mirror of
https://github.com/RGBCube/serenity
synced 2025-05-15 14:54:57 +00:00

All the elliptic curve implementations had a long list of private methods which were all stored in a single .cpp file. Now we simply use static methods instead.
364 lines
9 KiB
C++
364 lines
9 KiB
C++
/*
|
|
* Copyright (c) 2022, stelar7 <dudedbz@gmail.com>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/ByteReader.h>
|
|
#include <AK/Endian.h>
|
|
#include <AK/Random.h>
|
|
#include <LibCrypto/Curves/X25519.h>
|
|
|
|
namespace Crypto::Curves {
|
|
|
|
static constexpr u8 BITS = 255;
|
|
static constexpr u8 BYTES = 32;
|
|
static constexpr u8 WORDS = 8;
|
|
static constexpr u32 A24 = 121666;
|
|
|
|
static void import_state(u32* state, ReadonlyBytes data)
|
|
{
|
|
for (auto i = 0; i < WORDS; i++) {
|
|
u32 value = ByteReader::load32(data.offset_pointer(sizeof(u32) * i));
|
|
state[i] = AK::convert_between_host_and_little_endian(value);
|
|
}
|
|
}
|
|
|
|
static ErrorOr<ByteBuffer> export_state(u32* data)
|
|
{
|
|
auto buffer = TRY(ByteBuffer::create_uninitialized(BYTES));
|
|
|
|
for (auto i = 0; i < WORDS; i++) {
|
|
u32 value = AK::convert_between_host_and_little_endian(data[i]);
|
|
ByteReader::store(buffer.offset_pointer(sizeof(u32) * i), value);
|
|
}
|
|
|
|
return buffer;
|
|
}
|
|
|
|
static void select(u32* state, u32* a, u32* b, u32 condition)
|
|
{
|
|
// If B < (2^255 - 19) then R = B, else R = A
|
|
u32 mask = condition - 1;
|
|
|
|
for (auto i = 0; i < WORDS; i++) {
|
|
state[i] = (a[i] & mask) | (b[i] & ~mask);
|
|
}
|
|
}
|
|
|
|
static void set(u32* state, u32 value)
|
|
{
|
|
state[0] = value;
|
|
|
|
for (auto i = 1; i < WORDS; i++) {
|
|
state[i] = 0;
|
|
}
|
|
}
|
|
|
|
static void copy(u32* state, u32* value)
|
|
{
|
|
for (auto i = 0; i < WORDS; i++) {
|
|
state[i] = value[i];
|
|
}
|
|
}
|
|
|
|
static void conditional_swap(u32* first, u32* second, u32 condition)
|
|
{
|
|
u32 mask = ~condition + 1;
|
|
for (auto i = 0; i < WORDS; i++) {
|
|
u32 temp = mask & (first[i] ^ second[i]);
|
|
first[i] ^= temp;
|
|
second[i] ^= temp;
|
|
}
|
|
}
|
|
|
|
static void modular_reduce(u32* state, u32* data)
|
|
{
|
|
// R = A mod p
|
|
u64 temp = 19;
|
|
u32 other[WORDS];
|
|
|
|
for (auto i = 0; i < WORDS; i++) {
|
|
temp += data[i];
|
|
other[i] = temp & 0xFFFFFFFF;
|
|
temp >>= 32;
|
|
}
|
|
|
|
// Compute B = A - (2^255 - 19)
|
|
other[7] -= 0x80000000;
|
|
|
|
u32 mask = (other[7] & 0x80000000) >> 31;
|
|
select(state, other, data, mask);
|
|
}
|
|
|
|
static void modular_multiply_single(u32* state, u32* first, u32 second)
|
|
{
|
|
// Compute R = (A * B) mod p
|
|
u64 temp = 0;
|
|
u32 output[WORDS];
|
|
|
|
for (auto i = 0; i < WORDS; i++) {
|
|
temp += (u64)first[i] * second;
|
|
output[i] = temp & 0xFFFFFFFF;
|
|
temp >>= 32;
|
|
}
|
|
|
|
// Reduce bit 256 (2^256 = 38 mod p)
|
|
temp *= 38;
|
|
// Reduce bit 255 (2^255 = 19 mod p)
|
|
temp += (output[7] >> 31) * 19;
|
|
// Mask the most significant bit
|
|
output[7] &= 0x7FFFFFFF;
|
|
|
|
// Fast modular reduction
|
|
for (auto i = 0; i < WORDS; i++) {
|
|
temp += output[i];
|
|
output[i] = temp & 0xFFFFFFFF;
|
|
temp >>= 32;
|
|
}
|
|
|
|
modular_reduce(state, output);
|
|
}
|
|
|
|
static void modular_multiply(u32* state, u32* first, u32* second)
|
|
{
|
|
// Compute R = (A * B) mod p
|
|
u64 temp = 0;
|
|
u64 carry = 0;
|
|
u32 output[WORDS * 2];
|
|
|
|
// Comba's method
|
|
for (auto i = 0; i < 16; i++) {
|
|
if (i < WORDS) {
|
|
for (auto j = 0; j <= i; j++) {
|
|
temp += (u64)first[j] * second[i - j];
|
|
carry += temp >> 32;
|
|
temp &= 0xFFFFFFFF;
|
|
}
|
|
} else {
|
|
for (auto j = i - 7; j < WORDS; j++) {
|
|
temp += (u64)first[j] * second[i - j];
|
|
carry += temp >> 32;
|
|
temp &= 0xFFFFFFFF;
|
|
}
|
|
}
|
|
|
|
output[i] = temp & 0xFFFFFFFF;
|
|
temp = carry & 0xFFFFFFFF;
|
|
carry >>= 32;
|
|
}
|
|
|
|
// Reduce bit 255 (2^255 = 19 mod p)
|
|
temp = (output[7] >> 31) * 19;
|
|
// Mask the most significant bit
|
|
output[7] &= 0x7FFFFFFF;
|
|
|
|
// Fast modular reduction 1st pass
|
|
for (auto i = 0; i < WORDS; i++) {
|
|
temp += output[i];
|
|
temp += (u64)output[i + 8] * 38;
|
|
output[i] = temp & 0xFFFFFFFF;
|
|
temp >>= 32;
|
|
}
|
|
|
|
// Reduce bit 256 (2^256 = 38 mod p)
|
|
temp *= 38;
|
|
// Reduce bit 255 (2^255 = 19 mod p)
|
|
temp += (output[7] >> 31) * 19;
|
|
// Mask the most significant bit
|
|
output[7] &= 0x7FFFFFFF;
|
|
|
|
// Fast modular reduction 2nd pass
|
|
for (auto i = 0; i < WORDS; i++) {
|
|
temp += output[i];
|
|
output[i] = temp & 0xFFFFFFFF;
|
|
temp >>= 32;
|
|
}
|
|
|
|
modular_reduce(state, output);
|
|
}
|
|
|
|
static void modular_square(u32* state, u32* value)
|
|
{
|
|
// Compute R = (A ^ 2) mod p
|
|
modular_multiply(state, value, value);
|
|
}
|
|
|
|
static void modular_add(u32* state, u32* first, u32* second)
|
|
{
|
|
// R = (A + B) mod p
|
|
u64 temp = 0;
|
|
for (auto i = 0; i < WORDS; i++) {
|
|
temp += first[i];
|
|
temp += second[i];
|
|
state[i] = temp & 0xFFFFFFFF;
|
|
temp >>= 32;
|
|
}
|
|
|
|
modular_reduce(state, state);
|
|
}
|
|
|
|
static void modular_subtract(u32* state, u32* first, u32* second)
|
|
{
|
|
// R = (A - B) mod p
|
|
i64 temp = -19;
|
|
for (auto i = 0; i < WORDS; i++) {
|
|
temp += first[i];
|
|
temp -= second[i];
|
|
state[i] = temp & 0xFFFFFFFF;
|
|
temp >>= 32;
|
|
}
|
|
|
|
// Compute R = A + (2^255 - 19) - B
|
|
state[7] += 0x80000000;
|
|
|
|
modular_reduce(state, state);
|
|
}
|
|
|
|
static void to_power_of_2n(u32* state, u32* value, u8 n)
|
|
{
|
|
// compute R = (A ^ (2^n)) mod p
|
|
modular_square(state, value);
|
|
for (auto i = 1; i < n; i++) {
|
|
modular_square(state, state);
|
|
}
|
|
}
|
|
|
|
static void modular_multiply_inverse(u32* state, u32* value)
|
|
{
|
|
// Compute R = A^-1 mod p
|
|
u32 u[WORDS];
|
|
u32 v[WORDS];
|
|
|
|
// Fermat's little theorem
|
|
modular_square(u, value);
|
|
modular_multiply(u, u, value);
|
|
modular_square(u, u);
|
|
modular_multiply(v, u, value);
|
|
to_power_of_2n(u, v, 3);
|
|
modular_multiply(u, u, v);
|
|
modular_square(u, u);
|
|
modular_multiply(v, u, value);
|
|
to_power_of_2n(u, v, 7);
|
|
modular_multiply(u, u, v);
|
|
modular_square(u, u);
|
|
modular_multiply(v, u, value);
|
|
to_power_of_2n(u, v, 15);
|
|
modular_multiply(u, u, v);
|
|
modular_square(u, u);
|
|
modular_multiply(v, u, value);
|
|
to_power_of_2n(u, v, 31);
|
|
modular_multiply(v, u, v);
|
|
to_power_of_2n(u, v, 62);
|
|
modular_multiply(u, u, v);
|
|
modular_square(u, u);
|
|
modular_multiply(v, u, value);
|
|
to_power_of_2n(u, v, 125);
|
|
modular_multiply(u, u, v);
|
|
modular_square(u, u);
|
|
modular_square(u, u);
|
|
modular_multiply(u, u, value);
|
|
modular_square(u, u);
|
|
modular_square(u, u);
|
|
modular_multiply(u, u, value);
|
|
modular_square(u, u);
|
|
modular_multiply(state, u, value);
|
|
}
|
|
|
|
ErrorOr<ByteBuffer> X25519::generate_private_key()
|
|
{
|
|
auto buffer = TRY(ByteBuffer::create_uninitialized(BYTES));
|
|
fill_with_random(buffer.data(), buffer.size());
|
|
return buffer;
|
|
}
|
|
|
|
ErrorOr<ByteBuffer> X25519::generate_public_key(ReadonlyBytes a)
|
|
{
|
|
u8 generator[BYTES] { 9 };
|
|
return compute_coordinate(a, { generator, BYTES });
|
|
}
|
|
|
|
// https://datatracker.ietf.org/doc/html/rfc7748#section-5
|
|
ErrorOr<ByteBuffer> X25519::compute_coordinate(ReadonlyBytes input_k, ReadonlyBytes input_u)
|
|
{
|
|
u32 k[WORDS] {};
|
|
u32 u[WORDS] {};
|
|
u32 x1[WORDS] {};
|
|
u32 x2[WORDS] {};
|
|
u32 z1[WORDS] {};
|
|
u32 z2[WORDS] {};
|
|
u32 t1[WORDS] {};
|
|
u32 t2[WORDS] {};
|
|
|
|
// Copy input to internal state
|
|
import_state(k, input_k);
|
|
|
|
// Set the three least significant bits of the first byte and the most significant bit of the last to zero,
|
|
// set the second most significant bit of the last byte to 1
|
|
k[0] &= 0xFFFFFFF8;
|
|
k[7] &= 0x7FFFFFFF;
|
|
k[7] |= 0x40000000;
|
|
|
|
// Copy coordinate to internal state
|
|
import_state(u, input_u);
|
|
// mask the most significant bit in the final byte.
|
|
u[7] &= 0x7FFFFFFF;
|
|
|
|
// Implementations MUST accept non-canonical values and process them as
|
|
// if they had been reduced modulo the field prime.
|
|
modular_reduce(u, u);
|
|
|
|
set(x1, 1);
|
|
set(z1, 0);
|
|
copy(x2, u);
|
|
set(z2, 1);
|
|
|
|
// Montgomery ladder
|
|
u32 swap = 0;
|
|
for (auto i = BITS - 1; i >= 0; i--) {
|
|
u32 b = (k[i / BYTES] >> (i % BYTES)) & 1;
|
|
|
|
conditional_swap(x1, x2, swap ^ b);
|
|
conditional_swap(z1, z2, swap ^ b);
|
|
|
|
swap = b;
|
|
|
|
modular_add(t1, x2, z2);
|
|
modular_subtract(x2, x2, z2);
|
|
modular_add(z2, x1, z1);
|
|
modular_subtract(x1, x1, z1);
|
|
modular_multiply(t1, t1, x1);
|
|
modular_multiply(x2, x2, z2);
|
|
modular_square(z2, z2);
|
|
modular_square(x1, x1);
|
|
modular_subtract(t2, z2, x1);
|
|
modular_multiply_single(z1, t2, A24);
|
|
modular_add(z1, z1, x1);
|
|
modular_multiply(z1, z1, t2);
|
|
modular_multiply(x1, x1, z2);
|
|
modular_subtract(z2, t1, x2);
|
|
modular_square(z2, z2);
|
|
modular_multiply(z2, z2, u);
|
|
modular_add(x2, x2, t1);
|
|
modular_square(x2, x2);
|
|
}
|
|
|
|
conditional_swap(x1, x2, swap);
|
|
conditional_swap(z1, z2, swap);
|
|
|
|
// Retrieve affine representation
|
|
modular_multiply_inverse(u, z1);
|
|
modular_multiply(u, u, x1);
|
|
|
|
// Encode state for export
|
|
return export_state(u);
|
|
}
|
|
|
|
ErrorOr<ByteBuffer> X25519::derive_premaster_key(ReadonlyBytes shared_point)
|
|
{
|
|
VERIFY(shared_point.size() == BYTES);
|
|
ByteBuffer premaster_key = TRY(ByteBuffer::copy(shared_point));
|
|
return premaster_key;
|
|
}
|
|
|
|
}
|