mirror of
https://github.com/RGBCube/serenity
synced 2025-05-19 10:45:08 +00:00

This expands the reach of error propagation greatly throughout the kernel. Sadly, it also exposes the fact that we're allocating (and doing other fallible things) in constructors all over the place. This patch doesn't attempt to address that of course. That's work for our future selves.
215 lines
8.2 KiB
C++
215 lines
8.2 KiB
C++
/*
|
|
* Copyright (c) 2021, Liav A. <liavalb@hotmail.co.il>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/ByteReader.h>
|
|
#include <AK/Optional.h>
|
|
#include <Kernel/Arch/x86/InterruptDisabler.h>
|
|
#include <Kernel/Bus/PCI/MMIOAccess.h>
|
|
#include <Kernel/Debug.h>
|
|
#include <Kernel/Memory/MemoryManager.h>
|
|
#include <Kernel/Sections.h>
|
|
|
|
namespace Kernel {
|
|
namespace PCI {
|
|
|
|
#define MEMORY_RANGE_PER_BUS (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE * PCI_MAX_DEVICES_PER_BUS)
|
|
|
|
u32 MMIOAccess::segment_count() const
|
|
{
|
|
return m_segments.size();
|
|
}
|
|
|
|
u8 MMIOAccess::segment_start_bus(u32 seg) const
|
|
{
|
|
auto segment = m_segments.get(seg);
|
|
VERIFY(segment.has_value());
|
|
return segment.value().get_start_bus();
|
|
}
|
|
|
|
u8 MMIOAccess::segment_end_bus(u32 seg) const
|
|
{
|
|
auto segment = m_segments.get(seg);
|
|
VERIFY(segment.has_value());
|
|
return segment.value().get_end_bus();
|
|
}
|
|
|
|
PhysicalAddress MMIOAccess::determine_memory_mapped_bus_region(u32 segment, u8 bus) const
|
|
{
|
|
VERIFY(bus >= segment_start_bus(segment) && bus <= segment_end_bus(segment));
|
|
auto seg = m_segments.get(segment);
|
|
VERIFY(seg.has_value());
|
|
return seg.value().get_paddr().offset(MEMORY_RANGE_PER_BUS * (bus - seg.value().get_start_bus()));
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void MMIOAccess::initialize(PhysicalAddress mcfg)
|
|
{
|
|
if (!Access::is_initialized()) {
|
|
new MMIOAccess(mcfg);
|
|
dbgln_if(PCI_DEBUG, "PCI: MMIO access initialised.");
|
|
}
|
|
}
|
|
|
|
UNMAP_AFTER_INIT MMIOAccess::MMIOAccess(PhysicalAddress p_mcfg)
|
|
: m_mcfg(p_mcfg)
|
|
{
|
|
dmesgln("PCI: Using MMIO for PCI configuration space access");
|
|
|
|
auto checkup_region = MM.allocate_kernel_region(p_mcfg.page_base(), (PAGE_SIZE * 2), "PCI MCFG Checkup", Memory::Region::Access::ReadWrite).release_value();
|
|
dbgln_if(PCI_DEBUG, "PCI: Checking MCFG Table length to choose the correct mapping size");
|
|
auto* sdt = (ACPI::Structures::SDTHeader*)checkup_region->vaddr().offset(p_mcfg.offset_in_page()).as_ptr();
|
|
u32 length = sdt->length;
|
|
u8 revision = sdt->revision;
|
|
|
|
dbgln("PCI: MCFG, length: {}, revision: {}", length, revision);
|
|
checkup_region->unmap();
|
|
|
|
auto mcfg_region = MM.allocate_kernel_region(p_mcfg.page_base(), Memory::page_round_up(length) + PAGE_SIZE, "PCI Parsing MCFG", Memory::Region::Access::ReadWrite).release_value();
|
|
|
|
auto& mcfg = *(ACPI::Structures::MCFG*)mcfg_region->vaddr().offset(p_mcfg.offset_in_page()).as_ptr();
|
|
dbgln_if(PCI_DEBUG, "PCI: Checking MCFG @ {}, {}", VirtualAddress(&mcfg), PhysicalAddress(p_mcfg.get()));
|
|
|
|
for (u32 index = 0; index < ((mcfg.header.length - sizeof(ACPI::Structures::MCFG)) / sizeof(ACPI::Structures::PCI_MMIO_Descriptor)); index++) {
|
|
u8 start_bus = mcfg.descriptors[index].start_pci_bus;
|
|
u8 end_bus = mcfg.descriptors[index].end_pci_bus;
|
|
u32 lower_addr = mcfg.descriptors[index].base_addr;
|
|
|
|
m_segments.set(index, { PhysicalAddress(lower_addr), start_bus, end_bus });
|
|
dmesgln("PCI: New PCI segment @ {}, PCI buses ({}-{})", PhysicalAddress { lower_addr }, start_bus, end_bus);
|
|
}
|
|
mcfg_region->unmap();
|
|
dmesgln("PCI: MMIO segments: {}", m_segments.size());
|
|
|
|
InterruptDisabler disabler;
|
|
VERIFY(m_segments.contains(0));
|
|
|
|
// Note: we need to map this region before enumerating the hardware and adding
|
|
// PCI::PhysicalID objects to the vector, because get_capabilities calls
|
|
// PCI::read16 which will need this region to be mapped.
|
|
u8 start_bus = m_segments.get(0).value().get_start_bus();
|
|
m_mapped_region = MM.allocate_kernel_region(determine_memory_mapped_bus_region(0, start_bus), MEMORY_RANGE_PER_BUS, "PCI ECAM", Memory::Region::Access::ReadWrite).release_value();
|
|
m_mapped_bus = start_bus;
|
|
dbgln_if(PCI_DEBUG, "PCI: First PCI ECAM Mapped region for starting bus {} @ {} {}", start_bus, m_mapped_region->vaddr(), m_mapped_region->physical_page(0)->paddr());
|
|
|
|
enumerate_hardware([&](const Address& address, ID id) {
|
|
m_physical_ids.append({ address, id, get_capabilities(address) });
|
|
});
|
|
}
|
|
void MMIOAccess::map_bus_region(u32 segment, u8 bus)
|
|
{
|
|
VERIFY(m_access_lock.is_locked());
|
|
if (m_mapped_bus == bus)
|
|
return;
|
|
m_mapped_region = MM.allocate_kernel_region(determine_memory_mapped_bus_region(segment, bus), MEMORY_RANGE_PER_BUS, "PCI ECAM", Memory::Region::Access::ReadWrite).release_value();
|
|
m_mapped_bus = bus;
|
|
dbgln_if(PCI_DEBUG, "PCI: New PCI ECAM Mapped region for bus {} @ {} {}", bus, m_mapped_region->vaddr(), m_mapped_region->physical_page(0)->paddr());
|
|
}
|
|
|
|
VirtualAddress MMIOAccess::get_device_configuration_space(Address address)
|
|
{
|
|
VERIFY(m_access_lock.is_locked());
|
|
dbgln_if(PCI_DEBUG, "PCI: Getting device configuration space for {}", address);
|
|
map_bus_region(address.seg(), address.bus());
|
|
return m_mapped_region->vaddr().offset(PCI_MMIO_CONFIG_SPACE_SIZE * address.function() + (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE) * address.device());
|
|
}
|
|
|
|
u8 MMIOAccess::read8_field(Address address, u32 field)
|
|
{
|
|
SpinlockLocker lock(m_access_lock);
|
|
VERIFY(field <= 0xfff);
|
|
dbgln_if(PCI_DEBUG, "PCI: MMIO Reading 8-bit field {:#08x} for {}", field, address);
|
|
return *((volatile u8*)(get_device_configuration_space(address).get() + (field & 0xfff)));
|
|
}
|
|
|
|
u16 MMIOAccess::read16_field(Address address, u32 field)
|
|
{
|
|
SpinlockLocker lock(m_access_lock);
|
|
VERIFY(field < 0xfff);
|
|
dbgln_if(PCI_DEBUG, "PCI: MMIO Reading 16-bit field {:#08x} for {}", field, address);
|
|
u16 data = 0;
|
|
ByteReader::load<u16>(get_device_configuration_space(address).offset(field & 0xfff).as_ptr(), data);
|
|
return data;
|
|
}
|
|
|
|
u32 MMIOAccess::read32_field(Address address, u32 field)
|
|
{
|
|
SpinlockLocker lock(m_access_lock);
|
|
VERIFY(field <= 0xffc);
|
|
dbgln_if(PCI_DEBUG, "PCI: MMIO Reading 32-bit field {:#08x} for {}", field, address);
|
|
u32 data = 0;
|
|
ByteReader::load<u32>(get_device_configuration_space(address).offset(field & 0xfff).as_ptr(), data);
|
|
return data;
|
|
}
|
|
|
|
void MMIOAccess::write8_field(Address address, u32 field, u8 value)
|
|
{
|
|
SpinlockLocker lock(m_access_lock);
|
|
VERIFY(field <= 0xfff);
|
|
dbgln_if(PCI_DEBUG, "PCI: MMIO Writing 8-bit field {:#08x}, value={:#02x} for {}", field, value, address);
|
|
*((volatile u8*)(get_device_configuration_space(address).get() + (field & 0xfff))) = value;
|
|
}
|
|
void MMIOAccess::write16_field(Address address, u32 field, u16 value)
|
|
{
|
|
SpinlockLocker lock(m_access_lock);
|
|
VERIFY(field < 0xfff);
|
|
dbgln_if(PCI_DEBUG, "PCI: MMIO Writing 16-bit field {:#08x}, value={:#02x} for {}", field, value, address);
|
|
ByteReader::store<u16>(get_device_configuration_space(address).offset(field & 0xfff).as_ptr(), value);
|
|
}
|
|
void MMIOAccess::write32_field(Address address, u32 field, u32 value)
|
|
{
|
|
SpinlockLocker lock(m_access_lock);
|
|
VERIFY(field <= 0xffc);
|
|
dbgln_if(PCI_DEBUG, "PCI: MMIO Writing 32-bit field {:#08x}, value={:#02x} for {}", field, value, address);
|
|
ByteReader::store<u32>(get_device_configuration_space(address).offset(field & 0xfff).as_ptr(), value);
|
|
}
|
|
|
|
void MMIOAccess::enumerate_hardware(Function<void(Address, ID)> callback)
|
|
{
|
|
for (u16 seg = 0; seg < m_segments.size(); seg++) {
|
|
dbgln_if(PCI_DEBUG, "PCI: Enumerating Memory mapped IO segment {}", seg);
|
|
// Single PCI host controller.
|
|
if ((early_read8_field(Address(seg), PCI_HEADER_TYPE) & 0x80) == 0) {
|
|
enumerate_bus(-1, 0, callback, true);
|
|
return;
|
|
}
|
|
|
|
// Multiple PCI host controllers.
|
|
for (u8 function = 0; function < 8; ++function) {
|
|
if (early_read16_field(Address(seg, 0, 0, function), PCI_VENDOR_ID) == PCI_NONE)
|
|
break;
|
|
enumerate_bus(-1, function, callback, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
MMIOAccess::MMIOSegment::MMIOSegment(PhysicalAddress segment_base_addr, u8 start_bus, u8 end_bus)
|
|
: m_base_addr(segment_base_addr)
|
|
, m_start_bus(start_bus)
|
|
, m_end_bus(end_bus)
|
|
{
|
|
}
|
|
|
|
u8 MMIOAccess::MMIOSegment::get_start_bus() const
|
|
{
|
|
return m_start_bus;
|
|
}
|
|
|
|
u8 MMIOAccess::MMIOSegment::get_end_bus() const
|
|
{
|
|
return m_end_bus;
|
|
}
|
|
|
|
size_t MMIOAccess::MMIOSegment::get_size() const
|
|
{
|
|
return (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE * PCI_MAX_DEVICES_PER_BUS * (get_end_bus() - get_start_bus()));
|
|
}
|
|
|
|
PhysicalAddress MMIOAccess::MMIOSegment::get_paddr() const
|
|
{
|
|
return m_base_addr;
|
|
}
|
|
|
|
}
|
|
}
|