1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-17 11:55:08 +00:00
serenity/Userland/Libraries/LibVideo/VP9/TreeParser.cpp

787 lines
35 KiB
C++

/*
* Copyright (c) 2021, Hunter Salyer <thefalsehonesty@gmail.com>
* Copyright (c) 2022, Gregory Bertilson <zaggy1024@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Function.h>
#include "Enums.h"
#include "LookupTables.h"
#include "Parser.h"
#include "TreeParser.h"
namespace Video::VP9 {
template<typename T>
ErrorOr<T> TreeParser::parse_tree(SyntaxElementType type)
{
auto tree_selection = select_tree(type);
int value;
if (tree_selection.is_single_value()) {
value = tree_selection.single_value();
} else {
auto tree = tree_selection.tree();
int n = 0;
do {
n = tree[n + TRY(m_decoder.m_bit_stream->read_bool(select_tree_probability(type, n >> 1)))];
} while (n > 0);
value = -n;
}
count_syntax_element(type, value);
return static_cast<T>(value);
}
template ErrorOr<int> TreeParser::parse_tree(SyntaxElementType);
template ErrorOr<bool> TreeParser::parse_tree(SyntaxElementType);
template ErrorOr<u8> TreeParser::parse_tree(SyntaxElementType);
template ErrorOr<u32> TreeParser::parse_tree(SyntaxElementType);
template ErrorOr<PredictionMode> TreeParser::parse_tree(SyntaxElementType);
template ErrorOr<TXSize> TreeParser::parse_tree(SyntaxElementType);
template ErrorOr<InterpolationFilter> TreeParser::parse_tree(SyntaxElementType);
template ErrorOr<ReferenceMode> TreeParser::parse_tree(SyntaxElementType);
template ErrorOr<Token> TreeParser::parse_tree(SyntaxElementType);
template ErrorOr<MvClass> TreeParser::parse_tree(SyntaxElementType);
template ErrorOr<MvJoint> TreeParser::parse_tree(SyntaxElementType);
template<typename OutputType>
inline ErrorOr<OutputType> parse_tree_new(BitStream& bit_stream, TreeParser::TreeSelection tree_selection, Function<u8(u8)> const& probability_getter)
{
if (tree_selection.is_single_value())
return static_cast<OutputType>(tree_selection.single_value());
int const* tree = tree_selection.tree();
int n = 0;
do {
u8 node = n >> 1;
n = tree[n + TRY(bit_stream.read_bool(probability_getter(node)))];
} while (n > 0);
return static_cast<OutputType>(-n);
}
inline void increment_counter(u8& counter)
{
counter = min(static_cast<u32>(counter) + 1, 255);
}
ErrorOr<Partition> TreeParser::parse_partition(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, bool has_rows, bool has_columns, BlockSubsize block_subsize, u8 num_8x8, Vector<u8> const& above_partition_context, Vector<u8> const& left_partition_context, u32 row, u32 column, bool frame_is_intra)
{
// Tree array
TreeParser::TreeSelection tree = { PartitionSplit };
if (has_rows && has_columns)
tree = { partition_tree };
else if (has_rows)
tree = { rows_partition_tree };
else if (has_columns)
tree = { cols_partition_tree };
// Probability array
u32 above = 0;
u32 left = 0;
auto bsl = mi_width_log2_lookup[block_subsize];
auto block_offset = mi_width_log2_lookup[Block_64x64] - bsl;
for (auto i = 0; i < num_8x8; i++) {
above |= above_partition_context[column + i];
left |= left_partition_context[row + i];
}
above = (above & (1 << block_offset)) > 0;
left = (left & (1 << block_offset)) > 0;
auto context = bsl * 4 + left * 2 + above;
u8 const* probabilities = frame_is_intra ? probability_table.kf_partition_probs()[context] : probability_table.partition_probs()[context];
Function<u8(u8)> probability_getter = [&](u8 node) {
if (has_rows && has_columns)
return probabilities[node];
if (has_columns)
return probabilities[1];
return probabilities[2];
};
auto value = TRY(parse_tree_new<Partition>(bit_stream, tree, probability_getter));
increment_counter(counter.m_counts_partition[context][value]);
return value;
}
ErrorOr<PredictionMode> TreeParser::parse_default_intra_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, BlockSubsize mi_size, Optional<Array<PredictionMode, 4> const&> above_context, Optional<Array<PredictionMode, 4> const&> left_context, PredictionMode block_sub_modes[4], u8 index_x, u8 index_y)
{
// FIXME: This should use a struct for the above and left contexts.
// Tree
TreeParser::TreeSelection tree = { intra_mode_tree };
// Probabilities
PredictionMode above_mode, left_mode;
if (mi_size >= Block_8x8) {
above_mode = above_context.has_value() ? above_context.value()[2] : PredictionMode::DcPred;
left_mode = left_context.has_value() ? left_context.value()[1] : PredictionMode::DcPred;
} else {
if (index_y > 0)
above_mode = block_sub_modes[index_x];
else
above_mode = above_context.has_value() ? above_context.value()[2 + index_x] : PredictionMode::DcPred;
if (index_x > 0)
left_mode = block_sub_modes[index_y << 1];
else
left_mode = left_context.has_value() ? left_context.value()[1 + (index_y << 1)] : PredictionMode::DcPred;
}
u8 const* probabilities = probability_table.kf_y_mode_probs()[to_underlying(above_mode)][to_underlying(left_mode)];
auto value = TRY(parse_tree_new<PredictionMode>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
// Default intra mode is not counted.
return value;
}
ErrorOr<PredictionMode> TreeParser::parse_default_uv_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, PredictionMode y_mode)
{
// Tree
TreeParser::TreeSelection tree = { intra_mode_tree };
// Probabilities
u8 const* probabilities = probability_table.kf_uv_mode_prob()[to_underlying(y_mode)];
auto value = TRY(parse_tree_new<PredictionMode>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
// Default UV mode is not counted.
return value;
}
ErrorOr<PredictionMode> TreeParser::parse_intra_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, BlockSubsize mi_size)
{
// Tree
TreeParser::TreeSelection tree = { intra_mode_tree };
// Probabilities
auto context = size_group_lookup[mi_size];
u8 const* probabilities = probability_table.y_mode_probs()[context];
auto value = TRY(parse_tree_new<PredictionMode>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
increment_counter(counter.m_counts_intra_mode[context][to_underlying(value)]);
return value;
}
ErrorOr<PredictionMode> TreeParser::parse_sub_intra_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter)
{
// Tree
TreeParser::TreeSelection tree = { intra_mode_tree };
// Probabilities
u8 const* probabilities = probability_table.y_mode_probs()[0];
auto value = TRY(parse_tree_new<PredictionMode>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
increment_counter(counter.m_counts_intra_mode[0][to_underlying(value)]);
return value;
}
ErrorOr<PredictionMode> TreeParser::parse_uv_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, PredictionMode y_mode)
{
// Tree
TreeParser::TreeSelection tree = { intra_mode_tree };
// Probabilities
u8 const* probabilities = probability_table.uv_mode_probs()[to_underlying(y_mode)];
auto value = TRY(parse_tree_new<PredictionMode>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
increment_counter(counter.m_counts_uv_mode[to_underlying(y_mode)][to_underlying(value)]);
return value;
}
ErrorOr<u8> TreeParser::parse_segment_id(BitStream& bit_stream, u8 const probabilities[7])
{
auto value = TRY(parse_tree_new<u8>(bit_stream, { segment_tree }, [&](u8 node) { return probabilities[node]; }));
// Segment ID is not counted.
return value;
}
ErrorOr<bool> TreeParser::parse_segment_id_predicted(BitStream& bit_stream, u8 const probabilities[3], u8 above_seg_pred_context, u8 left_seg_pred_context)
{
auto context = left_seg_pred_context + above_seg_pred_context;
auto value = TRY(parse_tree_new<bool>(bit_stream, { binary_tree }, [&](u8) { return probabilities[context]; }));
// Segment ID prediction is not counted.
return value;
}
ErrorOr<PredictionMode> TreeParser::parse_inter_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 mode_context_for_ref_frame_0)
{
// Tree
TreeParser::TreeSelection tree = { inter_mode_tree };
// Probabilities
u8 const* probabilities = probability_table.inter_mode_probs()[mode_context_for_ref_frame_0];
auto value = TRY(parse_tree_new<PredictionMode>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
increment_counter(counter.m_counts_inter_mode[mode_context_for_ref_frame_0][to_underlying(value) - to_underlying(PredictionMode::NearestMv)]);
return value;
}
ErrorOr<InterpolationFilter> TreeParser::parse_interpolation_filter(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, Optional<ReferenceFrameType> above_ref_frame, Optional<ReferenceFrameType> left_ref_frame, Optional<InterpolationFilter> above_interpolation_filter, Optional<InterpolationFilter> left_interpolation_filter)
{
// FIXME: Above and left context should be provided by a struct.
// Tree
TreeParser::TreeSelection tree = { interp_filter_tree };
// Probabilities
// NOTE: SWITCHABLE_FILTERS is not used in the spec for this function. Therefore, the number
// was demystified by referencing the reference codec libvpx:
// https://github.com/webmproject/libvpx/blob/705bf9de8c96cfe5301451f1d7e5c90a41c64e5f/vp9/common/vp9_pred_common.h#L69
u8 left_interp = (left_ref_frame.has_value() && left_ref_frame.value() > IntraFrame)
? left_interpolation_filter.value()
: SWITCHABLE_FILTERS;
u8 above_interp = (above_ref_frame.has_value() && above_ref_frame.value() > IntraFrame)
? above_interpolation_filter.value()
: SWITCHABLE_FILTERS;
u8 context = SWITCHABLE_FILTERS;
if (above_interp == left_interp || above_interp == SWITCHABLE_FILTERS)
context = left_interp;
else if (left_interp == SWITCHABLE_FILTERS)
context = above_interp;
u8 const* probabilities = probability_table.interp_filter_probs()[context];
auto value = TRY(parse_tree_new<InterpolationFilter>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
increment_counter(counter.m_counts_interp_filter[context][to_underlying(value)]);
return value;
}
ErrorOr<bool> TreeParser::parse_skip(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, Optional<bool> const& above_skip, Optional<bool> const& left_skip)
{
// Probabilities
u8 context = 0;
context += static_cast<u8>(above_skip.value_or(false));
context += static_cast<u8>(left_skip.value_or(false));
u8 probability = probability_table.skip_prob()[context];
auto value = TRY(parse_tree_new<bool>(bit_stream, { binary_tree }, [&](u8) { return probability; }));
increment_counter(counter.m_counts_skip[context][value]);
return value;
}
ErrorOr<TXSize> TreeParser::parse_tx_size(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, TXSize max_tx_size, Optional<bool> above_skip, Optional<bool> left_skip, Optional<TXSize> above_tx_size, Optional<TXSize> left_tx_size)
{
// FIXME: Above and left contexts should be in structs.
// Tree
TreeParser::TreeSelection tree { tx_size_8_tree };
if (max_tx_size == TX_16x16)
tree = { tx_size_16_tree };
if (max_tx_size == TX_32x32)
tree = { tx_size_32_tree };
// Probabilities
auto above = max_tx_size;
auto left = max_tx_size;
if (above_skip.has_value() && !above_skip.value()) {
above = above_tx_size.value();
}
if (left_skip.has_value() && !left_skip.value()) {
left = left_tx_size.value();
}
if (!left_skip.has_value())
left = above;
if (!above_skip.has_value())
above = left;
auto context = (above + left) > max_tx_size;
u8 const* probabilities = probability_table.tx_probs()[max_tx_size][context];
auto value = TRY(parse_tree_new<TXSize>(bit_stream, tree, [&](u8 node) { return probabilities[node]; }));
increment_counter(counter.m_counts_tx_size[max_tx_size][context][value]);
return value;
}
ErrorOr<bool> TreeParser::parse_is_inter(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, Optional<bool> above_intra, Optional<bool> left_intra)
{
// FIXME: Above and left contexts should be in structs.
// Probabilities
u8 context = 0;
if (above_intra.has_value() && left_intra.has_value())
context = (left_intra.value() && above_intra.value()) ? 3 : static_cast<u8>(above_intra.value() || left_intra.value());
else if (above_intra.has_value() || left_intra.has_value())
context = 2 * static_cast<u8>(above_intra.has_value() ? above_intra.value() : left_intra.value());
u8 probability = probability_table.is_inter_prob()[context];
auto value = TRY(parse_tree_new<bool>(bit_stream, { binary_tree }, [&](u8) { return probability; }));
increment_counter(counter.m_counts_is_inter[context][value]);
return value;
}
ErrorOr<ReferenceMode> TreeParser::parse_comp_mode(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, ReferenceFrameType comp_fixed_ref, Optional<bool> above_single, Optional<bool> left_single, Optional<bool> above_intra, Optional<bool> left_intra, Optional<ReferenceFrameType> above_ref_frame_0, Optional<ReferenceFrameType> left_ref_frame_0)
{
// FIXME: Above and left contexts should be in structs.
// Probabilities
u8 context;
if (above_single.has_value() && left_single.has_value()) {
if (above_single.value() && left_single.value()) {
auto is_above_fixed = above_ref_frame_0.value() == comp_fixed_ref;
auto is_left_fixed = left_ref_frame_0.value() == comp_fixed_ref;
context = is_above_fixed ^ is_left_fixed;
} else if (above_single.value()) {
auto is_above_fixed = above_ref_frame_0.value() == comp_fixed_ref;
context = 2 + static_cast<u8>(is_above_fixed || above_intra.value());
} else if (left_single.value()) {
auto is_left_fixed = left_ref_frame_0.value() == comp_fixed_ref;
context = 2 + static_cast<u8>(is_left_fixed || left_intra.value());
} else {
context = 4;
}
} else if (above_single.has_value()) {
if (above_single.value())
context = above_ref_frame_0.value() == comp_fixed_ref;
else
context = 3;
} else if (left_single.has_value()) {
if (left_single.value())
context = static_cast<u8>(left_ref_frame_0.value() == comp_fixed_ref);
else
context = 3;
} else {
context = 1;
}
u8 probability = probability_table.comp_mode_prob()[context];
auto value = TRY(parse_tree_new<ReferenceMode>(bit_stream, { binary_tree }, [&](u8) { return probability; }));
increment_counter(counter.m_counts_comp_mode[context][value]);
return value;
}
ErrorOr<bool> TreeParser::parse_comp_ref(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, ReferenceFrameType comp_fixed_ref, ReferenceFramePair comp_var_ref, Optional<bool> above_single, Optional<bool> left_single, Optional<bool> above_intra, Optional<bool> left_intra, Optional<ReferenceFrameType> above_ref_frame_0, Optional<ReferenceFrameType> left_ref_frame_0, Optional<ReferenceFrameType> above_ref_frame_biased, Optional<ReferenceFrameType> left_ref_frame_biased)
{
// FIXME: Above and left contexts should be in structs.
// Probabilities
u8 context;
if (above_intra.has_value() && left_intra.has_value()) {
if (above_intra.value() && left_intra.value()) {
context = 2;
} else if (left_intra.value()) {
if (above_single.value()) {
context = 1 + 2 * (above_ref_frame_0.value() != comp_var_ref[1]);
} else {
context = 1 + 2 * (above_ref_frame_biased.value() != comp_var_ref[1]);
}
} else if (above_intra.value()) {
if (left_single.value()) {
context = 1 + 2 * (left_ref_frame_0.value() != comp_var_ref[1]);
} else {
context = 1 + 2 * (left_ref_frame_biased != comp_var_ref[1]);
}
} else {
auto var_ref_above = above_single.value() ? above_ref_frame_0 : above_ref_frame_biased;
auto var_ref_left = left_single.value() ? left_ref_frame_0 : left_ref_frame_biased;
if (var_ref_above == var_ref_left && comp_var_ref[1] == var_ref_above) {
context = 0;
} else if (left_single.value() && above_single.value()) {
if ((var_ref_above == comp_fixed_ref && var_ref_left == comp_var_ref[0])
|| (var_ref_left == comp_fixed_ref && var_ref_above == comp_var_ref[0])) {
context = 4;
} else if (var_ref_above == var_ref_left) {
context = 3;
} else {
context = 1;
}
} else if (left_single.value() || above_single.value()) {
auto vrfc = left_single.value() ? var_ref_above : var_ref_left;
auto rfs = above_single.value() ? var_ref_above : var_ref_left;
if (vrfc == comp_var_ref[1] && rfs != comp_var_ref[1]) {
context = 1;
} else if (rfs == comp_var_ref[1] && vrfc != comp_var_ref[1]) {
context = 2;
} else {
context = 4;
}
} else if (var_ref_above == var_ref_left) {
context = 4;
} else {
context = 2;
}
}
} else if (above_intra.has_value()) {
if (above_intra.value()) {
context = 2;
} else {
if (above_single.value()) {
context = 3 * static_cast<u8>(above_ref_frame_0.value() != comp_var_ref[1]);
} else {
context = 4 * static_cast<u8>(above_ref_frame_biased.value() != comp_var_ref[1]);
}
}
} else if (left_intra.has_value()) {
if (left_intra.value()) {
context = 2;
} else {
if (left_single.value()) {
context = 3 * static_cast<u8>(left_ref_frame_0.value() != comp_var_ref[1]);
} else {
context = 4 * static_cast<u8>(left_ref_frame_biased != comp_var_ref[1]);
}
}
} else {
context = 2;
}
u8 probability = probability_table.comp_ref_prob()[context];
auto value = TRY(parse_tree_new<bool>(bit_stream, { binary_tree }, [&](u8) { return probability; }));
increment_counter(counter.m_counts_comp_ref[context][value]);
return value;
}
ErrorOr<bool> TreeParser::parse_single_ref_part_1(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, Optional<bool> above_single, Optional<bool> left_single, Optional<bool> above_intra, Optional<bool> left_intra, Optional<ReferenceFramePair> above_ref_frame, Optional<ReferenceFramePair> left_ref_frame)
{
// FIXME: Above and left contexts should be in structs.
// Probabilities
u8 context;
if (above_single.has_value() && left_single.has_value()) {
if (above_intra.value() && left_intra.value()) {
context = 2;
} else if (left_intra.value()) {
if (above_single.value()) {
context = 4 * (above_ref_frame.value()[0] == LastFrame);
} else {
context = 1 + (above_ref_frame.value()[0] == LastFrame || above_ref_frame.value()[1] == LastFrame);
}
} else if (above_intra.value()) {
if (left_single.value()) {
context = 4 * (left_ref_frame.value()[0] == LastFrame);
} else {
context = 1 + (left_ref_frame.value()[0] == LastFrame || left_ref_frame.value()[1] == LastFrame);
}
} else {
if (left_single.value() && above_single.value()) {
context = 2 * (above_ref_frame.value()[0] == LastFrame) + 2 * (left_ref_frame.value()[0] == LastFrame);
} else if (!left_single.value() && !above_single.value()) {
auto above_is_last = above_ref_frame.value()[0] == LastFrame || above_ref_frame.value()[1] == LastFrame;
auto left_is_last = left_ref_frame.value()[0] == LastFrame || left_ref_frame.value()[1] == LastFrame;
context = 1 + (above_is_last || left_is_last);
} else {
auto rfs = above_single.value() ? above_ref_frame.value()[0] : left_ref_frame.value()[0];
auto crf1 = above_single.value() ? left_ref_frame.value()[0] : above_ref_frame.value()[0];
auto crf2 = above_single.value() ? left_ref_frame.value()[1] : above_ref_frame.value()[1];
context = crf1 == LastFrame || crf2 == LastFrame;
if (rfs == LastFrame)
context += 3;
}
}
} else if (above_single.has_value()) {
if (above_intra.value()) {
context = 2;
} else {
if (above_single.value()) {
context = 4 * (above_ref_frame.value()[0] == LastFrame);
} else {
context = 1 + (above_ref_frame.value()[0] == LastFrame || above_ref_frame.value()[1] == LastFrame);
}
}
} else if (left_single.has_value()) {
if (left_intra.value()) {
context = 2;
} else {
if (left_single.value()) {
context = 4 * (left_ref_frame.value()[0] == LastFrame);
} else {
context = 1 + (left_ref_frame.value()[0] == LastFrame || left_ref_frame.value()[1] == LastFrame);
}
}
} else {
context = 2;
}
u8 probability = probability_table.single_ref_prob()[context][0];
auto value = TRY(parse_tree_new<bool>(bit_stream, { binary_tree }, [&](u8) { return probability; }));
increment_counter(counter.m_counts_single_ref[context][0][value]);
return value;
}
ErrorOr<bool> TreeParser::parse_single_ref_part_2(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, Optional<bool> above_single, Optional<bool> left_single, Optional<bool> above_intra, Optional<bool> left_intra, Optional<ReferenceFramePair> above_ref_frame, Optional<ReferenceFramePair> left_ref_frame)
{
// FIXME: Above and left contexts should be in structs.
// Probabilities
u8 context;
if (above_single.has_value() && left_single.has_value()) {
if (above_intra.value() && left_intra.value()) {
context = 2;
} else if (left_intra.value()) {
if (above_single.value()) {
if (above_ref_frame.value()[0] == LastFrame) {
context = 3;
} else {
context = 4 * (above_ref_frame.value()[0] == GoldenFrame);
}
} else {
context = 1 + 2 * (above_ref_frame.value()[0] == GoldenFrame || above_ref_frame.value()[1] == GoldenFrame);
}
} else if (above_intra.value()) {
if (left_single.value()) {
if (left_ref_frame.value()[0] == LastFrame) {
context = 3;
} else {
context = 4 * (left_ref_frame.value()[0] == GoldenFrame);
}
} else {
context = 1 + 2 * (left_ref_frame.value()[0] == GoldenFrame || left_ref_frame.value()[1] == GoldenFrame);
}
} else {
if (left_single.value() && above_single.value()) {
auto above_last = above_ref_frame.value()[0] == LastFrame;
auto left_last = left_ref_frame.value()[0] == LastFrame;
if (above_last && left_last) {
context = 3;
} else if (above_last) {
context = 4 * (left_ref_frame.value()[0] == GoldenFrame);
} else if (left_last) {
context = 4 * (above_ref_frame.value()[0] == GoldenFrame);
} else {
context = 2 * (above_ref_frame.value()[0] == GoldenFrame) + 2 * (left_ref_frame.value()[0] == GoldenFrame);
}
} else if (!left_single.value() && !above_single.value()) {
if (above_ref_frame.value()[0] == left_ref_frame.value()[0] && above_ref_frame.value()[1] == left_ref_frame.value()[1]) {
context = 3 * (above_ref_frame.value()[0] == GoldenFrame || above_ref_frame.value()[1] == GoldenFrame);
} else {
context = 2;
}
} else {
auto rfs = above_single.value() ? above_ref_frame.value()[0] : left_ref_frame.value()[0];
auto crf1 = above_single.value() ? left_ref_frame.value()[0] : above_ref_frame.value()[0];
auto crf2 = above_single.value() ? left_ref_frame.value()[1] : above_ref_frame.value()[1];
context = crf1 == GoldenFrame || crf2 == GoldenFrame;
if (rfs == GoldenFrame) {
context += 3;
} else if (rfs != AltRefFrame) {
context = 1 + (2 * context);
}
}
}
} else if (above_single.has_value()) {
if (above_intra.value() || (above_ref_frame.value()[0] == LastFrame && above_single.value())) {
context = 2;
} else if (above_single.value()) {
context = 4 * (above_ref_frame.value()[0] == GoldenFrame);
} else {
context = 3 * (above_ref_frame.value()[0] == GoldenFrame || above_ref_frame.value()[1] == GoldenFrame);
}
} else if (left_single.has_value()) {
if (left_intra.value() || (left_ref_frame.value()[0] == LastFrame && left_single.value())) {
context = 2;
} else if (left_single.value()) {
context = 4 * (left_ref_frame.value()[0] == GoldenFrame);
} else {
context = 3 * (left_ref_frame.value()[0] == GoldenFrame || left_ref_frame.value()[1] == GoldenFrame);
}
} else {
context = 2;
}
u8 probability = probability_table.single_ref_prob()[context][1];
auto value = TRY(parse_tree_new<bool>(bit_stream, { binary_tree }, [&](u8) { return probability; }));
increment_counter(counter.m_counts_single_ref[context][1][value]);
return value;
}
ErrorOr<MvJoint> TreeParser::parse_motion_vector_joint(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter)
{
auto value = TRY(parse_tree_new<MvJoint>(bit_stream, { mv_joint_tree }, [&](u8 node) { return probability_table.mv_joint_probs()[node]; }));
increment_counter(counter.m_counts_mv_joint[value]);
return value;
}
ErrorOr<bool> TreeParser::parse_motion_vector_sign(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component)
{
auto value = TRY(parse_tree_new<bool>(bit_stream, { binary_tree }, [&](u8) { return probability_table.mv_sign_prob()[component]; }));
increment_counter(counter.m_counts_mv_sign[component][value]);
return value;
}
ErrorOr<MvClass> TreeParser::parse_motion_vector_class(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component)
{
// Spec doesn't mention node, but the probabilities table has an extra dimension
// so we will use node for that.
auto value = TRY(parse_tree_new<MvClass>(bit_stream, { mv_class_tree }, [&](u8 node) { return probability_table.mv_class_probs()[component][node]; }));
increment_counter(counter.m_counts_mv_class[component][value]);
return value;
}
ErrorOr<bool> TreeParser::parse_motion_vector_class0_bit(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component)
{
auto value = TRY(parse_tree_new<bool>(bit_stream, { binary_tree }, [&](u8) { return probability_table.mv_class0_bit_prob()[component]; }));
increment_counter(counter.m_counts_mv_class0_bit[component][value]);
return value;
}
ErrorOr<u8> TreeParser::parse_motion_vector_class0_fr(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component, bool class_0_bit)
{
auto value = TRY(parse_tree_new<u8>(bit_stream, { mv_fr_tree }, [&](u8 node) { return probability_table.mv_class0_fr_probs()[component][class_0_bit][node]; }));
increment_counter(counter.m_counts_mv_class0_fr[component][class_0_bit][value]);
return value;
}
ErrorOr<bool> TreeParser::parse_motion_vector_class0_hp(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component, bool use_hp)
{
TreeParser::TreeSelection tree { 1 };
if (use_hp)
tree = { binary_tree };
auto value = TRY(parse_tree_new<bool>(bit_stream, tree, [&](u8) { return probability_table.mv_class0_hp_prob()[component]; }));
increment_counter(counter.m_counts_mv_class0_hp[component][value]);
return value;
}
ErrorOr<bool> TreeParser::parse_motion_vector_bit(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component, u8 bit_index)
{
auto value = TRY(parse_tree_new<bool>(bit_stream, { binary_tree }, [&](u8) { return probability_table.mv_bits_prob()[component][bit_index]; }));
increment_counter(counter.m_counts_mv_bits[component][bit_index][value]);
return value;
}
ErrorOr<u8> TreeParser::parse_motion_vector_fr(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component)
{
auto value = TRY(parse_tree_new<u8>(bit_stream, { mv_fr_tree }, [&](u8 node) { return probability_table.mv_fr_probs()[component][node]; }));
increment_counter(counter.m_counts_mv_fr[component][value]);
return value;
}
ErrorOr<bool> TreeParser::parse_motion_vector_hp(BitStream& bit_stream, ProbabilityTables const& probability_table, SyntaxElementCounter& counter, u8 component, bool use_hp)
{
TreeParser::TreeSelection tree { 1 };
if (use_hp)
tree = { binary_tree };
auto value = TRY(parse_tree_new<u8>(bit_stream, tree, [&](u8) { return probability_table.mv_hp_prob()[component]; }));
increment_counter(counter.m_counts_mv_hp[component][value]);
return value;
}
/*
* Select a tree value based on the type of syntax element being parsed, as well as some parser state, as specified in section 9.3.1
*/
TreeParser::TreeSelection TreeParser::select_tree(SyntaxElementType type)
{
switch (type) {
case SyntaxElementType::MoreCoefs:
return { binary_tree };
case SyntaxElementType::Token:
return { token_tree };
default:
break;
}
VERIFY_NOT_REACHED();
}
/*
* Select a probability with which to read a boolean when decoding a tree, as specified in section 9.3.2
*/
u8 TreeParser::select_tree_probability(SyntaxElementType type, u8 node)
{
switch (type) {
case SyntaxElementType::Token:
return calculate_token_probability(node);
case SyntaxElementType::MoreCoefs:
return calculate_more_coefs_probability();
default:
break;
}
VERIFY_NOT_REACHED();
}
#define ABOVE_FRAME_0 m_decoder.m_above_ref_frame[0]
#define ABOVE_FRAME_1 m_decoder.m_above_ref_frame[1]
#define LEFT_FRAME_0 m_decoder.m_left_ref_frame[0]
#define LEFT_FRAME_1 m_decoder.m_left_ref_frame[1]
#define AVAIL_U m_decoder.m_available_u
#define AVAIL_L m_decoder.m_available_l
#define ABOVE_INTRA m_decoder.m_above_intra
#define LEFT_INTRA m_decoder.m_left_intra
#define ABOVE_SINGLE m_decoder.m_above_single
#define LEFT_SINGLE m_decoder.m_left_single
void TreeParser::set_tokens_variables(u8 band, u32 c, u32 plane, TXSize tx_size, u32 pos)
{
m_band = band;
m_c = c;
m_plane = plane;
m_tx_size = tx_size;
m_pos = pos;
if (m_c == 0) {
auto sx = m_plane > 0 ? m_decoder.m_subsampling_x : 0;
auto sy = m_plane > 0 ? m_decoder.m_subsampling_y : 0;
auto max_x = (2 * m_decoder.m_mi_cols) >> sx;
auto max_y = (2 * m_decoder.m_mi_rows) >> sy;
u8 numpts = 1 << m_tx_size;
auto x4 = m_start_x >> 2;
auto y4 = m_start_y >> 2;
u32 above = 0;
u32 left = 0;
for (size_t i = 0; i < numpts; i++) {
if (x4 + i < max_x)
above |= m_decoder.m_above_nonzero_context[m_plane][x4 + i];
if (y4 + i < max_y)
left |= m_decoder.m_left_nonzero_context[m_plane][y4 + i];
}
m_ctx = above + left;
} else {
u32 neighbor_0, neighbor_1;
auto n = 4 << m_tx_size;
auto i = m_pos / n;
auto j = m_pos % n;
auto a = i > 0 ? (i - 1) * n + j : 0;
auto a2 = i * n + j - 1;
if (i > 0 && j > 0) {
if (m_decoder.m_tx_type == DCT_ADST) {
neighbor_0 = a;
neighbor_1 = a;
} else if (m_decoder.m_tx_type == ADST_DCT) {
neighbor_0 = a2;
neighbor_1 = a2;
} else {
neighbor_0 = a;
neighbor_1 = a2;
}
} else if (i > 0) {
neighbor_0 = a;
neighbor_1 = a;
} else {
neighbor_0 = a2;
neighbor_1 = a2;
}
m_ctx = (1 + m_decoder.m_token_cache[neighbor_0] + m_decoder.m_token_cache[neighbor_1]) >> 1;
}
}
u8 TreeParser::calculate_more_coefs_probability()
{
return m_decoder.m_probability_tables->coef_probs()[m_tx_size][m_plane > 0][m_decoder.m_is_inter][m_band][m_ctx][0];
}
u8 TreeParser::calculate_token_probability(u8 node)
{
auto prob = m_decoder.m_probability_tables->coef_probs()[m_tx_size][m_plane > 0][m_decoder.m_is_inter][m_band][m_ctx][min(2, 1 + node)];
if (node < 2)
return prob;
auto x = (prob - 1) / 2;
auto& pareto_table = m_decoder.m_probability_tables->pareto_table();
if (prob & 1)
return pareto_table[x][node - 2];
return (pareto_table[x][node - 2] + pareto_table[x + 1][node - 2]) >> 1;
}
void TreeParser::count_syntax_element(SyntaxElementType type, int value)
{
auto increment = [](u8& count) {
increment_counter(count);
};
switch (type) {
case SyntaxElementType::Token:
increment(m_decoder.m_syntax_element_counter->m_counts_token[m_tx_size][m_plane > 0][m_decoder.m_is_inter][m_band][m_ctx][min(2, value)]);
return;
case SyntaxElementType::MoreCoefs:
increment(m_decoder.m_syntax_element_counter->m_counts_more_coefs[m_tx_size][m_plane > 0][m_decoder.m_is_inter][m_band][m_ctx][value]);
return;
default:
break;
}
VERIFY_NOT_REACHED();
}
}