mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-30 23:42:45 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			473 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			473 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/Types.h>
 | |
| #include <Kernel/Arch/InterruptManagement.h>
 | |
| #include <Kernel/Arch/Processor.h>
 | |
| #include <Kernel/Boot/BootInfo.h>
 | |
| #include <Kernel/Boot/CommandLine.h>
 | |
| #include <Kernel/Boot/Multiboot.h>
 | |
| #include <Kernel/Bus/PCI/Access.h>
 | |
| #include <Kernel/Bus/PCI/Initializer.h>
 | |
| #include <Kernel/Bus/USB/USBManagement.h>
 | |
| #include <Kernel/Bus/VirtIO/Device.h>
 | |
| #include <Kernel/Devices/Audio/Management.h>
 | |
| #include <Kernel/Devices/DeviceManagement.h>
 | |
| #include <Kernel/Devices/GPU/Console/BootFramebufferConsole.h>
 | |
| #include <Kernel/Devices/GPU/Console/VGATextModeConsole.h>
 | |
| #include <Kernel/Devices/GPU/Management.h>
 | |
| #include <Kernel/Devices/Generic/DeviceControlDevice.h>
 | |
| #include <Kernel/Devices/Generic/FullDevice.h>
 | |
| #include <Kernel/Devices/Generic/MemoryDevice.h>
 | |
| #include <Kernel/Devices/Generic/NullDevice.h>
 | |
| #include <Kernel/Devices/Generic/RandomDevice.h>
 | |
| #include <Kernel/Devices/Generic/SelfTTYDevice.h>
 | |
| #include <Kernel/Devices/Generic/ZeroDevice.h>
 | |
| #include <Kernel/Devices/HID/Management.h>
 | |
| #include <Kernel/Devices/KCOVDevice.h>
 | |
| #include <Kernel/Devices/PCISerialDevice.h>
 | |
| #include <Kernel/Devices/SerialDevice.h>
 | |
| #include <Kernel/Devices/Storage/StorageManagement.h>
 | |
| #include <Kernel/FileSystem/SysFS/Registry.h>
 | |
| #include <Kernel/FileSystem/SysFS/Subsystems/Firmware/Directory.h>
 | |
| #include <Kernel/FileSystem/VirtualFileSystem.h>
 | |
| #include <Kernel/Firmware/ACPI/Initialize.h>
 | |
| #include <Kernel/Firmware/ACPI/Parser.h>
 | |
| #include <Kernel/Heap/kmalloc.h>
 | |
| #include <Kernel/KSyms.h>
 | |
| #include <Kernel/Library/Panic.h>
 | |
| #include <Kernel/Memory/MemoryManager.h>
 | |
| #include <Kernel/Net/NetworkTask.h>
 | |
| #include <Kernel/Net/NetworkingManagement.h>
 | |
| #include <Kernel/Prekernel/Prekernel.h>
 | |
| #include <Kernel/Sections.h>
 | |
| #include <Kernel/Security/Random.h>
 | |
| #include <Kernel/TTY/ConsoleManagement.h>
 | |
| #include <Kernel/TTY/PTYMultiplexer.h>
 | |
| #include <Kernel/TTY/VirtualConsole.h>
 | |
| #include <Kernel/Tasks/FinalizerTask.h>
 | |
| #include <Kernel/Tasks/Process.h>
 | |
| #include <Kernel/Tasks/Scheduler.h>
 | |
| #include <Kernel/Tasks/SyncTask.h>
 | |
| #include <Kernel/Tasks/WorkQueue.h>
 | |
| #include <Kernel/Time/TimeManagement.h>
 | |
| #include <Kernel/kstdio.h>
 | |
| 
 | |
| #if ARCH(X86_64)
 | |
| #    include <Kernel/Arch/x86_64/Hypervisor/VMWareBackdoor.h>
 | |
| #    include <Kernel/Arch/x86_64/Interrupts/APIC.h>
 | |
| #    include <Kernel/Arch/x86_64/Interrupts/PIC.h>
 | |
| #elif ARCH(AARCH64)
 | |
| #    include <Kernel/Arch/aarch64/RPi/Framebuffer.h>
 | |
| #    include <Kernel/Arch/aarch64/RPi/Mailbox.h>
 | |
| #    include <Kernel/Arch/aarch64/RPi/MiniUART.h>
 | |
| #endif
 | |
| 
 | |
| // Defined in the linker script
 | |
| typedef void (*ctor_func_t)();
 | |
| extern ctor_func_t start_heap_ctors[];
 | |
| extern ctor_func_t end_heap_ctors[];
 | |
| extern ctor_func_t start_ctors[];
 | |
| extern ctor_func_t end_ctors[];
 | |
| 
 | |
| extern uintptr_t __stack_chk_guard;
 | |
| READONLY_AFTER_INIT uintptr_t __stack_chk_guard __attribute__((used));
 | |
| 
 | |
| #if ARCH(X86_64)
 | |
| extern "C" u8 start_of_safemem_text[];
 | |
| extern "C" u8 end_of_safemem_text[];
 | |
| extern "C" u8 start_of_safemem_atomic_text[];
 | |
| extern "C" u8 end_of_safemem_atomic_text[];
 | |
| #endif
 | |
| 
 | |
| extern "C" u8 end_of_kernel_image[];
 | |
| 
 | |
| multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
 | |
| size_t multiboot_copy_boot_modules_count;
 | |
| 
 | |
| READONLY_AFTER_INIT bool g_in_early_boot;
 | |
| 
 | |
| namespace Kernel {
 | |
| 
 | |
| [[noreturn]] static void init_stage2(void*);
 | |
| static void setup_serial_debug();
 | |
| 
 | |
| // boot.S expects these functions to exactly have the following signatures.
 | |
| // We declare them here to ensure their signatures don't accidentally change.
 | |
| extern "C" void init_finished(u32 cpu) __attribute__((used));
 | |
| extern "C" [[noreturn]] void init_ap(FlatPtr cpu, Processor* processor_info);
 | |
| extern "C" [[noreturn]] void init(BootInfo const&);
 | |
| 
 | |
| READONLY_AFTER_INIT VirtualConsole* tty0;
 | |
| 
 | |
| ProcessID g_init_pid { 0 };
 | |
| 
 | |
| ALWAYS_INLINE static Processor& bsp_processor()
 | |
| {
 | |
|     // This solves a problem where the bsp Processor instance
 | |
|     // gets "re"-initialized in init() when we run all global constructors.
 | |
|     alignas(Processor) static u8 bsp_processor_storage[sizeof(Processor)];
 | |
|     return (Processor&)bsp_processor_storage;
 | |
| }
 | |
| 
 | |
| // SerenityOS Kernel C++ entry point :^)
 | |
| //
 | |
| // This is where C++ execution begins, after boot.S transfers control here.
 | |
| //
 | |
| // The purpose of init() is to start multi-tasking. It does the bare minimum
 | |
| // amount of work needed to start the scheduler.
 | |
| //
 | |
| // Once multi-tasking is ready, we spawn a new thread that starts in the
 | |
| // init_stage2() function. Initialization continues there.
 | |
| 
 | |
| extern "C" {
 | |
| READONLY_AFTER_INIT PhysicalAddress start_of_prekernel_image;
 | |
| READONLY_AFTER_INIT PhysicalAddress end_of_prekernel_image;
 | |
| READONLY_AFTER_INIT size_t physical_to_virtual_offset;
 | |
| READONLY_AFTER_INIT FlatPtr kernel_mapping_base;
 | |
| READONLY_AFTER_INIT FlatPtr kernel_load_base;
 | |
| READONLY_AFTER_INIT PhysicalAddress boot_pml4t;
 | |
| READONLY_AFTER_INIT PhysicalAddress boot_pdpt;
 | |
| READONLY_AFTER_INIT PhysicalAddress boot_pd0;
 | |
| READONLY_AFTER_INIT PhysicalAddress boot_pd_kernel;
 | |
| READONLY_AFTER_INIT Memory::PageTableEntry* boot_pd_kernel_pt1023;
 | |
| READONLY_AFTER_INIT StringView kernel_cmdline;
 | |
| READONLY_AFTER_INIT u32 multiboot_flags;
 | |
| READONLY_AFTER_INIT multiboot_memory_map_t* multiboot_memory_map;
 | |
| READONLY_AFTER_INIT size_t multiboot_memory_map_count;
 | |
| READONLY_AFTER_INIT multiboot_module_entry_t* multiboot_modules;
 | |
| READONLY_AFTER_INIT size_t multiboot_modules_count;
 | |
| READONLY_AFTER_INIT PhysicalAddress multiboot_framebuffer_addr;
 | |
| READONLY_AFTER_INIT u32 multiboot_framebuffer_pitch;
 | |
| READONLY_AFTER_INIT u32 multiboot_framebuffer_width;
 | |
| READONLY_AFTER_INIT u32 multiboot_framebuffer_height;
 | |
| READONLY_AFTER_INIT u8 multiboot_framebuffer_bpp;
 | |
| READONLY_AFTER_INIT u8 multiboot_framebuffer_type;
 | |
| }
 | |
| 
 | |
| Atomic<Graphics::Console*> g_boot_console;
 | |
| 
 | |
| #if ARCH(AARCH64)
 | |
| READONLY_AFTER_INIT static u8 s_command_line_buffer[512];
 | |
| #endif
 | |
| 
 | |
| extern "C" [[noreturn]] UNMAP_AFTER_INIT void init([[maybe_unused]] BootInfo const& boot_info)
 | |
| {
 | |
|     g_in_early_boot = true;
 | |
| 
 | |
| #if ARCH(X86_64)
 | |
|     start_of_prekernel_image = PhysicalAddress { boot_info.start_of_prekernel_image };
 | |
|     end_of_prekernel_image = PhysicalAddress { boot_info.end_of_prekernel_image };
 | |
|     physical_to_virtual_offset = boot_info.physical_to_virtual_offset;
 | |
|     kernel_mapping_base = boot_info.kernel_mapping_base;
 | |
|     kernel_load_base = boot_info.kernel_load_base;
 | |
|     gdt64ptr = boot_info.gdt64ptr;
 | |
|     code64_sel = boot_info.code64_sel;
 | |
|     boot_pml4t = PhysicalAddress { boot_info.boot_pml4t };
 | |
|     boot_pdpt = PhysicalAddress { boot_info.boot_pdpt };
 | |
|     boot_pd0 = PhysicalAddress { boot_info.boot_pd0 };
 | |
|     boot_pd_kernel = PhysicalAddress { boot_info.boot_pd_kernel };
 | |
|     boot_pd_kernel_pt1023 = (Memory::PageTableEntry*)boot_info.boot_pd_kernel_pt1023;
 | |
|     char const* cmdline = (char const*)boot_info.kernel_cmdline;
 | |
|     kernel_cmdline = StringView { cmdline, strlen(cmdline) };
 | |
|     multiboot_flags = boot_info.multiboot_flags;
 | |
|     multiboot_memory_map = (multiboot_memory_map_t*)boot_info.multiboot_memory_map;
 | |
|     multiboot_memory_map_count = boot_info.multiboot_memory_map_count;
 | |
|     multiboot_modules = (multiboot_module_entry_t*)boot_info.multiboot_modules;
 | |
|     multiboot_modules_count = boot_info.multiboot_modules_count;
 | |
|     multiboot_framebuffer_addr = PhysicalAddress { boot_info.multiboot_framebuffer_addr };
 | |
|     multiboot_framebuffer_pitch = boot_info.multiboot_framebuffer_pitch;
 | |
|     multiboot_framebuffer_width = boot_info.multiboot_framebuffer_width;
 | |
|     multiboot_framebuffer_height = boot_info.multiboot_framebuffer_height;
 | |
|     multiboot_framebuffer_bpp = boot_info.multiboot_framebuffer_bpp;
 | |
|     multiboot_framebuffer_type = boot_info.multiboot_framebuffer_type;
 | |
| #elif ARCH(AARCH64)
 | |
|     // FIXME: For the aarch64 platforms, we should get the information by parsing a device tree instead of using multiboot.
 | |
|     auto [ram_base, ram_size] = RPi::Mailbox::the().query_lower_arm_memory_range();
 | |
|     auto [vcmem_base, vcmem_size] = RPi::Mailbox::the().query_videocore_memory_range();
 | |
|     multiboot_memory_map_t mmap[] = {
 | |
|         {
 | |
|             sizeof(struct multiboot_mmap_entry) - sizeof(u32),
 | |
|             (u64)ram_base,
 | |
|             (u64)ram_size,
 | |
|             MULTIBOOT_MEMORY_AVAILABLE,
 | |
|         },
 | |
|         {
 | |
|             sizeof(struct multiboot_mmap_entry) - sizeof(u32),
 | |
|             (u64)vcmem_base,
 | |
|             (u64)vcmem_size,
 | |
|             MULTIBOOT_MEMORY_RESERVED,
 | |
|         },
 | |
|         // FIXME: VideoCore only reports the first 1GB of RAM, the rest only shows up in the device tree.
 | |
|     };
 | |
|     multiboot_memory_map = mmap;
 | |
|     multiboot_memory_map_count = 2;
 | |
| 
 | |
|     multiboot_modules = nullptr;
 | |
|     multiboot_modules_count = 0;
 | |
|     // FIXME: Read the /chosen/bootargs property.
 | |
|     kernel_cmdline = RPi::Mailbox::the().query_kernel_command_line(s_command_line_buffer);
 | |
| #endif
 | |
| 
 | |
|     setup_serial_debug();
 | |
| 
 | |
|     // We need to copy the command line before kmalloc is initialized,
 | |
|     // as it may overwrite parts of multiboot!
 | |
|     CommandLine::early_initialize(kernel_cmdline);
 | |
|     if (multiboot_modules_count > 0) {
 | |
|         VERIFY(multiboot_modules);
 | |
|         memcpy(multiboot_copy_boot_modules_array, multiboot_modules, multiboot_modules_count * sizeof(multiboot_module_entry_t));
 | |
|     }
 | |
|     multiboot_copy_boot_modules_count = multiboot_modules_count;
 | |
| 
 | |
|     new (&bsp_processor()) Processor();
 | |
|     bsp_processor().early_initialize(0);
 | |
| 
 | |
|     // Invoke the constructors needed for the kernel heap
 | |
|     for (ctor_func_t* ctor = start_heap_ctors; ctor < end_heap_ctors; ctor++)
 | |
|         (*ctor)();
 | |
|     kmalloc_init();
 | |
| 
 | |
|     load_kernel_symbol_table();
 | |
| 
 | |
|     bsp_processor().initialize(0);
 | |
| 
 | |
|     CommandLine::initialize();
 | |
|     Memory::MemoryManager::initialize(0);
 | |
| 
 | |
| #if ARCH(AARCH64)
 | |
|     auto firmware_version = RPi::Mailbox::the().query_firmware_version();
 | |
|     dmesgln("RPi: Firmware version: {}", firmware_version);
 | |
| 
 | |
|     RPi::Framebuffer::initialize();
 | |
| #endif
 | |
| 
 | |
|     // NOTE: If the bootloader provided a framebuffer, then set up an initial console.
 | |
|     // If the bootloader didn't provide a framebuffer, then set up an initial text console.
 | |
|     // We do so we can see the output on the screen as soon as possible.
 | |
|     if (!kernel_command_line().is_early_boot_console_disabled()) {
 | |
|         if (!multiboot_framebuffer_addr.is_null() && multiboot_framebuffer_type == MULTIBOOT_FRAMEBUFFER_TYPE_RGB) {
 | |
|             g_boot_console = &try_make_lock_ref_counted<Graphics::BootFramebufferConsole>(multiboot_framebuffer_addr, multiboot_framebuffer_width, multiboot_framebuffer_height, multiboot_framebuffer_pitch).value().leak_ref();
 | |
|         } else {
 | |
|             g_boot_console = &Graphics::VGATextModeConsole::initialize().leak_ref();
 | |
|         }
 | |
|     }
 | |
|     dmesgln("Starting SerenityOS...");
 | |
| 
 | |
|     DeviceManagement::initialize();
 | |
|     SysFSComponentRegistry::initialize();
 | |
|     DeviceManagement::the().attach_null_device(*NullDevice::must_initialize());
 | |
|     DeviceManagement::the().attach_console_device(*ConsoleDevice::must_create());
 | |
|     DeviceManagement::the().attach_device_control_device(*DeviceControlDevice::must_create());
 | |
| 
 | |
|     MM.unmap_prekernel();
 | |
| 
 | |
| #if ARCH(X86_64)
 | |
|     // Ensure that the safemem sections are not empty. This could happen if the linker accidentally discards the sections.
 | |
|     VERIFY(+start_of_safemem_text != +end_of_safemem_text);
 | |
|     VERIFY(+start_of_safemem_atomic_text != +end_of_safemem_atomic_text);
 | |
| #endif
 | |
| 
 | |
|     // Invoke all static global constructors in the kernel.
 | |
|     // Note that we want to do this as early as possible.
 | |
|     for (ctor_func_t* ctor = start_ctors; ctor < end_ctors; ctor++)
 | |
|         (*ctor)();
 | |
| 
 | |
|     InterruptManagement::initialize();
 | |
|     ACPI::initialize();
 | |
| 
 | |
|     // Initialize TimeManagement before using randomness!
 | |
|     TimeManagement::initialize(0);
 | |
| 
 | |
|     __stack_chk_guard = get_fast_random<uintptr_t>();
 | |
| 
 | |
|     Process::initialize();
 | |
| 
 | |
|     Scheduler::initialize();
 | |
| 
 | |
| #if ARCH(X86_64)
 | |
|     // FIXME: Add an abstraction for the smp related functions, instead of using ifdefs in this file.
 | |
|     if (APIC::initialized() && APIC::the().enabled_processor_count() > 1) {
 | |
|         // We must set up the AP boot environment before switching to a kernel process,
 | |
|         // as pages below address USER_RANGE_BASE are only accessible through the kernel
 | |
|         // page directory.
 | |
|         APIC::the().setup_ap_boot_environment();
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     MUST(Process::create_kernel_process(KString::must_create("init_stage2"sv), init_stage2, nullptr, THREAD_AFFINITY_DEFAULT, Process::RegisterProcess::No));
 | |
| 
 | |
|     Scheduler::start();
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| #if ARCH(X86_64)
 | |
| //
 | |
| // This is where C++ execution begins for APs, after boot.S transfers control here.
 | |
| //
 | |
| // The purpose of init_ap() is to initialize APs for multi-tasking.
 | |
| //
 | |
| extern "C" [[noreturn]] UNMAP_AFTER_INIT void init_ap(FlatPtr cpu, Processor* processor_info)
 | |
| {
 | |
|     processor_info->early_initialize(cpu);
 | |
| 
 | |
|     processor_info->initialize(cpu);
 | |
|     Memory::MemoryManager::initialize(cpu);
 | |
| 
 | |
|     Scheduler::set_idle_thread(APIC::the().get_idle_thread(cpu));
 | |
| 
 | |
|     Scheduler::start();
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| //
 | |
| // This method is called once a CPU enters the scheduler and its idle thread
 | |
| // At this point the initial boot stack can be freed
 | |
| //
 | |
| extern "C" UNMAP_AFTER_INIT void init_finished(u32 cpu)
 | |
| {
 | |
|     if (cpu == 0) {
 | |
|         // TODO: we can reuse the boot stack, maybe for kmalloc()?
 | |
|     } else {
 | |
|         APIC::the().init_finished(cpu);
 | |
|         TimeManagement::initialize(cpu);
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void init_stage2(void*)
 | |
| {
 | |
|     // This is a little bit of a hack. We can't register our process at the time we're
 | |
|     // creating it, but we need to be registered otherwise finalization won't be happy.
 | |
|     // The colonel process gets away without having to do this because it never exits.
 | |
|     Process::register_new(Process::current());
 | |
| 
 | |
|     WorkQueue::initialize();
 | |
| 
 | |
| #if ARCH(X86_64)
 | |
|     if (kernel_command_line().is_smp_enabled() && APIC::initialized() && APIC::the().enabled_processor_count() > 1) {
 | |
|         // We can't start the APs until we have a scheduler up and running.
 | |
|         // We need to be able to process ICI messages, otherwise another
 | |
|         // core may send too many and end up deadlocking once the pool is
 | |
|         // exhausted
 | |
|         APIC::the().boot_aps();
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // Initialize the PCI Bus as early as possible, for early boot (PCI based) serial logging
 | |
|     PCI::initialize();
 | |
|     if (!PCI::Access::is_disabled()) {
 | |
|         PCISerialDevice::detect();
 | |
|     }
 | |
| 
 | |
|     VirtualFileSystem::initialize();
 | |
| 
 | |
| #if ARCH(X86_64)
 | |
|     if (!is_serial_debug_enabled())
 | |
|         (void)SerialDevice::must_create(0).leak_ref();
 | |
|     (void)SerialDevice::must_create(1).leak_ref();
 | |
|     (void)SerialDevice::must_create(2).leak_ref();
 | |
|     (void)SerialDevice::must_create(3).leak_ref();
 | |
| #elif ARCH(AARCH64)
 | |
|     (void)MUST(RPi::MiniUART::create()).leak_ref();
 | |
| #endif
 | |
| 
 | |
| #if ARCH(X86_64)
 | |
|     VMWareBackdoor::the(); // don't wait until first mouse packet
 | |
| #endif
 | |
|     MUST(HIDManagement::initialize());
 | |
| 
 | |
|     GraphicsManagement::the().initialize();
 | |
|     ConsoleManagement::the().initialize();
 | |
| 
 | |
|     SyncTask::spawn();
 | |
|     FinalizerTask::spawn();
 | |
| 
 | |
|     auto boot_profiling = kernel_command_line().is_boot_profiling_enabled();
 | |
| 
 | |
|     if (!PCI::Access::is_disabled()) {
 | |
|         USB::USBManagement::initialize();
 | |
|     }
 | |
|     SysFSFirmwareDirectory::initialize();
 | |
| 
 | |
|     if (!PCI::Access::is_disabled()) {
 | |
|         VirtIO::detect();
 | |
|     }
 | |
| 
 | |
|     NetworkingManagement::the().initialize();
 | |
| 
 | |
| #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
 | |
|     (void)KCOVDevice::must_create().leak_ref();
 | |
| #endif
 | |
|     (void)MemoryDevice::must_create().leak_ref();
 | |
|     (void)ZeroDevice::must_create().leak_ref();
 | |
|     (void)FullDevice::must_create().leak_ref();
 | |
|     (void)RandomDevice::must_create().leak_ref();
 | |
|     (void)SelfTTYDevice::must_create().leak_ref();
 | |
|     PTYMultiplexer::initialize();
 | |
| 
 | |
|     AudioManagement::the().initialize();
 | |
| 
 | |
|     StorageManagement::the().initialize(kernel_command_line().root_device(), kernel_command_line().is_force_pio(), kernel_command_line().is_nvme_polling_enabled());
 | |
|     if (VirtualFileSystem::the().mount_root(StorageManagement::the().root_filesystem()).is_error()) {
 | |
|         PANIC("VirtualFileSystem::mount_root failed");
 | |
|     }
 | |
| 
 | |
|     // Switch out of early boot mode.
 | |
|     g_in_early_boot = false;
 | |
| 
 | |
|     // NOTE: Everything marked READONLY_AFTER_INIT becomes non-writable after this point.
 | |
|     MM.protect_readonly_after_init_memory();
 | |
| 
 | |
|     // NOTE: Everything in the .ksyms section becomes read-only after this point.
 | |
|     MM.protect_ksyms_after_init();
 | |
| 
 | |
|     // NOTE: Everything marked UNMAP_AFTER_INIT becomes inaccessible after this point.
 | |
|     MM.unmap_text_after_init();
 | |
| 
 | |
|     auto userspace_init = kernel_command_line().userspace_init();
 | |
|     auto init_args = kernel_command_line().userspace_init_args();
 | |
| 
 | |
|     auto init_or_error = Process::create_user_process(userspace_init, UserID(0), GroupID(0), move(init_args), {}, tty0);
 | |
|     if (init_or_error.is_error())
 | |
|         PANIC("init_stage2: Error spawning init process: {}", init_or_error.error());
 | |
| 
 | |
|     auto [init_process, init_thread] = init_or_error.release_value();
 | |
| 
 | |
|     g_init_pid = init_process->pid();
 | |
|     init_thread->set_priority(THREAD_PRIORITY_HIGH);
 | |
| 
 | |
|     NetworkTask::spawn();
 | |
| 
 | |
|     // NOTE: All kernel processes must be created before enabling boot profiling.
 | |
|     //       This is so profiling_enable() can emit process created performance events for them.
 | |
|     if (boot_profiling) {
 | |
|         dbgln("Starting full system boot profiling");
 | |
|         MutexLocker mutex_locker(Process::current().big_lock());
 | |
|         auto const enable_all = ~(u64)0;
 | |
|         auto result = Process::current().profiling_enable(-1, enable_all);
 | |
|         VERIFY(!result.is_error());
 | |
|     }
 | |
| 
 | |
|     Process::current().sys$exit(0);
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT void setup_serial_debug()
 | |
| {
 | |
|     // serial_debug will output all the dbgln() data to COM1 at
 | |
|     // 8-N-1 57600 baud. this is particularly useful for debugging the boot
 | |
|     // process on live hardware.
 | |
|     if (kernel_cmdline.contains("serial_debug"sv)) {
 | |
|         set_serial_debug_enabled(true);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Define some Itanium C++ ABI methods to stop the linker from complaining.
 | |
| // If we actually call these something has gone horribly wrong
 | |
| void* __dso_handle __attribute__((visibility("hidden")));
 | |
| 
 | |
| }
 | 
