mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 06:42:43 +00:00 
			
		
		
		
	 dd4ed4d22d
			
		
	
	
		dd4ed4d22d
		
	
	
	
	
		
			
			The compiler will use these to allocate objects that have alignment requirements greater than that of our normal `operator new` (4/8 byte aligned). This means we can now use smart pointers for over-aligned types. Fixes a FIXME.
		
			
				
	
	
		
			385 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			385 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Really really *really* Q&D malloc() and free() implementations
 | |
|  * just to get going. Don't ever let anyone see this shit. :^)
 | |
|  */
 | |
| 
 | |
| #include <AK/Assertions.h>
 | |
| #include <AK/NonnullOwnPtrVector.h>
 | |
| #include <AK/Types.h>
 | |
| #include <Kernel/Debug.h>
 | |
| #include <Kernel/Heap/Heap.h>
 | |
| #include <Kernel/Heap/kmalloc.h>
 | |
| #include <Kernel/KSyms.h>
 | |
| #include <Kernel/Panic.h>
 | |
| #include <Kernel/PerformanceManager.h>
 | |
| #include <Kernel/Sections.h>
 | |
| #include <Kernel/SpinLock.h>
 | |
| #include <Kernel/StdLib.h>
 | |
| #include <Kernel/VM/MemoryManager.h>
 | |
| 
 | |
| #define CHUNK_SIZE 32
 | |
| #define POOL_SIZE (2 * MiB)
 | |
| #define ETERNAL_RANGE_SIZE (3 * MiB)
 | |
| 
 | |
| namespace std {
 | |
| const nothrow_t nothrow;
 | |
| }
 | |
| 
 | |
| static RecursiveSpinLock s_lock; // needs to be recursive because of dump_backtrace()
 | |
| 
 | |
| static void kmalloc_allocate_backup_memory();
 | |
| 
 | |
| struct KmallocGlobalHeap {
 | |
|     struct ExpandGlobalHeap {
 | |
|         KmallocGlobalHeap& m_global_heap;
 | |
| 
 | |
|         ExpandGlobalHeap(KmallocGlobalHeap& global_heap)
 | |
|             : m_global_heap(global_heap)
 | |
|         {
 | |
|         }
 | |
| 
 | |
|         bool m_adding { false };
 | |
|         bool add_memory(size_t allocation_request)
 | |
|         {
 | |
|             if (!MemoryManager::is_initialized()) {
 | |
|                 if constexpr (KMALLOC_DEBUG) {
 | |
|                     dmesgln("kmalloc: Cannot expand heap before MM is initialized!");
 | |
|                 }
 | |
|                 return false;
 | |
|             }
 | |
|             VERIFY(!m_adding);
 | |
|             TemporaryChange change(m_adding, true);
 | |
|             // At this point we have very little memory left. Any attempt to
 | |
|             // kmalloc() could fail, so use our backup memory first, so we
 | |
|             // can't really reliably allocate even a new region of memory.
 | |
|             // This is why we keep a backup region, which we can
 | |
|             auto region = move(m_global_heap.m_backup_memory);
 | |
|             if (!region) {
 | |
|                 // Be careful to not log too much here. We don't want to trigger
 | |
|                 // any further calls to kmalloc(). We're already out of memory
 | |
|                 // and don't have any backup memory, either!
 | |
|                 if constexpr (KMALLOC_DEBUG) {
 | |
|                     dmesgln("kmalloc: Cannot expand heap: no backup memory");
 | |
|                 }
 | |
|                 return false;
 | |
|             }
 | |
| 
 | |
|             // At this point we should have at least enough memory from the
 | |
|             // backup region to be able to log properly
 | |
|             if constexpr (KMALLOC_DEBUG) {
 | |
|                 dmesgln("kmalloc: Adding memory to heap at {}, bytes: {}", region->vaddr(), region->size());
 | |
|             }
 | |
| 
 | |
|             auto& subheap = m_global_heap.m_heap.add_subheap(region->vaddr().as_ptr(), region->size());
 | |
|             m_global_heap.m_subheap_memory.append(region.release_nonnull());
 | |
| 
 | |
|             // Since we pulled in our backup heap, make sure we allocate another
 | |
|             // backup heap before returning. Otherwise we potentially lose
 | |
|             // the ability to expand the heap next time we get called.
 | |
|             ScopeGuard guard([&]() {
 | |
|                 // We may need to defer allocating backup memory because the
 | |
|                 // heap expansion may have been triggered while holding some
 | |
|                 // other spinlock. If the expansion happens to need the same
 | |
|                 // spinlock we would deadlock. So, if we're in any lock, defer
 | |
|                 Processor::current().deferred_call_queue(kmalloc_allocate_backup_memory);
 | |
|             });
 | |
| 
 | |
|             // Now that we added our backup memory, check if the backup heap
 | |
|             // was big enough to likely satisfy the request
 | |
|             if (subheap.free_bytes() < allocation_request) {
 | |
|                 // Looks like we probably need more
 | |
|                 size_t memory_size = page_round_up(decltype(m_global_heap.m_heap)::calculate_memory_for_bytes(allocation_request));
 | |
|                 // Add some more to the new heap. We're already using it for other
 | |
|                 // allocations not including the original allocation_request
 | |
|                 // that triggered heap expansion. If we don't allocate
 | |
|                 memory_size += 1 * MiB;
 | |
|                 region = MM.allocate_kernel_region(memory_size, "kmalloc subheap", Region::Access::Read | Region::Access::Write, AllocationStrategy::AllocateNow);
 | |
|                 if (region) {
 | |
|                     dbgln("kmalloc: Adding even more memory to heap at {}, bytes: {}", region->vaddr(), region->size());
 | |
| 
 | |
|                     m_global_heap.m_heap.add_subheap(region->vaddr().as_ptr(), region->size());
 | |
|                     m_global_heap.m_subheap_memory.append(region.release_nonnull());
 | |
|                 } else {
 | |
|                     dbgln("kmalloc: Could not expand heap to satisfy allocation of {} bytes", allocation_request);
 | |
|                     return false;
 | |
|                 }
 | |
|             }
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         bool remove_memory(void* memory)
 | |
|         {
 | |
|             // This is actually relatively unlikely to happen, because it requires that all
 | |
|             // allocated memory in a subheap to be freed. Only then the subheap can be removed...
 | |
|             for (size_t i = 0; i < m_global_heap.m_subheap_memory.size(); i++) {
 | |
|                 if (m_global_heap.m_subheap_memory[i].vaddr().as_ptr() == memory) {
 | |
|                     auto region = m_global_heap.m_subheap_memory.take(i);
 | |
|                     if (!m_global_heap.m_backup_memory) {
 | |
|                         if constexpr (KMALLOC_DEBUG) {
 | |
|                             dmesgln("kmalloc: Using removed memory as backup: {}, bytes: {}", region->vaddr(), region->size());
 | |
|                         }
 | |
|                         m_global_heap.m_backup_memory = move(region);
 | |
|                     } else {
 | |
|                         if constexpr (KMALLOC_DEBUG) {
 | |
|                             dmesgln("kmalloc: Queue removing memory from heap at {}, bytes: {}", region->vaddr(), region->size());
 | |
|                         }
 | |
|                         Processor::deferred_call_queue([this, region = move(region)]() mutable {
 | |
|                             // We need to defer freeing the region to prevent a potential
 | |
|                             // deadlock since we are still holding the kmalloc lock
 | |
|                             // We don't really need to do anything other than holding
 | |
|                             // onto the region. Unless we already used the backup
 | |
|                             // memory, in which case we want to use the region as the
 | |
|                             // new backup.
 | |
|                             ScopedSpinLock lock(s_lock);
 | |
|                             if (!m_global_heap.m_backup_memory) {
 | |
|                                 if constexpr (KMALLOC_DEBUG) {
 | |
|                                     dmesgln("kmalloc: Queued memory region at {}, bytes: {} will be used as new backup", region->vaddr(), region->size());
 | |
|                                 }
 | |
|                                 m_global_heap.m_backup_memory = move(region);
 | |
|                             } else {
 | |
|                                 if constexpr (KMALLOC_DEBUG) {
 | |
|                                     dmesgln("kmalloc: Queued memory region at {}, bytes: {} will be freed now", region->vaddr(), region->size());
 | |
|                                 }
 | |
|                             }
 | |
|                         });
 | |
|                     }
 | |
|                     return true;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if constexpr (KMALLOC_DEBUG) {
 | |
|                 dmesgln("kmalloc: Cannot remove memory from heap: {}", VirtualAddress(memory));
 | |
|             }
 | |
|             return false;
 | |
|         }
 | |
|     };
 | |
|     typedef ExpandableHeap<CHUNK_SIZE, KMALLOC_SCRUB_BYTE, KFREE_SCRUB_BYTE, ExpandGlobalHeap> HeapType;
 | |
| 
 | |
|     HeapType m_heap;
 | |
|     NonnullOwnPtrVector<Region> m_subheap_memory;
 | |
|     OwnPtr<Region> m_backup_memory;
 | |
| 
 | |
|     KmallocGlobalHeap(u8* memory, size_t memory_size)
 | |
|         : m_heap(memory, memory_size, ExpandGlobalHeap(*this))
 | |
|     {
 | |
|     }
 | |
|     void allocate_backup_memory()
 | |
|     {
 | |
|         if (m_backup_memory)
 | |
|             return;
 | |
|         m_backup_memory = MM.allocate_kernel_region(1 * MiB, "kmalloc subheap", Region::Access::Read | Region::Access::Write, AllocationStrategy::AllocateNow);
 | |
|     }
 | |
| 
 | |
|     size_t backup_memory_bytes() const
 | |
|     {
 | |
|         return m_backup_memory ? m_backup_memory->size() : 0;
 | |
|     }
 | |
| };
 | |
| 
 | |
| READONLY_AFTER_INIT static KmallocGlobalHeap* g_kmalloc_global;
 | |
| alignas(KmallocGlobalHeap) static u8 g_kmalloc_global_heap[sizeof(KmallocGlobalHeap)];
 | |
| 
 | |
| // Treat the heap as logically separate from .bss
 | |
| __attribute__((section(".heap"))) static u8 kmalloc_eternal_heap[ETERNAL_RANGE_SIZE];
 | |
| __attribute__((section(".heap"))) static u8 kmalloc_pool_heap[POOL_SIZE];
 | |
| 
 | |
| static size_t g_kmalloc_bytes_eternal = 0;
 | |
| static size_t g_kmalloc_call_count;
 | |
| static size_t g_kfree_call_count;
 | |
| static size_t g_nested_kfree_calls;
 | |
| bool g_dump_kmalloc_stacks;
 | |
| 
 | |
| static u8* s_next_eternal_ptr;
 | |
| READONLY_AFTER_INIT static u8* s_end_of_eternal_range;
 | |
| 
 | |
| static void kmalloc_allocate_backup_memory()
 | |
| {
 | |
|     g_kmalloc_global->allocate_backup_memory();
 | |
| }
 | |
| 
 | |
| void kmalloc_enable_expand()
 | |
| {
 | |
|     g_kmalloc_global->allocate_backup_memory();
 | |
| }
 | |
| 
 | |
| static inline void kmalloc_verify_nospinlock_held()
 | |
| {
 | |
|     // Catch bad callers allocating under spinlock.
 | |
|     if constexpr (KMALLOC_VERIFY_NO_SPINLOCK_HELD) {
 | |
|         VERIFY(!Processor::current().in_critical());
 | |
|     }
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT void kmalloc_init()
 | |
| {
 | |
|     // Zero out heap since it's placed after end_of_kernel_bss.
 | |
|     memset(kmalloc_eternal_heap, 0, sizeof(kmalloc_eternal_heap));
 | |
|     memset(kmalloc_pool_heap, 0, sizeof(kmalloc_pool_heap));
 | |
|     g_kmalloc_global = new (g_kmalloc_global_heap) KmallocGlobalHeap(kmalloc_pool_heap, sizeof(kmalloc_pool_heap));
 | |
| 
 | |
|     s_lock.initialize();
 | |
| 
 | |
|     s_next_eternal_ptr = kmalloc_eternal_heap;
 | |
|     s_end_of_eternal_range = s_next_eternal_ptr + sizeof(kmalloc_eternal_heap);
 | |
| }
 | |
| 
 | |
| void* kmalloc_eternal(size_t size)
 | |
| {
 | |
|     kmalloc_verify_nospinlock_held();
 | |
| 
 | |
|     size = round_up_to_power_of_two(size, sizeof(void*));
 | |
| 
 | |
|     ScopedSpinLock lock(s_lock);
 | |
|     void* ptr = s_next_eternal_ptr;
 | |
|     s_next_eternal_ptr += size;
 | |
|     VERIFY(s_next_eternal_ptr < s_end_of_eternal_range);
 | |
|     g_kmalloc_bytes_eternal += size;
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| void* kmalloc(size_t size)
 | |
| {
 | |
|     kmalloc_verify_nospinlock_held();
 | |
|     ScopedSpinLock lock(s_lock);
 | |
|     ++g_kmalloc_call_count;
 | |
| 
 | |
|     if (g_dump_kmalloc_stacks && Kernel::g_kernel_symbols_available) {
 | |
|         dbgln("kmalloc({})", size);
 | |
|         Kernel::dump_backtrace();
 | |
|     }
 | |
| 
 | |
|     void* ptr = g_kmalloc_global->m_heap.allocate(size);
 | |
|     if (!ptr) {
 | |
|         PANIC("kmalloc: Out of memory (requested size: {})", size);
 | |
|     }
 | |
| 
 | |
|     Thread* current_thread = Thread::current();
 | |
|     if (!current_thread)
 | |
|         current_thread = Processor::idle_thread();
 | |
|     if (current_thread)
 | |
|         PerformanceManager::add_kmalloc_perf_event(*current_thread, size, (FlatPtr)ptr);
 | |
| 
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| void kfree_sized(void* ptr, size_t size)
 | |
| {
 | |
|     (void)size;
 | |
|     return kfree(ptr);
 | |
| }
 | |
| 
 | |
| void kfree(void* ptr)
 | |
| {
 | |
|     if (!ptr)
 | |
|         return;
 | |
| 
 | |
|     kmalloc_verify_nospinlock_held();
 | |
|     ScopedSpinLock lock(s_lock);
 | |
|     ++g_kfree_call_count;
 | |
|     ++g_nested_kfree_calls;
 | |
| 
 | |
|     if (g_nested_kfree_calls == 1) {
 | |
|         Thread* current_thread = Thread::current();
 | |
|         if (!current_thread)
 | |
|             current_thread = Processor::idle_thread();
 | |
|         if (current_thread)
 | |
|             PerformanceManager::add_kfree_perf_event(*current_thread, 0, (FlatPtr)ptr);
 | |
|     }
 | |
| 
 | |
|     g_kmalloc_global->m_heap.deallocate(ptr);
 | |
|     --g_nested_kfree_calls;
 | |
| }
 | |
| 
 | |
| size_t kmalloc_good_size(size_t size)
 | |
| {
 | |
|     return size;
 | |
| }
 | |
| 
 | |
| [[gnu::malloc, gnu::alloc_size(1), gnu::alloc_align(2)]] static void* kmalloc_aligned_cxx(size_t size, size_t alignment)
 | |
| {
 | |
|     VERIFY(alignment <= 4096);
 | |
|     void* ptr = kmalloc(size + alignment + sizeof(ptrdiff_t));
 | |
|     size_t max_addr = (size_t)ptr + alignment;
 | |
|     void* aligned_ptr = (void*)(max_addr - (max_addr % alignment));
 | |
|     ((ptrdiff_t*)aligned_ptr)[-1] = (ptrdiff_t)((u8*)aligned_ptr - (u8*)ptr);
 | |
|     return aligned_ptr;
 | |
| }
 | |
| 
 | |
| void* operator new(size_t size)
 | |
| {
 | |
|     void* ptr = kmalloc(size);
 | |
|     VERIFY(ptr);
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| void* operator new(size_t size, const std::nothrow_t&) noexcept
 | |
| {
 | |
|     return kmalloc(size);
 | |
| }
 | |
| 
 | |
| void* operator new(size_t size, std::align_val_t al)
 | |
| {
 | |
|     void* ptr = kmalloc_aligned_cxx(size, (size_t)al);
 | |
|     VERIFY(ptr);
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| void* operator new(size_t size, std::align_val_t al, const std::nothrow_t&) noexcept
 | |
| {
 | |
|     return kmalloc_aligned_cxx(size, (size_t)al);
 | |
| }
 | |
| 
 | |
| void* operator new[](size_t size)
 | |
| {
 | |
|     void* ptr = kmalloc(size);
 | |
|     VERIFY(ptr);
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| void* operator new[](size_t size, const std::nothrow_t&) noexcept
 | |
| {
 | |
|     return kmalloc(size);
 | |
| }
 | |
| 
 | |
| void operator delete(void*) noexcept
 | |
| {
 | |
|     // All deletes in kernel code should have a known size.
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| void operator delete(void* ptr, size_t size) noexcept
 | |
| {
 | |
|     return kfree_sized(ptr, size);
 | |
| }
 | |
| 
 | |
| void operator delete(void* ptr, size_t, std::align_val_t) noexcept
 | |
| {
 | |
|     return kfree_aligned(ptr);
 | |
| }
 | |
| 
 | |
| void operator delete[](void*) noexcept
 | |
| {
 | |
|     // All deletes in kernel code should have a known size.
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| void operator delete[](void* ptr, size_t size) noexcept
 | |
| {
 | |
|     return kfree_sized(ptr, size);
 | |
| }
 | |
| 
 | |
| void get_kmalloc_stats(kmalloc_stats& stats)
 | |
| {
 | |
|     ScopedSpinLock lock(s_lock);
 | |
|     stats.bytes_allocated = g_kmalloc_global->m_heap.allocated_bytes();
 | |
|     stats.bytes_free = g_kmalloc_global->m_heap.free_bytes() + g_kmalloc_global->backup_memory_bytes();
 | |
|     stats.bytes_eternal = g_kmalloc_bytes_eternal;
 | |
|     stats.kmalloc_call_count = g_kmalloc_call_count;
 | |
|     stats.kfree_call_count = g_kfree_call_count;
 | |
| }
 |