1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-31 18:18:12 +00:00
serenity/Userland/DevTools/Profiler/Profile.h
Gunnar Beutner eb798d5538 Kernel+Profiler: Improve profiling subsystem
This turns the perfcore format into more a log than it was before,
which lets us properly log process, thread and region
creation/destruction. This also makes it unnecessary to dump the
process' regions every time it is scheduled like we did before.

Incidentally this also fixes 'profile -c' because we previously ended
up incorrectly dumping the parent's region map into the profile data.

Log-based mmap support enables profiling shared libraries which
are loaded at runtime, e.g. via dlopen().

This enables profiling both the parent and child process for
programs which use execve(). Previously we'd discard the profiling
data for the old process.

The Profiler tool has been updated to not treat thread IDs as
process IDs anymore. This enables support for processes with more
than one thread. Also, there's a new widget to filter which
process should be displayed.
2021-04-26 17:13:55 +02:00

231 lines
7.1 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include "Process.h"
#include <AK/Bitmap.h>
#include <AK/FlyString.h>
#include <AK/JsonArray.h>
#include <AK/JsonObject.h>
#include <AK/JsonValue.h>
#include <AK/MappedFile.h>
#include <AK/NonnullRefPtrVector.h>
#include <AK/OwnPtr.h>
#include <AK/Result.h>
#include <LibELF/Image.h>
#include <LibGUI/Forward.h>
#include <LibGUI/ModelIndex.h>
class DisassemblyModel;
class Profile;
class ProfileModel;
class SamplesModel;
class ProfileNode : public RefCounted<ProfileNode> {
public:
static NonnullRefPtr<ProfileNode> create(FlyString object_name, String symbol, u32 address, u32 offset, u64 timestamp, pid_t pid)
{
return adopt_ref(*new ProfileNode(move(object_name), move(symbol), address, offset, timestamp, pid));
}
// These functions are only relevant for root nodes
void will_track_seen_events(size_t profile_event_count)
{
if (m_seen_events.size() != profile_event_count)
m_seen_events = Bitmap { profile_event_count, false };
}
bool has_seen_event(size_t event_index) const { return m_seen_events.get(event_index); }
void did_see_event(size_t event_index) { m_seen_events.set(event_index, true); }
const FlyString& object_name() const { return m_object_name; }
const String& symbol() const { return m_symbol; }
u32 address() const { return m_address; }
u32 offset() const { return m_offset; }
u64 timestamp() const { return m_timestamp; }
u32 event_count() const { return m_event_count; }
u32 self_count() const { return m_self_count; }
int child_count() const { return m_children.size(); }
const Vector<NonnullRefPtr<ProfileNode>>& children() const { return m_children; }
void add_child(ProfileNode& child)
{
if (child.m_parent == this)
return;
VERIFY(!child.m_parent);
child.m_parent = this;
m_children.append(child);
}
ProfileNode& find_or_create_child(FlyString object_name, String symbol, u32 address, u32 offset, u64 timestamp, pid_t pid)
{
for (size_t i = 0; i < m_children.size(); ++i) {
auto& child = m_children[i];
if (child->symbol() == symbol) {
return child;
}
}
auto new_child = ProfileNode::create(move(object_name), move(symbol), address, offset, timestamp, pid);
add_child(new_child);
return new_child;
};
ProfileNode* parent() { return m_parent; }
const ProfileNode* parent() const { return m_parent; }
void increment_event_count() { ++m_event_count; }
void increment_self_count() { ++m_self_count; }
void sort_children();
const HashMap<FlatPtr, size_t>& events_per_address() const { return m_events_per_address; }
void add_event_address(FlatPtr address)
{
auto it = m_events_per_address.find(address);
if (it == m_events_per_address.end())
m_events_per_address.set(address, 1);
else
m_events_per_address.set(address, it->value + 1);
}
pid_t pid() const { return m_pid; }
const Process* process(Profile&, u64 timestamp) const;
private:
explicit ProfileNode(const String& object_name, String symbol, u32 address, u32 offset, u64 timestamp, pid_t);
ProfileNode* m_parent { nullptr };
FlyString m_object_name;
String m_symbol;
pid_t m_pid { 0 };
u32 m_address { 0 };
u32 m_offset { 0 };
u32 m_event_count { 0 };
u32 m_self_count { 0 };
u64 m_timestamp { 0 };
Vector<NonnullRefPtr<ProfileNode>> m_children;
HashMap<FlatPtr, size_t> m_events_per_address;
Bitmap m_seen_events;
};
class Profile {
public:
static Result<NonnullOwnPtr<Profile>, String> load_from_perfcore_file(const StringView& path);
~Profile();
GUI::Model& model();
GUI::Model& samples_model();
GUI::Model* disassembly_model();
const Process* find_process(pid_t pid, u64 timestamp) const
{
auto it = m_processes.find_if([&](auto& entry) {
return entry.pid == pid && entry.valid_at(timestamp);
});
return it.is_end() ? nullptr : &(*it);
}
void set_disassembly_index(const GUI::ModelIndex&);
const Vector<NonnullRefPtr<ProfileNode>>& roots() const { return m_roots; }
struct Frame {
FlyString object_name;
String symbol;
u32 address { 0 };
u32 offset { 0 };
};
struct Event {
u64 timestamp { 0 };
String type;
FlatPtr ptr { 0 };
size_t size { 0 };
String name;
int parent_pid { 0 };
int parent_tid { 0 };
String executable;
int pid { 0 };
int tid { 0 };
bool in_kernel { false };
Vector<Frame> frames;
};
const Vector<Event>& events() const { return m_events; }
const Vector<size_t>& filtered_event_indices() const { return m_filtered_event_indices; }
u64 length_in_ms() const { return m_last_timestamp - m_first_timestamp; }
u64 first_timestamp() const { return m_first_timestamp; }
u64 last_timestamp() const { return m_last_timestamp; }
u32 deepest_stack_depth() const { return m_deepest_stack_depth; }
void set_timestamp_filter_range(u64 start, u64 end);
void clear_timestamp_filter_range();
bool has_timestamp_filter_range() const { return m_has_timestamp_filter_range; }
void set_process_filter(pid_t pid, u64 start_valid, u64 end_valid);
void clear_process_filter();
bool has_process_filter() const { return m_has_process_filter; }
bool is_inverted() const { return m_inverted; }
void set_inverted(bool);
void set_show_top_functions(bool);
bool show_percentages() const { return m_show_percentages; }
void set_show_percentages(bool);
const Vector<Process>& processes() const { return m_processes; }
template<typename Callback>
void for_each_event_in_filter_range(Callback callback)
{
for (auto& event : m_events) {
if (has_timestamp_filter_range()) {
auto timestamp = event.timestamp;
if (timestamp < m_timestamp_filter_range_start || timestamp > m_timestamp_filter_range_end)
continue;
}
callback(event);
}
}
private:
Profile(Vector<Process>, Vector<Event>);
void rebuild_tree();
RefPtr<ProfileModel> m_model;
RefPtr<SamplesModel> m_samples_model;
RefPtr<DisassemblyModel> m_disassembly_model;
GUI::ModelIndex m_disassembly_index;
Vector<NonnullRefPtr<ProfileNode>> m_roots;
Vector<size_t> m_filtered_event_indices;
u64 m_first_timestamp { 0 };
u64 m_last_timestamp { 0 };
Vector<Process> m_processes;
Vector<Event> m_events;
bool m_has_timestamp_filter_range { false };
u64 m_timestamp_filter_range_start { 0 };
u64 m_timestamp_filter_range_end { 0 };
bool m_has_process_filter { false };
pid_t m_process_filter_pid { 0 };
u64 m_process_filter_start_valid { 0 };
u64 m_process_filter_end_valid { 0 };
u32 m_deepest_stack_depth { 0 };
bool m_inverted { false };
bool m_show_top_functions { false };
bool m_show_percentages { false };
};