() && v2.x() < v1.x()))
 | |
|         zero.set_x(0);
 | |
|     if (v0.y() > v2.y() || (v0.y() == v2.y() && v0.x() < v2.x()))
 | |
|         zero.set_y(0);
 | |
| 
 | |
|     // This function calculates the 3 edge values for the pixel relative to the triangle.
 | |
|     auto calculate_edge_values = [v0, v1, v2](const IntVector2& p) -> IntVector3 {
 | |
|         return {
 | |
|             edge_function(v1, v2, p),
 | |
|             edge_function(v2, v0, p),
 | |
|             edge_function(v0, v1, p),
 | |
|         };
 | |
|     };
 | |
| 
 | |
|     // This function tests whether a point as identified by its 3 edge values lies within the triangle
 | |
|     auto test_point = [zero](const IntVector3& edges) -> bool {
 | |
|         return edges.x() >= zero.x()
 | |
|             && edges.y() >= zero.y()
 | |
|             && edges.z() >= zero.z();
 | |
|     };
 | |
| 
 | |
|     // Calculate block-based bounds
 | |
|     auto render_bounds = render_target.rect();
 | |
|     if (options.scissor_enabled)
 | |
|         render_bounds.intersect(scissor_box_to_window_coordinates(options.scissor_box, render_target.rect()));
 | |
|     int const block_padding = RASTERIZER_BLOCK_SIZE - 1;
 | |
|     // clang-format off
 | |
|     int const bx0 =  max(render_bounds.left(),   min(min(v0.x(), v1.x()), v2.x()))                  / RASTERIZER_BLOCK_SIZE;
 | |
|     int const bx1 = (min(render_bounds.right(),  max(max(v0.x(), v1.x()), v2.x())) + block_padding) / RASTERIZER_BLOCK_SIZE;
 | |
|     int const by0 =  max(render_bounds.top(),    min(min(v0.y(), v1.y()), v2.y()))                  / RASTERIZER_BLOCK_SIZE;
 | |
|     int const by1 = (min(render_bounds.bottom(), max(max(v0.y(), v1.y()), v2.y())) + block_padding) / RASTERIZER_BLOCK_SIZE;
 | |
|     // clang-format on
 | |
| 
 | |
|     u8 pixel_mask[RASTERIZER_BLOCK_SIZE];
 | |
|     static_assert(RASTERIZER_BLOCK_SIZE <= sizeof(decltype(*pixel_mask)) * 8, "RASTERIZER_BLOCK_SIZE must be smaller than the pixel_mask's width in bits");
 | |
| 
 | |
|     FloatVector4 pixel_buffer[RASTERIZER_BLOCK_SIZE][RASTERIZER_BLOCK_SIZE];
 | |
| 
 | |
|     // FIXME: implement stencil testing
 | |
| 
 | |
|     // Iterate over all blocks within the bounds of the triangle
 | |
|     for (int by = by0; by < by1; by++) {
 | |
|         for (int bx = bx0; bx < bx1; bx++) {
 | |
| 
 | |
|             // Edge values of the 4 block corners
 | |
|             // clang-format off
 | |
|             auto b0 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE,                         by * RASTERIZER_BLOCK_SIZE });
 | |
|             auto b1 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE, by * RASTERIZER_BLOCK_SIZE });
 | |
|             auto b2 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE,                         by * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE });
 | |
|             auto b3 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE, by * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE });
 | |
|             // clang-format on
 | |
| 
 | |
|             // If the whole block is outside any of the triangle edges we can discard it completely
 | |
|             // We test this by and'ing the relevant edge function values together for all block corners
 | |
|             // and checking if the negative sign bit is set for all of them
 | |
|             if ((b0.x() & b1.x() & b2.x() & b3.x()) & 0x80000000)
 | |
|                 continue;
 | |
| 
 | |
|             if ((b0.y() & b1.y() & b2.y() & b3.y()) & 0x80000000)
 | |
|                 continue;
 | |
| 
 | |
|             if ((b0.z() & b1.z() & b2.z() & b3.z()) & 0x80000000)
 | |
|                 continue;
 | |
| 
 | |
|             // edge value derivatives
 | |
|             auto dbdx = (b1 - b0) / RASTERIZER_BLOCK_SIZE;
 | |
|             auto dbdy = (b2 - b0) / RASTERIZER_BLOCK_SIZE;
 | |
|             // step edge value after each horizontal span: 1 down, BLOCK_SIZE left
 | |
|             auto step_y = dbdy - dbdx * RASTERIZER_BLOCK_SIZE;
 | |
| 
 | |
|             int x0 = bx * RASTERIZER_BLOCK_SIZE;
 | |
|             int y0 = by * RASTERIZER_BLOCK_SIZE;
 | |
| 
 | |
|             // Generate the coverage mask
 | |
|             if (!options.scissor_enabled && test_point(b0) && test_point(b1) && test_point(b2) && test_point(b3)) {
 | |
|                 // The block is fully contained within the triangle. Fill the mask with all 1s
 | |
|                 for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++)
 | |
|                     pixel_mask[y] = -1;
 | |
|             } else {
 | |
|                 // The block overlaps at least one triangle edge.
 | |
|                 // We need to test coverage of every pixel within the block.
 | |
|                 auto coords = b0;
 | |
|                 for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++, coords += step_y) {
 | |
|                     pixel_mask[y] = 0;
 | |
| 
 | |
|                     for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, coords += dbdx) {
 | |
|                         if (test_point(coords) && (!options.scissor_enabled || render_bounds.contains(x0 + x, y0 + y)))
 | |
|                             pixel_mask[y] |= 1 << x;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // AND the depth mask onto the coverage mask
 | |
|             if (options.enable_depth_test) {
 | |
|                 int z_pass_count = 0;
 | |
|                 auto coords = b0;
 | |
| 
 | |
|                 for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++, coords += step_y) {
 | |
|                     if (pixel_mask[y] == 0) {
 | |
|                         coords += dbdx * RASTERIZER_BLOCK_SIZE;
 | |
|                         continue;
 | |
|                     }
 | |
| 
 | |
|                     auto* depth = &depth_buffer.scanline(y0 + y)[x0];
 | |
|                     for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, coords += dbdx, depth++) {
 | |
|                         if (~pixel_mask[y] & (1 << x))
 | |
|                             continue;
 | |
| 
 | |
|                         auto barycentric = FloatVector3(coords.x(), coords.y(), coords.z()) * one_over_area;
 | |
|                         float z = interpolate(triangle.vertices[0].position.z(), triangle.vertices[1].position.z(), triangle.vertices[2].position.z(), barycentric);
 | |
| 
 | |
|                         z = options.depth_min + (options.depth_max - options.depth_min) * (z + 1) / 2;
 | |
| 
 | |
|                         // FIXME: Also apply depth_offset_factor which depends on the depth gradient
 | |
|                         z += options.depth_offset_constant * NumericLimits<float>::epsilon();
 | |
| 
 | |
|                         bool pass = false;
 | |
|                         switch (options.depth_func) {
 | |
|                         case DepthTestFunction::Always:
 | |
|                             pass = true;
 | |
|                             break;
 | |
|                         case DepthTestFunction::Never:
 | |
|                             pass = false;
 | |
|                             break;
 | |
|                         case DepthTestFunction::Greater:
 | |
|                             pass = z > *depth;
 | |
|                             break;
 | |
|                         case DepthTestFunction::GreaterOrEqual:
 | |
|                             pass = z >= *depth;
 | |
|                             break;
 | |
|                         case DepthTestFunction::NotEqual:
 | |
| #ifdef __SSE__
 | |
|                             pass = z != *depth;
 | |
| #else
 | |
|                             pass = bit_cast<u32>(z) != bit_cast<u32>(*depth);
 | |
| #endif
 | |
|                             break;
 | |
|                         case DepthTestFunction::Equal:
 | |
| #ifdef __SSE__
 | |
|                             pass = z == *depth;
 | |
| #else
 | |
|                             //
 | |
|                             // This is an interesting quirk that occurs due to us using the x87 FPU when Serenity is
 | |
|                             // compiled for the i386 target. When we calculate our depth value to be stored in the buffer,
 | |
|                             // it is an 80-bit x87 floating point number, however, when stored into the DepthBuffer, this is
 | |
|                             // truncated to 32 bits. This 38 bit loss of precision means that when x87 `FCOMP` is eventually
 | |
|                             // used here the comparison fails.
 | |
|                             // This could be solved by using a `long double` for the depth buffer, however this would take
 | |
|                             // up significantly more space and is completely overkill for a depth buffer. As such, comparing
 | |
|                             // the first 32-bits of this depth value is "good enough" that if we get a hit on it being
 | |
|                             // equal, we can pretty much guarantee that it's actually equal.
 | |
|                             //
 | |
|                             pass = bit_cast<u32>(z) == bit_cast<u32>(*depth);
 | |
| #endif
 | |
|                             break;
 | |
|                         case DepthTestFunction::LessOrEqual:
 | |
|                             pass = z <= *depth;
 | |
|                             break;
 | |
|                         case DepthTestFunction::Less:
 | |
|                             pass = z < *depth;
 | |
|                             break;
 | |
|                         }
 | |
| 
 | |
|                         if (!pass) {
 | |
|                             pixel_mask[y] ^= 1 << x;
 | |
|                             continue;
 | |
|                         }
 | |
| 
 | |
|                         if (options.enable_depth_write)
 | |
|                             *depth = z;
 | |
| 
 | |
|                         z_pass_count++;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // Nice, no pixels passed the depth test -> block rejected by early z
 | |
|                 if (z_pass_count == 0)
 | |
|                     continue;
 | |
|             }
 | |
| 
 | |
|             // We will not update the color buffer at all
 | |
|             if (!options.color_mask || !options.enable_color_write)
 | |
|                 continue;
 | |
| 
 | |
|             // Draw the pixels according to the previously generated mask
 | |
|             auto coords = b0;
 | |
|             for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++, coords += step_y) {
 | |
|                 if (pixel_mask[y] == 0) {
 | |
|                     coords += dbdx * RASTERIZER_BLOCK_SIZE;
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 auto* pixel = pixel_buffer[y];
 | |
|                 for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, coords += dbdx, pixel++) {
 | |
|                     if (~pixel_mask[y] & (1 << x))
 | |
|                         continue;
 | |
| 
 | |
|                     // Perspective correct barycentric coordinates
 | |
|                     auto barycentric = FloatVector3(coords.x(), coords.y(), coords.z()) * one_over_area;
 | |
|                     float interpolated_reciprocal_w = interpolate(triangle.vertices[0].position.w(), triangle.vertices[1].position.w(), triangle.vertices[2].position.w(), barycentric);
 | |
|                     float interpolated_w = 1 / interpolated_reciprocal_w;
 | |
|                     barycentric = barycentric * FloatVector3(triangle.vertices[0].position.w(), triangle.vertices[1].position.w(), triangle.vertices[2].position.w()) * interpolated_w;
 | |
| 
 | |
|                     // FIXME: make this more generic. We want to interpolate more than just color and uv
 | |
|                     FloatVector4 vertex_color;
 | |
|                     if (options.shade_smooth) {
 | |
|                         vertex_color = interpolate(
 | |
|                             triangle.vertices[0].color,
 | |
|                             triangle.vertices[1].color,
 | |
|                             triangle.vertices[2].color,
 | |
|                             barycentric);
 | |
|                     } else {
 | |
|                         vertex_color = triangle.vertices[0].color;
 | |
|                     }
 | |
| 
 | |
|                     auto uv = interpolate(
 | |
|                         triangle.vertices[0].tex_coord,
 | |
|                         triangle.vertices[1].tex_coord,
 | |
|                         triangle.vertices[2].tex_coord,
 | |
|                         barycentric);
 | |
| 
 | |
|                     // Calculate depth of fragment for fog
 | |
|                     float z = interpolate(triangle.vertices[0].position.z(), triangle.vertices[1].position.z(), triangle.vertices[2].position.z(), barycentric);
 | |
|                     z = options.depth_min + (options.depth_max - options.depth_min) * (z + 1) / 2;
 | |
| 
 | |
|                     *pixel = pixel_shader(uv, vertex_color, z);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (options.enable_alpha_test && options.alpha_test_func != AlphaTestFunction::Always) {
 | |
|                 // FIXME: I'm not sure if this is the right place to test this.
 | |
|                 // If we tested this right at the beginning of our rasterizer routine
 | |
|                 // we could skip a lot of work but the GL spec might disagree.
 | |
|                 if (options.alpha_test_func == AlphaTestFunction::Never)
 | |
|                     continue;
 | |
| 
 | |
|                 for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) {
 | |
|                     auto src = pixel_buffer[y];
 | |
|                     for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, src++) {
 | |
|                         if (~pixel_mask[y] & (1 << x))
 | |
|                             continue;
 | |
| 
 | |
|                         bool passed = true;
 | |
| 
 | |
|                         switch (options.alpha_test_func) {
 | |
|                         case AlphaTestFunction::Less:
 | |
|                             passed = src->w() < options.alpha_test_ref_value;
 | |
|                             break;
 | |
|                         case AlphaTestFunction::Equal:
 | |
|                             passed = src->w() == options.alpha_test_ref_value;
 | |
|                             break;
 | |
|                         case AlphaTestFunction::LessOrEqual:
 | |
|                             passed = src->w() <= options.alpha_test_ref_value;
 | |
|                             break;
 | |
|                         case AlphaTestFunction::Greater:
 | |
|                             passed = src->w() > options.alpha_test_ref_value;
 | |
|                             break;
 | |
|                         case AlphaTestFunction::NotEqual:
 | |
|                             passed = src->w() != options.alpha_test_ref_value;
 | |
|                             break;
 | |
|                         case AlphaTestFunction::GreaterOrEqual:
 | |
|                             passed = src->w() >= options.alpha_test_ref_value;
 | |
|                             break;
 | |
|                         case AlphaTestFunction::Never:
 | |
|                         case AlphaTestFunction::Always:
 | |
|                             VERIFY_NOT_REACHED();
 | |
|                         }
 | |
| 
 | |
|                         if (!passed)
 | |
|                             pixel_mask[y] ^= (1 << x);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (options.enable_blending) {
 | |
|                 // Blend color values from pixel_buffer into render_target
 | |
|                 for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) {
 | |
|                     auto src = pixel_buffer[y];
 | |
|                     auto dst = &render_target.scanline(y + y0)[x0];
 | |
|                     for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, src++, dst++) {
 | |
|                         if (~pixel_mask[y] & (1 << x))
 | |
|                             continue;
 | |
| 
 | |
|                         auto float_dst = to_vec4(*dst);
 | |
| 
 | |
|                         auto src_factor = src_constant
 | |
|                             + *src * src_factor_src_color
 | |
|                             + FloatVector4(src->w(), src->w(), src->w(), src->w()) * src_factor_src_alpha
 | |
|                             + float_dst * src_factor_dst_color
 | |
|                             + FloatVector4(float_dst.w(), float_dst.w(), float_dst.w(), float_dst.w()) * src_factor_dst_alpha;
 | |
| 
 | |
|                         auto dst_factor = dst_constant
 | |
|                             + *src * dst_factor_src_color
 | |
|                             + FloatVector4(src->w(), src->w(), src->w(), src->w()) * dst_factor_src_alpha
 | |
|                             + float_dst * dst_factor_dst_color
 | |
|                             + FloatVector4(float_dst.w(), float_dst.w(), float_dst.w(), float_dst.w()) * dst_factor_dst_alpha;
 | |
| 
 | |
|                         *dst = (*dst & ~options.color_mask) | (to_rgba32(*src * src_factor + float_dst * dst_factor) & options.color_mask);
 | |
|                     }
 | |
|                 }
 | |
|             } else {
 | |
|                 // Copy color values from pixel_buffer into render_target
 | |
|                 for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) {
 | |
|                     auto src = pixel_buffer[y];
 | |
|                     auto dst = &render_target.scanline(y + y0)[x0];
 | |
|                     for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, src++, dst++) {
 | |
|                         if (~pixel_mask[y] & (1 << x))
 | |
|                             continue;
 | |
| 
 | |
|                         *dst = (*dst & ~options.color_mask) | (to_rgba32(*src) & options.color_mask);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static Gfx::IntSize closest_multiple(const Gfx::IntSize& min_size, size_t step)
 | |
| {
 | |
|     int width = ((min_size.width() + step - 1) / step) * step;
 | |
|     int height = ((min_size.height() + step - 1) / step) * step;
 | |
|     return { width, height };
 | |
| }
 | |
| 
 | |
| Device::Device(const Gfx::IntSize& min_size)
 | |
|     : m_render_target { Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE)).release_value_but_fixme_should_propagate_errors() }
 | |
|     , m_depth_buffer { adopt_own(*new DepthBuffer(closest_multiple(min_size, RASTERIZER_BLOCK_SIZE))) }
 | |
| {
 | |
|     m_options.scissor_box = m_render_target->rect();
 | |
| }
 | |
| 
 | |
| DeviceInfo Device::info() const
 | |
| {
 | |
|     return {
 | |
|         .vendor_name = "SerenityOS",
 | |
|         .device_name = "SoftGPU",
 | |
|         .num_texture_units = num_samplers
 | |
|     };
 | |
| }
 | |
| 
 | |
| void Device::draw_primitives(PrimitiveType primitive_type, FloatMatrix4x4 const& transform, FloatMatrix4x4 const& texture_matrix, Vector<Vertex> const& vertices, Vector<size_t> const& enabled_texture_units)
 | |
| {
 | |
|     // At this point, the user has effectively specified that they are done with defining the geometry
 | |
|     // of what they want to draw. We now need to do a few things (https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview):
 | |
|     //
 | |
|     // 1.   Transform all of the vertices in the current vertex list into eye space by mulitplying the model-view matrix
 | |
|     // 2.   Transform all of the vertices from eye space into clip space by multiplying by the projection matrix
 | |
|     // 3.   If culling is enabled, we cull the desired faces (https://learnopengl.com/Advanced-OpenGL/Face-culling)
 | |
|     // 4.   Each element of the vertex is then divided by w to bring the positions into NDC (Normalized Device Coordinates)
 | |
|     // 5.   The vertices are sorted (for the rasteriser, how are we doing this? 3Dfx did this top to bottom in terms of vertex y coordinates)
 | |
|     // 6.   The vertices are then sent off to the rasteriser and drawn to the screen
 | |
| 
 | |
|     float scr_width = m_render_target->width();
 | |
|     float scr_height = m_render_target->height();
 | |
| 
 | |
|     m_triangle_list.clear_with_capacity();
 | |
|     m_processed_triangles.clear_with_capacity();
 | |
| 
 | |
|     // Let's construct some triangles
 | |
|     if (primitive_type == PrimitiveType::Triangles) {
 | |
|         Triangle triangle;
 | |
|         for (size_t i = 0; i < vertices.size(); i += 3) {
 | |
|             triangle.vertices[0] = vertices.at(i);
 | |
|             triangle.vertices[1] = vertices.at(i + 1);
 | |
|             triangle.vertices[2] = vertices.at(i + 2);
 | |
| 
 | |
|             m_triangle_list.append(triangle);
 | |
|         }
 | |
|     } else if (primitive_type == PrimitiveType::Quads) {
 | |
|         // We need to construct two triangles to form the quad
 | |
|         Triangle triangle;
 | |
|         VERIFY(vertices.size() % 4 == 0);
 | |
|         for (size_t i = 0; i < vertices.size(); i += 4) {
 | |
|             // Triangle 1
 | |
|             triangle.vertices[0] = vertices.at(i);
 | |
|             triangle.vertices[1] = vertices.at(i + 1);
 | |
|             triangle.vertices[2] = vertices.at(i + 2);
 | |
|             m_triangle_list.append(triangle);
 | |
| 
 | |
|             // Triangle 2
 | |
|             triangle.vertices[0] = vertices.at(i + 2);
 | |
|             triangle.vertices[1] = vertices.at(i + 3);
 | |
|             triangle.vertices[2] = vertices.at(i);
 | |
|             m_triangle_list.append(triangle);
 | |
|         }
 | |
|     } else if (primitive_type == PrimitiveType::TriangleFan) {
 | |
|         Triangle triangle;
 | |
|         triangle.vertices[0] = vertices.at(0); // Root vertex is always the vertex defined first
 | |
| 
 | |
|         for (size_t i = 1; i < vertices.size() - 1; i++) // This is technically `n-2` triangles. We start at index 1
 | |
|         {
 | |
|             triangle.vertices[1] = vertices.at(i);
 | |
|             triangle.vertices[2] = vertices.at(i + 1);
 | |
|             m_triangle_list.append(triangle);
 | |
|         }
 | |
|     } else if (primitive_type == PrimitiveType::TriangleStrip) {
 | |
|         Triangle triangle;
 | |
|         for (size_t i = 0; i < vertices.size() - 2; i++) {
 | |
|             if (i % 2 == 0) {
 | |
|                 triangle.vertices[0] = vertices.at(i);
 | |
|                 triangle.vertices[1] = vertices.at(i + 1);
 | |
|                 triangle.vertices[2] = vertices.at(i + 2);
 | |
|             } else {
 | |
|                 triangle.vertices[0] = vertices.at(i + 1);
 | |
|                 triangle.vertices[1] = vertices.at(i);
 | |
|                 triangle.vertices[2] = vertices.at(i + 2);
 | |
|             }
 | |
|             m_triangle_list.append(triangle);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Now let's transform each triangle and send that to the GPU
 | |
|     for (size_t i = 0; i < m_triangle_list.size(); i++) {
 | |
|         Triangle& triangle = m_triangle_list.at(i);
 | |
| 
 | |
|         // First multiply the vertex by the MODELVIEW matrix and then the PROJECTION matrix
 | |
|         triangle.vertices[0].position = transform * triangle.vertices[0].position;
 | |
|         triangle.vertices[1].position = transform * triangle.vertices[1].position;
 | |
|         triangle.vertices[2].position = transform * triangle.vertices[2].position;
 | |
| 
 | |
|         // Apply texture transformation
 | |
|         // FIXME: implement multi-texturing: texcoords should be stored per texture unit
 | |
|         triangle.vertices[0].tex_coord = texture_matrix * triangle.vertices[0].tex_coord;
 | |
|         triangle.vertices[1].tex_coord = texture_matrix * triangle.vertices[1].tex_coord;
 | |
|         triangle.vertices[2].tex_coord = texture_matrix * triangle.vertices[2].tex_coord;
 | |
| 
 | |
|         // At this point, we're in clip space
 | |
|         // Here's where we do the clipping. This is a really crude implementation of the
 | |
|         // https://learnopengl.com/Getting-started/Coordinate-Systems
 | |
|         // "Note that if only a part of a primitive e.g. a triangle is outside the clipping volume OpenGL
 | |
|         // will reconstruct the triangle as one or more triangles to fit inside the clipping range. "
 | |
|         //
 | |
|         // ALL VERTICES ARE DEFINED IN A CLOCKWISE ORDER
 | |
| 
 | |
|         // Okay, let's do some face culling first
 | |
| 
 | |
|         m_clipped_vertices.clear_with_capacity();
 | |
|         m_clipped_vertices.append(triangle.vertices[0]);
 | |
|         m_clipped_vertices.append(triangle.vertices[1]);
 | |
|         m_clipped_vertices.append(triangle.vertices[2]);
 | |
|         m_clipper.clip_triangle_against_frustum(m_clipped_vertices);
 | |
| 
 | |
|         if (m_clipped_vertices.size() < 3)
 | |
|             continue;
 | |
| 
 | |
|         for (auto& vec : m_clipped_vertices) {
 | |
|             // perspective divide
 | |
|             float w = vec.position.w();
 | |
|             vec.position.set_x(vec.position.x() / w);
 | |
|             vec.position.set_y(vec.position.y() / w);
 | |
|             vec.position.set_z(vec.position.z() / w);
 | |
|             vec.position.set_w(1 / w);
 | |
| 
 | |
|             // to screen space
 | |
|             vec.position.set_x(scr_width / 2 + vec.position.x() * scr_width / 2);
 | |
|             vec.position.set_y(scr_height / 2 - vec.position.y() * scr_height / 2);
 | |
|         }
 | |
| 
 | |
|         Triangle tri;
 | |
|         tri.vertices[0] = m_clipped_vertices[0];
 | |
|         for (size_t i = 1; i < m_clipped_vertices.size() - 1; i++) {
 | |
|             tri.vertices[1] = m_clipped_vertices[i];
 | |
|             tri.vertices[2] = m_clipped_vertices[i + 1];
 | |
|             m_processed_triangles.append(tri);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (size_t i = 0; i < m_processed_triangles.size(); i++) {
 | |
|         Triangle& triangle = m_processed_triangles.at(i);
 | |
| 
 | |
|         // Let's calculate the (signed) area of the triangle
 | |
|         // https://cp-algorithms.com/geometry/oriented-triangle-area.html
 | |
|         float dxAB = triangle.vertices[0].position.x() - triangle.vertices[1].position.x(); // A.x - B.x
 | |
|         float dxBC = triangle.vertices[1].position.x() - triangle.vertices[2].position.x(); // B.X - C.x
 | |
|         float dyAB = triangle.vertices[0].position.y() - triangle.vertices[1].position.y();
 | |
|         float dyBC = triangle.vertices[1].position.y() - triangle.vertices[2].position.y();
 | |
|         float area = (dxAB * dyBC) - (dxBC * dyAB);
 | |
| 
 | |
|         if (area == 0.0f)
 | |
|             continue;
 | |
| 
 | |
|         if (m_options.enable_culling) {
 | |
|             bool is_front = (m_options.front_face == WindingOrder::CounterClockwise ? area < 0 : area > 0);
 | |
| 
 | |
|             if (!is_front && m_options.cull_back)
 | |
|                 continue;
 | |
| 
 | |
|             if (is_front && m_options.cull_front)
 | |
|                 continue;
 | |
|         }
 | |
| 
 | |
|         if (area > 0) {
 | |
|             swap(triangle.vertices[0], triangle.vertices[1]);
 | |
|         }
 | |
| 
 | |
|         submit_triangle(triangle, enabled_texture_units);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Device::submit_triangle(const Triangle& triangle, Vector<size_t> const& enabled_texture_units)
 | |
| {
 | |
|     rasterize_triangle(m_options, *m_render_target, *m_depth_buffer, triangle, [this, &enabled_texture_units](FloatVector4 const& uv, FloatVector4 const& color, float z) -> FloatVector4 {
 | |
|         FloatVector4 fragment = color;
 | |
| 
 | |
|         for (size_t i : enabled_texture_units) {
 | |
|             // FIXME: implement GL_TEXTURE_1D, GL_TEXTURE_3D and GL_TEXTURE_CUBE_MAP
 | |
|             auto const& sampler = m_samplers[i];
 | |
| 
 | |
|             FloatVector4 texel = sampler.sample_2d({ uv.x(), uv.y() });
 | |
| 
 | |
|             // FIXME: Implement more blend modes
 | |
|             switch (sampler.config().fixed_function_texture_env_mode) {
 | |
|             case TextureEnvMode::Modulate:
 | |
|             default:
 | |
|                 fragment = fragment * texel;
 | |
|                 break;
 | |
|             case TextureEnvMode::Replace:
 | |
|                 fragment = texel;
 | |
|                 break;
 | |
|             case TextureEnvMode::Decal: {
 | |
|                 float src_alpha = fragment.w();
 | |
|                 float one_minus_src_alpha = 1 - src_alpha;
 | |
|                 fragment.set_x(texel.x() * src_alpha + fragment.x() * one_minus_src_alpha);
 | |
|                 fragment.set_y(texel.y() * src_alpha + fragment.y() * one_minus_src_alpha);
 | |
|                 fragment.set_z(texel.z() * src_alpha + fragment.z() * one_minus_src_alpha);
 | |
|                 break;
 | |
|             }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Calculate fog
 | |
|         // Math from here: https://opengl-notes.readthedocs.io/en/latest/topics/texturing/aliasing.html
 | |
|         if (m_options.fog_enabled) {
 | |
|             float factor = 0.0f;
 | |
|             switch (m_options.fog_mode) {
 | |
|             case FogMode::Linear:
 | |
|                 factor = (m_options.fog_end - z) / (m_options.fog_end - m_options.fog_start);
 | |
|                 break;
 | |
|             case FogMode::Exp:
 | |
|                 factor = exp(-((m_options.fog_density * z)));
 | |
|                 break;
 | |
|             case FogMode::Exp2:
 | |
|                 factor = exp(-((m_options.fog_density * z) * (m_options.fog_density * z)));
 | |
|                 break;
 | |
|             default:
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             // Mix texel with fog
 | |
|             fragment = mix(m_options.fog_color, fragment, factor);
 | |
|         }
 | |
| 
 | |
|         return fragment;
 | |
|     });
 | |
| }
 | |
| 
 | |
| void Device::resize(const Gfx::IntSize& min_size)
 | |
| {
 | |
|     wait_for_all_threads();
 | |
| 
 | |
|     m_render_target = Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE)).release_value_but_fixme_should_propagate_errors();
 | |
|     m_depth_buffer = adopt_own(*new DepthBuffer(m_render_target->size()));
 | |
| }
 | |
| 
 | |
| void Device::clear_color(const FloatVector4& color)
 | |
| {
 | |
|     wait_for_all_threads();
 | |
| 
 | |
|     uint8_t r = static_cast<uint8_t>(clamp(color.x(), 0.0f, 1.0f) * 255);
 | |
|     uint8_t g = static_cast<uint8_t>(clamp(color.y(), 0.0f, 1.0f) * 255);
 | |
|     uint8_t b = static_cast<uint8_t>(clamp(color.z(), 0.0f, 1.0f) * 255);
 | |
|     uint8_t a = static_cast<uint8_t>(clamp(color.w(), 0.0f, 1.0f) * 255);
 | |
|     auto const fill_color = Gfx::Color(r, g, b, a);
 | |
| 
 | |
|     if (m_options.scissor_enabled) {
 | |
|         auto fill_rect = m_render_target->rect();
 | |
|         fill_rect.intersect(scissor_box_to_window_coordinates(m_options.scissor_box, fill_rect));
 | |
|         Gfx::Painter painter { *m_render_target };
 | |
|         painter.fill_rect(fill_rect, fill_color);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     m_render_target->fill(fill_color);
 | |
| }
 | |
| 
 | |
| void Device::clear_depth(float depth)
 | |
| {
 | |
|     wait_for_all_threads();
 | |
| 
 | |
|     if (m_options.scissor_enabled) {
 | |
|         m_depth_buffer->clear(scissor_box_to_window_coordinates(m_options.scissor_box, m_render_target->rect()), depth);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     m_depth_buffer->clear(depth);
 | |
| }
 | |
| 
 | |
| void Device::blit(Gfx::Bitmap const& source, int x, int y)
 | |
| {
 | |
|     wait_for_all_threads();
 | |
| 
 | |
|     Gfx::Painter painter { *m_render_target };
 | |
|     painter.blit({ x, y }, source, source.rect(), 1.0f, true);
 | |
| }
 | |
| 
 | |
| void Device::blit_to(Gfx::Bitmap& target)
 | |
| {
 | |
|     wait_for_all_threads();
 | |
| 
 | |
|     Gfx::Painter painter { target };
 | |
|     painter.blit({ 0, 0 }, *m_render_target, m_render_target->rect(), 1.0f, false);
 | |
| }
 | |
| 
 | |
| void Device::wait_for_all_threads() const
 | |
| {
 | |
|     // FIXME: Wait for all render threads to finish when multithreading is being implemented
 | |
| }
 | |
| 
 | |
| void Device::set_options(const RasterizerOptions& options)
 | |
| {
 | |
|     wait_for_all_threads();
 | |
| 
 | |
|     m_options = options;
 | |
| 
 | |
|     // FIXME: Recreate or reinitialize render threads here when multithreading is being implemented
 | |
| }
 | |
| 
 | |
| Gfx::RGBA32 Device::get_backbuffer_pixel(int x, int y)
 | |
| {
 | |
|     // FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks
 | |
|     if (x < 0 || y < 0 || x >= m_render_target->width() || y >= m_render_target->height())
 | |
|         return 0;
 | |
| 
 | |
|     return m_render_target->scanline(y)[x];
 | |
| }
 | |
| 
 | |
| float Device::get_depthbuffer_value(int x, int y)
 | |
| {
 | |
|     // FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks
 | |
|     if (x < 0 || y < 0 || x >= m_render_target->width() || y >= m_render_target->height())
 | |
|         return 1.0f;
 | |
| 
 | |
|     return m_depth_buffer->scanline(y)[x];
 | |
| }
 | |
| 
 | |
| NonnullRefPtr<Image> Device::create_image(ImageFormat format, unsigned width, unsigned height, unsigned depth, unsigned levels, unsigned layers)
 | |
| {
 | |
|     VERIFY(width > 0);
 | |
|     VERIFY(height > 0);
 | |
|     VERIFY(depth > 0);
 | |
|     VERIFY(levels > 0);
 | |
|     VERIFY(layers > 0);
 | |
| 
 | |
|     return adopt_ref(*new Image(format, width, height, depth, levels, layers));
 | |
| }
 | |
| 
 | |
| void Device::set_sampler_config(unsigned sampler, SamplerConfig const& config)
 | |
| {
 | |
|     m_samplers[sampler].set_config(config);
 | |
| }
 | |
| 
 | |
| }
 |