mirror of
https://github.com/RGBCube/serenity
synced 2025-05-16 20:25:07 +00:00

When executing a dynamically linked program, we need to pass the main program executable via a file descriptor to the dynamic loader. Before this patch, we were allocating an FD for this purpose long after it was safe to do anything fallible. If we were unable to allocate an FD we would simply panic the kernel(!) We now hoist the allocation so it can fail before we've committed to a new executable.
910 lines
36 KiB
C++
910 lines
36 KiB
C++
/*
|
|
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/ScopeGuard.h>
|
|
#include <AK/TemporaryChange.h>
|
|
#include <AK/WeakPtr.h>
|
|
#include <Kernel/Debug.h>
|
|
#include <Kernel/FileSystem/Custody.h>
|
|
#include <Kernel/FileSystem/FileDescription.h>
|
|
#include <Kernel/Memory/AllocationStrategy.h>
|
|
#include <Kernel/Memory/MemoryManager.h>
|
|
#include <Kernel/Memory/PageDirectory.h>
|
|
#include <Kernel/Memory/Region.h>
|
|
#include <Kernel/Memory/SharedInodeVMObject.h>
|
|
#include <Kernel/Panic.h>
|
|
#include <Kernel/PerformanceManager.h>
|
|
#include <Kernel/Process.h>
|
|
#include <Kernel/Random.h>
|
|
#include <Kernel/Time/TimeManagement.h>
|
|
#include <LibC/limits.h>
|
|
#include <LibELF/AuxiliaryVector.h>
|
|
#include <LibELF/Image.h>
|
|
#include <LibELF/Validation.h>
|
|
|
|
namespace Kernel {
|
|
|
|
extern Memory::Region* g_signal_trampoline_region;
|
|
|
|
struct LoadResult {
|
|
OwnPtr<Memory::AddressSpace> space;
|
|
FlatPtr load_base { 0 };
|
|
FlatPtr entry_eip { 0 };
|
|
size_t size { 0 };
|
|
WeakPtr<Memory::Region> tls_region;
|
|
size_t tls_size { 0 };
|
|
size_t tls_alignment { 0 };
|
|
WeakPtr<Memory::Region> stack_region;
|
|
};
|
|
|
|
static Vector<ELF::AuxiliaryValue> generate_auxiliary_vector(FlatPtr load_base, FlatPtr entry_eip, UserID uid, UserID euid, GroupID gid, GroupID egid, String executable_path, Optional<Process::ScopedDescriptionAllocation> const& main_program_fd_allocation);
|
|
|
|
static bool validate_stack_size(const Vector<String>& arguments, const Vector<String>& environment)
|
|
{
|
|
size_t total_arguments_size = 0;
|
|
size_t total_environment_size = 0;
|
|
|
|
for (auto& a : arguments)
|
|
total_arguments_size += a.length() + 1;
|
|
for (auto& e : environment)
|
|
total_environment_size += e.length() + 1;
|
|
|
|
total_arguments_size += sizeof(char*) * (arguments.size() + 1);
|
|
total_environment_size += sizeof(char*) * (environment.size() + 1);
|
|
|
|
static constexpr size_t max_arguments_size = Thread::default_userspace_stack_size / 8;
|
|
static constexpr size_t max_environment_size = Thread::default_userspace_stack_size / 8;
|
|
|
|
if (total_arguments_size > max_arguments_size)
|
|
return false;
|
|
|
|
if (total_environment_size > max_environment_size)
|
|
return false;
|
|
|
|
// FIXME: This doesn't account for the size of the auxiliary vector
|
|
return true;
|
|
}
|
|
|
|
static KResultOr<FlatPtr> make_userspace_context_for_main_thread([[maybe_unused]] ThreadRegisters& regs, Memory::Region& region, Vector<String> arguments,
|
|
Vector<String> environment, Vector<ELF::AuxiliaryValue> auxiliary_values)
|
|
{
|
|
FlatPtr new_sp = region.range().end().get();
|
|
|
|
// Add some bits of randomness to the user stack pointer.
|
|
new_sp -= round_up_to_power_of_two(get_fast_random<u32>() % 4096, 16);
|
|
|
|
auto push_on_new_stack = [&new_sp](FlatPtr value) {
|
|
new_sp -= sizeof(FlatPtr);
|
|
Userspace<FlatPtr*> stack_ptr = new_sp;
|
|
auto result = copy_to_user(stack_ptr, &value);
|
|
VERIFY(result.is_success());
|
|
};
|
|
|
|
auto push_aux_value_on_new_stack = [&new_sp](auxv_t value) {
|
|
new_sp -= sizeof(auxv_t);
|
|
Userspace<auxv_t*> stack_ptr = new_sp;
|
|
auto result = copy_to_user(stack_ptr, &value);
|
|
VERIFY(result.is_success());
|
|
};
|
|
|
|
auto push_string_on_new_stack = [&new_sp](const String& string) {
|
|
new_sp -= round_up_to_power_of_two(string.length() + 1, sizeof(FlatPtr));
|
|
Userspace<FlatPtr*> stack_ptr = new_sp;
|
|
auto result = copy_to_user(stack_ptr, string.characters(), string.length() + 1);
|
|
VERIFY(result.is_success());
|
|
};
|
|
|
|
Vector<FlatPtr> argv_entries;
|
|
for (auto& argument : arguments) {
|
|
push_string_on_new_stack(argument);
|
|
if (!argv_entries.try_append(new_sp))
|
|
return ENOMEM;
|
|
}
|
|
|
|
Vector<FlatPtr> env_entries;
|
|
for (auto& variable : environment) {
|
|
push_string_on_new_stack(variable);
|
|
if (!env_entries.try_append(new_sp))
|
|
return ENOMEM;
|
|
}
|
|
|
|
for (auto& value : auxiliary_values) {
|
|
if (!value.optional_string.is_empty()) {
|
|
push_string_on_new_stack(value.optional_string);
|
|
value.auxv.a_un.a_ptr = (void*)new_sp;
|
|
}
|
|
}
|
|
|
|
for (ssize_t i = auxiliary_values.size() - 1; i >= 0; --i) {
|
|
auto& value = auxiliary_values[i];
|
|
push_aux_value_on_new_stack(value.auxv);
|
|
}
|
|
|
|
push_on_new_stack(0);
|
|
for (ssize_t i = env_entries.size() - 1; i >= 0; --i)
|
|
push_on_new_stack(env_entries[i]);
|
|
FlatPtr envp = new_sp;
|
|
|
|
push_on_new_stack(0);
|
|
for (ssize_t i = argv_entries.size() - 1; i >= 0; --i)
|
|
push_on_new_stack(argv_entries[i]);
|
|
FlatPtr argv = new_sp;
|
|
|
|
// NOTE: The stack needs to be 16-byte aligned.
|
|
new_sp -= new_sp % 16;
|
|
|
|
#if ARCH(I386)
|
|
// GCC assumes that the return address has been pushed to the stack when it enters the function,
|
|
// so we need to reserve an extra pointer's worth of bytes below this to make GCC's stack alignment
|
|
// calculations work
|
|
new_sp -= sizeof(void*);
|
|
|
|
push_on_new_stack(envp);
|
|
push_on_new_stack(argv);
|
|
push_on_new_stack(argv_entries.size());
|
|
#else
|
|
regs.rdi = argv_entries.size();
|
|
regs.rsi = argv;
|
|
regs.rdx = envp;
|
|
#endif
|
|
|
|
VERIFY(new_sp % 16 == 0);
|
|
|
|
// FIXME: The way we're setting up the stack and passing arguments to the entry point isn't ABI-compliant
|
|
return new_sp;
|
|
}
|
|
|
|
struct RequiredLoadRange {
|
|
FlatPtr start { 0 };
|
|
FlatPtr end { 0 };
|
|
};
|
|
|
|
static KResultOr<RequiredLoadRange> get_required_load_range(FileDescription& program_description)
|
|
{
|
|
auto& inode = *(program_description.inode());
|
|
auto vmobject = TRY(Memory::SharedInodeVMObject::try_create_with_inode(inode));
|
|
|
|
size_t executable_size = inode.size();
|
|
|
|
auto region = TRY(MM.allocate_kernel_region_with_vmobject(*vmobject, Memory::page_round_up(executable_size), "ELF memory range calculation", Memory::Region::Access::Read));
|
|
auto elf_image = ELF::Image(region->vaddr().as_ptr(), executable_size);
|
|
if (!elf_image.is_valid()) {
|
|
return EINVAL;
|
|
}
|
|
|
|
RequiredLoadRange range {};
|
|
elf_image.for_each_program_header([&range](const auto& pheader) {
|
|
if (pheader.type() != PT_LOAD)
|
|
return;
|
|
|
|
auto region_start = (FlatPtr)pheader.vaddr().as_ptr();
|
|
auto region_end = region_start + pheader.size_in_memory();
|
|
if (range.start == 0 || region_start < range.start)
|
|
range.start = region_start;
|
|
if (range.end == 0 || region_end > range.end)
|
|
range.end = region_end;
|
|
});
|
|
|
|
VERIFY(range.end > range.start);
|
|
return range;
|
|
};
|
|
|
|
static KResultOr<FlatPtr> get_load_offset(const ElfW(Ehdr) & main_program_header, FileDescription& main_program_description, FileDescription* interpreter_description)
|
|
{
|
|
constexpr FlatPtr load_range_start = 0x08000000;
|
|
constexpr FlatPtr load_range_size = 65536 * PAGE_SIZE; // 2**16 * PAGE_SIZE = 256MB
|
|
constexpr FlatPtr minimum_load_offset_randomization_size = 10 * MiB;
|
|
|
|
auto random_load_offset_in_range([](auto start, auto size) {
|
|
return Memory::page_round_down(start + get_good_random<FlatPtr>() % size);
|
|
});
|
|
|
|
if (main_program_header.e_type == ET_DYN) {
|
|
return random_load_offset_in_range(load_range_start, load_range_size);
|
|
}
|
|
|
|
if (main_program_header.e_type != ET_EXEC)
|
|
return EINVAL;
|
|
|
|
auto main_program_load_range = TRY(get_required_load_range(main_program_description));
|
|
|
|
RequiredLoadRange selected_range {};
|
|
|
|
if (interpreter_description) {
|
|
auto interpreter_load_range = TRY(get_required_load_range(*interpreter_description));
|
|
|
|
auto interpreter_size_in_memory = interpreter_load_range.end - interpreter_load_range.start;
|
|
auto interpreter_load_range_end = load_range_start + load_range_size - interpreter_size_in_memory;
|
|
|
|
// No intersection
|
|
if (main_program_load_range.end < load_range_start || main_program_load_range.start > interpreter_load_range_end)
|
|
return random_load_offset_in_range(load_range_start, load_range_size);
|
|
|
|
RequiredLoadRange first_available_part = { load_range_start, main_program_load_range.start };
|
|
RequiredLoadRange second_available_part = { main_program_load_range.end, interpreter_load_range_end };
|
|
|
|
// Select larger part
|
|
if (first_available_part.end - first_available_part.start > second_available_part.end - second_available_part.start)
|
|
selected_range = first_available_part;
|
|
else
|
|
selected_range = second_available_part;
|
|
} else
|
|
selected_range = main_program_load_range;
|
|
|
|
// If main program is too big and leaves us without enough space for adequate loader randomization
|
|
if (selected_range.end - selected_range.start < minimum_load_offset_randomization_size)
|
|
return E2BIG;
|
|
|
|
return random_load_offset_in_range(selected_range.start, selected_range.end - selected_range.start);
|
|
}
|
|
|
|
enum class ShouldAllocateTls {
|
|
No,
|
|
Yes,
|
|
};
|
|
|
|
enum class ShouldAllowSyscalls {
|
|
No,
|
|
Yes,
|
|
};
|
|
|
|
static KResultOr<LoadResult> load_elf_object(NonnullOwnPtr<Memory::AddressSpace> new_space, FileDescription& object_description,
|
|
FlatPtr load_offset, ShouldAllocateTls should_allocate_tls, ShouldAllowSyscalls should_allow_syscalls)
|
|
{
|
|
auto& inode = *(object_description.inode());
|
|
auto vmobject = TRY(Memory::SharedInodeVMObject::try_create_with_inode(inode));
|
|
|
|
if (vmobject->writable_mappings()) {
|
|
dbgln("Refusing to execute a write-mapped program");
|
|
return ETXTBSY;
|
|
}
|
|
|
|
size_t executable_size = inode.size();
|
|
|
|
auto executable_region = TRY(MM.allocate_kernel_region_with_vmobject(*vmobject, Memory::page_round_up(executable_size), "ELF loading", Memory::Region::Access::Read));
|
|
auto elf_image = ELF::Image(executable_region->vaddr().as_ptr(), executable_size);
|
|
|
|
if (!elf_image.is_valid())
|
|
return ENOEXEC;
|
|
|
|
Memory::Region* master_tls_region { nullptr };
|
|
size_t master_tls_size = 0;
|
|
size_t master_tls_alignment = 0;
|
|
FlatPtr load_base_address = 0;
|
|
|
|
String elf_name = object_description.absolute_path();
|
|
VERIFY(!Processor::in_critical());
|
|
|
|
Memory::MemoryManager::enter_address_space(*new_space);
|
|
|
|
auto load_tls_section = [&](auto& program_header) -> KResult {
|
|
VERIFY(should_allocate_tls == ShouldAllocateTls::Yes);
|
|
VERIFY(program_header.size_in_memory());
|
|
|
|
if (!elf_image.is_within_image(program_header.raw_data(), program_header.size_in_image())) {
|
|
dbgln("Shenanigans! ELF PT_TLS header sneaks outside of executable.");
|
|
return ENOEXEC;
|
|
}
|
|
|
|
auto range = TRY(new_space->try_allocate_range({}, program_header.size_in_memory()));
|
|
master_tls_region = TRY(new_space->allocate_region(range, String::formatted("{} (master-tls)", elf_name), PROT_READ | PROT_WRITE, AllocationStrategy::Reserve));
|
|
master_tls_size = program_header.size_in_memory();
|
|
master_tls_alignment = program_header.alignment();
|
|
|
|
TRY(copy_to_user(master_tls_region->vaddr().as_ptr(), program_header.raw_data(), program_header.size_in_image()));
|
|
return KSuccess;
|
|
};
|
|
|
|
auto load_writable_section = [&](auto& program_header) -> KResult {
|
|
// Writable section: create a copy in memory.
|
|
VERIFY(program_header.alignment() == PAGE_SIZE);
|
|
|
|
if (!elf_image.is_within_image(program_header.raw_data(), program_header.size_in_image())) {
|
|
dbgln("Shenanigans! Writable ELF PT_LOAD header sneaks outside of executable.");
|
|
return ENOEXEC;
|
|
}
|
|
|
|
int prot = 0;
|
|
if (program_header.is_readable())
|
|
prot |= PROT_READ;
|
|
if (program_header.is_writable())
|
|
prot |= PROT_WRITE;
|
|
auto region_name = String::formatted("{} (data-{}{})", elf_name, program_header.is_readable() ? "r" : "", program_header.is_writable() ? "w" : "");
|
|
|
|
auto range_base = VirtualAddress { Memory::page_round_down(program_header.vaddr().offset(load_offset).get()) };
|
|
auto range_end = VirtualAddress { Memory::page_round_up(program_header.vaddr().offset(load_offset).offset(program_header.size_in_memory()).get()) };
|
|
|
|
auto range = TRY(new_space->try_allocate_range(range_base, range_end.get() - range_base.get()));
|
|
auto region = TRY(new_space->allocate_region(range, region_name, prot, AllocationStrategy::Reserve));
|
|
|
|
// It's not always the case with PIE executables (and very well shouldn't be) that the
|
|
// virtual address in the program header matches the one we end up giving the process.
|
|
// In order to copy the data image correctly into memory, we need to copy the data starting at
|
|
// the right initial page offset into the pages allocated for the elf_alloc-XX section.
|
|
// FIXME: There's an opportunity to munmap, or at least mprotect, the padding space between
|
|
// the .text and .data PT_LOAD sections of the executable.
|
|
// Accessing it would definitely be a bug.
|
|
auto page_offset = program_header.vaddr();
|
|
page_offset.mask(~PAGE_MASK);
|
|
TRY(copy_to_user((u8*)region->vaddr().as_ptr() + page_offset.get(), program_header.raw_data(), program_header.size_in_image()));
|
|
return KSuccess;
|
|
};
|
|
|
|
auto load_section = [&](auto& program_header) -> KResult {
|
|
if (program_header.size_in_memory() == 0)
|
|
return KSuccess;
|
|
|
|
if (program_header.is_writable())
|
|
return load_writable_section(program_header);
|
|
|
|
// Non-writable section: map the executable itself in memory.
|
|
VERIFY(program_header.alignment() == PAGE_SIZE);
|
|
int prot = 0;
|
|
if (program_header.is_readable())
|
|
prot |= PROT_READ;
|
|
if (program_header.is_writable())
|
|
prot |= PROT_WRITE;
|
|
if (program_header.is_executable())
|
|
prot |= PROT_EXEC;
|
|
|
|
auto range_base = VirtualAddress { Memory::page_round_down(program_header.vaddr().offset(load_offset).get()) };
|
|
auto range_end = VirtualAddress { Memory::page_round_up(program_header.vaddr().offset(load_offset).offset(program_header.size_in_memory()).get()) };
|
|
auto range = TRY(new_space->try_allocate_range(range_base, range_end.get() - range_base.get()));
|
|
auto region = TRY(new_space->allocate_region_with_vmobject(range, *vmobject, program_header.offset(), elf_name, prot, true));
|
|
|
|
if (should_allow_syscalls == ShouldAllowSyscalls::Yes)
|
|
region->set_syscall_region(true);
|
|
if (program_header.offset() == 0)
|
|
load_base_address = (FlatPtr)region->vaddr().as_ptr();
|
|
return KSuccess;
|
|
};
|
|
|
|
auto load_elf_program_header = [&](auto& program_header) -> KResult {
|
|
if (program_header.type() == PT_TLS)
|
|
return load_tls_section(program_header);
|
|
|
|
if (program_header.type() == PT_LOAD)
|
|
return load_section(program_header);
|
|
|
|
// NOTE: We ignore other program header types.
|
|
return KSuccess;
|
|
};
|
|
|
|
TRY([&] {
|
|
KResult result = KSuccess;
|
|
elf_image.for_each_program_header([&](ELF::Image::ProgramHeader const& program_header) {
|
|
result = load_elf_program_header(program_header);
|
|
return result.is_error() ? IterationDecision::Break : IterationDecision::Continue;
|
|
});
|
|
return result;
|
|
}());
|
|
|
|
if (!elf_image.entry().offset(load_offset).get()) {
|
|
dbgln("do_exec: Failure loading program, entry pointer is invalid! {})", elf_image.entry().offset(load_offset));
|
|
return ENOEXEC;
|
|
}
|
|
|
|
auto stack_range = TRY(new_space->try_allocate_range({}, Thread::default_userspace_stack_size));
|
|
auto* stack_region = TRY(new_space->allocate_region(stack_range, "Stack (Main thread)", PROT_READ | PROT_WRITE, AllocationStrategy::Reserve));
|
|
stack_region->set_stack(true);
|
|
|
|
return LoadResult {
|
|
move(new_space),
|
|
load_base_address,
|
|
elf_image.entry().offset(load_offset).get(),
|
|
executable_size,
|
|
AK::try_make_weak_ptr(master_tls_region),
|
|
master_tls_size,
|
|
master_tls_alignment,
|
|
stack_region->make_weak_ptr()
|
|
};
|
|
}
|
|
|
|
KResultOr<LoadResult>
|
|
Process::load(NonnullRefPtr<FileDescription> main_program_description,
|
|
RefPtr<FileDescription> interpreter_description, const ElfW(Ehdr) & main_program_header)
|
|
{
|
|
auto new_space = TRY(Memory::AddressSpace::try_create(nullptr));
|
|
|
|
ScopeGuard space_guard([&]() {
|
|
Memory::MemoryManager::enter_process_address_space(*this);
|
|
});
|
|
|
|
auto load_offset = TRY(get_load_offset(main_program_header, main_program_description, interpreter_description));
|
|
|
|
if (interpreter_description.is_null()) {
|
|
auto load_result = TRY(load_elf_object(move(new_space), main_program_description, load_offset, ShouldAllocateTls::Yes, ShouldAllowSyscalls::No));
|
|
m_master_tls_region = load_result.tls_region;
|
|
m_master_tls_size = load_result.tls_size;
|
|
m_master_tls_alignment = load_result.tls_alignment;
|
|
return load_result;
|
|
}
|
|
|
|
auto interpreter_load_result = TRY(load_elf_object(move(new_space), *interpreter_description, load_offset, ShouldAllocateTls::No, ShouldAllowSyscalls::Yes));
|
|
|
|
// TLS allocation will be done in userspace by the loader
|
|
VERIFY(!interpreter_load_result.tls_region);
|
|
VERIFY(!interpreter_load_result.tls_alignment);
|
|
VERIFY(!interpreter_load_result.tls_size);
|
|
|
|
return interpreter_load_result;
|
|
}
|
|
|
|
KResult Process::do_exec(NonnullRefPtr<FileDescription> main_program_description, Vector<String> arguments, Vector<String> environment,
|
|
RefPtr<FileDescription> interpreter_description, Thread*& new_main_thread, u32& prev_flags, const ElfW(Ehdr) & main_program_header)
|
|
{
|
|
VERIFY(is_user_process());
|
|
VERIFY(!Processor::in_critical());
|
|
auto path = main_program_description->absolute_path();
|
|
|
|
dbgln_if(EXEC_DEBUG, "do_exec: {}", path);
|
|
|
|
// FIXME: How much stack space does process startup need?
|
|
if (!validate_stack_size(arguments, environment))
|
|
return E2BIG;
|
|
|
|
auto parts = path.split('/');
|
|
if (parts.is_empty())
|
|
return ENOENT;
|
|
|
|
auto new_process_name = parts.take_last();
|
|
auto new_main_thread_name = TRY(KString::try_create(new_process_name));
|
|
|
|
auto main_program_metadata = main_program_description->metadata();
|
|
|
|
auto load_result = TRY(load(main_program_description, interpreter_description, main_program_header));
|
|
|
|
auto signal_trampoline_range = TRY(load_result.space->try_allocate_range({}, PAGE_SIZE));
|
|
auto signal_trampoline_region = TRY(load_result.space->allocate_region_with_vmobject(signal_trampoline_range, g_signal_trampoline_region->vmobject(), 0, "Signal trampoline", PROT_READ | PROT_EXEC, true));
|
|
signal_trampoline_region->set_syscall_region(true);
|
|
|
|
// (For dynamically linked executable) Allocate an FD for passing the main executable to the dynamic loader.
|
|
Optional<ScopedDescriptionAllocation> main_program_fd_allocation;
|
|
if (interpreter_description)
|
|
main_program_fd_allocation = TRY(m_fds.allocate());
|
|
|
|
// We commit to the new executable at this point. There is no turning back!
|
|
|
|
// Prevent other processes from attaching to us with ptrace while we're doing this.
|
|
MutexLocker ptrace_locker(ptrace_lock());
|
|
|
|
// Disable profiling temporarily in case it's running on this process.
|
|
auto was_profiling = m_profiling;
|
|
TemporaryChange profiling_disabler(m_profiling, false);
|
|
|
|
kill_threads_except_self();
|
|
|
|
bool executable_is_setid = false;
|
|
|
|
if (!(main_program_description->custody()->mount_flags() & MS_NOSUID)) {
|
|
if (main_program_metadata.is_setuid()) {
|
|
executable_is_setid = true;
|
|
ProtectedDataMutationScope scope { *this };
|
|
m_protected_values.euid = main_program_metadata.uid;
|
|
m_protected_values.suid = main_program_metadata.uid;
|
|
}
|
|
if (main_program_metadata.is_setgid()) {
|
|
executable_is_setid = true;
|
|
ProtectedDataMutationScope scope { *this };
|
|
m_protected_values.egid = main_program_metadata.gid;
|
|
m_protected_values.sgid = main_program_metadata.gid;
|
|
}
|
|
}
|
|
|
|
set_dumpable(!executable_is_setid);
|
|
|
|
{
|
|
// We must disable global profiling (especially kfree tracing) here because
|
|
// we might otherwise end up walking the stack into the process' space that
|
|
// is about to be destroyed.
|
|
TemporaryChange global_profiling_disabler(g_profiling_all_threads, false);
|
|
m_space = load_result.space.release_nonnull();
|
|
}
|
|
Memory::MemoryManager::enter_address_space(*m_space);
|
|
|
|
m_executable = main_program_description->custody();
|
|
m_arguments = arguments;
|
|
m_environment = environment;
|
|
|
|
m_veil_state = VeilState::None;
|
|
m_unveiled_paths.clear();
|
|
m_unveiled_paths.set_metadata({ "/", UnveilAccess::None, false });
|
|
|
|
for (auto& property : m_coredump_properties)
|
|
property = {};
|
|
|
|
auto current_thread = Thread::current();
|
|
current_thread->clear_signals();
|
|
|
|
clear_futex_queues_on_exec();
|
|
|
|
fds().change_each([&](auto& file_description_metadata) {
|
|
if (file_description_metadata.is_valid() && file_description_metadata.flags() & FD_CLOEXEC)
|
|
file_description_metadata = {};
|
|
});
|
|
|
|
if (main_program_fd_allocation.has_value()) {
|
|
auto seek_result = main_program_description->seek(0, SEEK_SET);
|
|
VERIFY(!seek_result.is_error());
|
|
main_program_description->set_readable(true);
|
|
m_fds[main_program_fd_allocation->fd].set(move(main_program_description), FD_CLOEXEC);
|
|
}
|
|
|
|
new_main_thread = nullptr;
|
|
if (¤t_thread->process() == this) {
|
|
new_main_thread = current_thread;
|
|
} else {
|
|
for_each_thread([&](auto& thread) {
|
|
new_main_thread = &thread;
|
|
return IterationDecision::Break;
|
|
});
|
|
}
|
|
VERIFY(new_main_thread);
|
|
|
|
auto auxv = generate_auxiliary_vector(load_result.load_base, load_result.entry_eip, uid(), euid(), gid(), egid(), path, main_program_fd_allocation);
|
|
|
|
// NOTE: We create the new stack before disabling interrupts since it will zero-fault
|
|
// and we don't want to deal with faults after this point.
|
|
auto make_stack_result = make_userspace_context_for_main_thread(new_main_thread->regs(), *load_result.stack_region.unsafe_ptr(), move(arguments), move(environment), move(auxv));
|
|
if (make_stack_result.is_error())
|
|
return make_stack_result.error();
|
|
FlatPtr new_userspace_sp = make_stack_result.value();
|
|
|
|
if (wait_for_tracer_at_next_execve()) {
|
|
// Make sure we release the ptrace lock here or the tracer will block forever.
|
|
ptrace_locker.unlock();
|
|
Thread::current()->send_urgent_signal_to_self(SIGSTOP);
|
|
} else {
|
|
// Unlock regardless before disabling interrupts.
|
|
// Ensure we always unlock after checking ptrace status to avoid TOCTOU ptrace issues
|
|
ptrace_locker.unlock();
|
|
}
|
|
|
|
// We enter a critical section here because we don't want to get interrupted between do_exec()
|
|
// and Processor::assume_context() or the next context switch.
|
|
// If we used an InterruptDisabler that sti()'d on exit, we might timer tick'd too soon in exec().
|
|
Processor::enter_critical();
|
|
prev_flags = cpu_flags();
|
|
cli();
|
|
|
|
// NOTE: Be careful to not trigger any page faults below!
|
|
|
|
m_name = move(new_process_name);
|
|
new_main_thread->set_name(move(new_main_thread_name));
|
|
|
|
{
|
|
ProtectedDataMutationScope scope { *this };
|
|
m_protected_values.promises = m_protected_values.execpromises.load();
|
|
m_protected_values.has_promises = m_protected_values.has_execpromises.load();
|
|
|
|
m_protected_values.execpromises = 0;
|
|
m_protected_values.has_execpromises = false;
|
|
|
|
m_protected_values.signal_trampoline = signal_trampoline_region->vaddr();
|
|
|
|
// FIXME: PID/TID ISSUE
|
|
m_protected_values.pid = new_main_thread->tid().value();
|
|
}
|
|
|
|
auto tsr_result = new_main_thread->make_thread_specific_region({});
|
|
if (tsr_result.is_error()) {
|
|
// FIXME: We cannot fail this late. Refactor this so the allocation happens before we commit to the new executable.
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
new_main_thread->reset_fpu_state();
|
|
|
|
auto& regs = new_main_thread->m_regs;
|
|
#if ARCH(I386)
|
|
regs.cs = GDT_SELECTOR_CODE3 | 3;
|
|
regs.ds = GDT_SELECTOR_DATA3 | 3;
|
|
regs.es = GDT_SELECTOR_DATA3 | 3;
|
|
regs.ss = GDT_SELECTOR_DATA3 | 3;
|
|
regs.fs = GDT_SELECTOR_DATA3 | 3;
|
|
regs.gs = GDT_SELECTOR_TLS | 3;
|
|
regs.eip = load_result.entry_eip;
|
|
regs.esp = new_userspace_sp;
|
|
#else
|
|
regs.rip = load_result.entry_eip;
|
|
regs.rsp = new_userspace_sp;
|
|
#endif
|
|
regs.cr3 = address_space().page_directory().cr3();
|
|
|
|
{
|
|
TemporaryChange profiling_disabler(m_profiling, was_profiling);
|
|
PerformanceManager::add_process_exec_event(*this);
|
|
}
|
|
|
|
{
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
new_main_thread->set_state(Thread::State::Runnable);
|
|
}
|
|
u32 lock_count_to_restore;
|
|
[[maybe_unused]] auto rc = big_lock().force_unlock_if_locked(lock_count_to_restore);
|
|
VERIFY_INTERRUPTS_DISABLED();
|
|
VERIFY(Processor::in_critical());
|
|
return KSuccess;
|
|
}
|
|
|
|
static Vector<ELF::AuxiliaryValue> generate_auxiliary_vector(FlatPtr load_base, FlatPtr entry_eip, UserID uid, UserID euid, GroupID gid, GroupID egid, String executable_path, Optional<Process::ScopedDescriptionAllocation> const& main_program_fd_allocation)
|
|
{
|
|
Vector<ELF::AuxiliaryValue> auxv;
|
|
// PHDR/EXECFD
|
|
// PH*
|
|
auxv.append({ ELF::AuxiliaryValue::PageSize, PAGE_SIZE });
|
|
auxv.append({ ELF::AuxiliaryValue::BaseAddress, (void*)load_base });
|
|
|
|
auxv.append({ ELF::AuxiliaryValue::Entry, (void*)entry_eip });
|
|
// NOTELF
|
|
auxv.append({ ELF::AuxiliaryValue::Uid, (long)uid.value() });
|
|
auxv.append({ ELF::AuxiliaryValue::EUid, (long)euid.value() });
|
|
auxv.append({ ELF::AuxiliaryValue::Gid, (long)gid.value() });
|
|
auxv.append({ ELF::AuxiliaryValue::EGid, (long)egid.value() });
|
|
|
|
auxv.append({ ELF::AuxiliaryValue::Platform, Processor::platform_string() });
|
|
// FIXME: This is platform specific
|
|
auxv.append({ ELF::AuxiliaryValue::HwCap, (long)CPUID(1).edx() });
|
|
|
|
auxv.append({ ELF::AuxiliaryValue::ClockTick, (long)TimeManagement::the().ticks_per_second() });
|
|
|
|
// FIXME: Also take into account things like extended filesystem permissions? That's what linux does...
|
|
auxv.append({ ELF::AuxiliaryValue::Secure, ((uid != euid) || (gid != egid)) ? 1 : 0 });
|
|
|
|
char random_bytes[16] {};
|
|
get_fast_random_bytes({ (u8*)random_bytes, sizeof(random_bytes) });
|
|
|
|
auxv.append({ ELF::AuxiliaryValue::Random, String(random_bytes, sizeof(random_bytes)) });
|
|
|
|
auxv.append({ ELF::AuxiliaryValue::ExecFilename, executable_path });
|
|
|
|
if (main_program_fd_allocation.has_value())
|
|
auxv.append({ ELF::AuxiliaryValue::ExecFileDescriptor, main_program_fd_allocation->fd });
|
|
|
|
auxv.append({ ELF::AuxiliaryValue::Null, 0L });
|
|
return auxv;
|
|
}
|
|
|
|
static KResultOr<Vector<String>> find_shebang_interpreter_for_executable(char const first_page[], size_t nread)
|
|
{
|
|
int word_start = 2;
|
|
int word_length = 0;
|
|
if (nread > 2 && first_page[0] == '#' && first_page[1] == '!') {
|
|
Vector<String> interpreter_words;
|
|
|
|
for (size_t i = 2; i < nread; ++i) {
|
|
if (first_page[i] == '\n') {
|
|
break;
|
|
}
|
|
|
|
if (first_page[i] != ' ') {
|
|
++word_length;
|
|
}
|
|
|
|
if (first_page[i] == ' ') {
|
|
if (word_length > 0) {
|
|
interpreter_words.append(String(&first_page[word_start], word_length));
|
|
}
|
|
word_length = 0;
|
|
word_start = i + 1;
|
|
}
|
|
}
|
|
|
|
if (word_length > 0)
|
|
interpreter_words.append(String(&first_page[word_start], word_length));
|
|
|
|
if (!interpreter_words.is_empty())
|
|
return interpreter_words;
|
|
}
|
|
|
|
return ENOEXEC;
|
|
}
|
|
|
|
KResultOr<RefPtr<FileDescription>> Process::find_elf_interpreter_for_executable(String const& path, ElfW(Ehdr) const& main_executable_header, size_t main_executable_header_size, size_t file_size)
|
|
{
|
|
// Not using KResultOr here because we'll want to do the same thing in userspace in the RTLD
|
|
String interpreter_path;
|
|
if (!ELF::validate_program_headers(main_executable_header, file_size, (u8 const*)&main_executable_header, main_executable_header_size, &interpreter_path)) {
|
|
dbgln("exec({}): File has invalid ELF Program headers", path);
|
|
return ENOEXEC;
|
|
}
|
|
|
|
if (!interpreter_path.is_empty()) {
|
|
dbgln_if(EXEC_DEBUG, "exec({}): Using program interpreter {}", path, interpreter_path);
|
|
auto interpreter_description = TRY(VirtualFileSystem::the().open(interpreter_path, O_EXEC, 0, current_directory()));
|
|
auto interp_metadata = interpreter_description->metadata();
|
|
|
|
VERIFY(interpreter_description->inode());
|
|
|
|
// Validate the program interpreter as a valid elf binary.
|
|
// If your program interpreter is a #! file or something, it's time to stop playing games :)
|
|
if (interp_metadata.size < (int)sizeof(ElfW(Ehdr)))
|
|
return ENOEXEC;
|
|
|
|
char first_page[PAGE_SIZE] = {};
|
|
auto first_page_buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&first_page);
|
|
auto nread = TRY(interpreter_description->read(first_page_buffer, sizeof(first_page)));
|
|
|
|
if (nread < sizeof(ElfW(Ehdr)))
|
|
return ENOEXEC;
|
|
|
|
auto elf_header = (ElfW(Ehdr)*)first_page;
|
|
if (!ELF::validate_elf_header(*elf_header, interp_metadata.size)) {
|
|
dbgln("exec({}): Interpreter ({}) has invalid ELF header", path, interpreter_description->absolute_path());
|
|
return ENOEXEC;
|
|
}
|
|
|
|
// Not using KResultOr here because we'll want to do the same thing in userspace in the RTLD
|
|
String interpreter_interpreter_path;
|
|
if (!ELF::validate_program_headers(*elf_header, interp_metadata.size, (u8*)first_page, nread, &interpreter_interpreter_path)) {
|
|
dbgln("exec({}): Interpreter ({}) has invalid ELF Program headers", path, interpreter_description->absolute_path());
|
|
return ENOEXEC;
|
|
}
|
|
|
|
if (!interpreter_interpreter_path.is_empty()) {
|
|
dbgln("exec({}): Interpreter ({}) has its own interpreter ({})! No thank you!", path, interpreter_description->absolute_path(), interpreter_interpreter_path);
|
|
return ELOOP;
|
|
}
|
|
|
|
return interpreter_description;
|
|
}
|
|
|
|
if (main_executable_header.e_type == ET_REL) {
|
|
// We can't exec an ET_REL, that's just an object file from the compiler
|
|
return ENOEXEC;
|
|
}
|
|
if (main_executable_header.e_type == ET_DYN) {
|
|
// If it's ET_DYN with no PT_INTERP, then it's a dynamic executable responsible
|
|
// for its own relocation (i.e. it's /usr/lib/Loader.so)
|
|
if (path != "/usr/lib/Loader.so")
|
|
dbgln("exec({}): WARNING - Dynamic ELF executable without a PT_INTERP header, and isn't /usr/lib/Loader.so", path);
|
|
return nullptr;
|
|
}
|
|
|
|
// No interpreter, but, path refers to a valid elf image
|
|
return KResult(KSuccess);
|
|
}
|
|
|
|
KResult Process::exec(String path, Vector<String> arguments, Vector<String> environment, int recursion_depth)
|
|
{
|
|
if (recursion_depth > 2) {
|
|
dbgln("exec({}): SHENANIGANS! recursed too far trying to find #! interpreter", path);
|
|
return ELOOP;
|
|
}
|
|
|
|
// Open the file to check what kind of binary format it is
|
|
// Currently supported formats:
|
|
// - #! interpreted file
|
|
// - ELF32
|
|
// * ET_EXEC binary that just gets loaded
|
|
// * ET_DYN binary that requires a program interpreter
|
|
//
|
|
auto description = TRY(VirtualFileSystem::the().open(path, O_EXEC, 0, current_directory()));
|
|
auto metadata = description->metadata();
|
|
|
|
if (!metadata.is_regular_file())
|
|
return EACCES;
|
|
|
|
// Always gonna need at least 3 bytes. these are for #!X
|
|
if (metadata.size < 3)
|
|
return ENOEXEC;
|
|
|
|
VERIFY(description->inode());
|
|
|
|
// Read the first page of the program into memory so we can validate the binfmt of it
|
|
char first_page[PAGE_SIZE];
|
|
auto first_page_buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&first_page);
|
|
auto nread = TRY(description->read(first_page_buffer, sizeof(first_page)));
|
|
|
|
// 1) #! interpreted file
|
|
auto shebang_result = find_shebang_interpreter_for_executable(first_page, nread);
|
|
if (!shebang_result.is_error()) {
|
|
auto shebang_words = shebang_result.release_value();
|
|
auto shebang_path = shebang_words.first();
|
|
arguments[0] = move(path);
|
|
if (!arguments.try_prepend(move(shebang_words)))
|
|
return ENOMEM;
|
|
return exec(move(shebang_path), move(arguments), move(environment), ++recursion_depth);
|
|
}
|
|
|
|
// #2) ELF32 for i386
|
|
|
|
if (nread < sizeof(ElfW(Ehdr)))
|
|
return ENOEXEC;
|
|
auto main_program_header = (ElfW(Ehdr)*)first_page;
|
|
|
|
if (!ELF::validate_elf_header(*main_program_header, metadata.size)) {
|
|
dbgln("exec({}): File has invalid ELF header", path);
|
|
return ENOEXEC;
|
|
}
|
|
|
|
auto elf_result = find_elf_interpreter_for_executable(path, *main_program_header, nread, metadata.size);
|
|
// Assume a static ELF executable by default
|
|
RefPtr<FileDescription> interpreter_description;
|
|
// We're getting either an interpreter, an error, or KSuccess (i.e. no interpreter but file checks out)
|
|
if (!elf_result.is_error()) {
|
|
// It's a dynamic ELF executable, with or without an interpreter. Do not allocate TLS
|
|
interpreter_description = elf_result.value();
|
|
} else if (elf_result.error().is_error())
|
|
return elf_result.error();
|
|
|
|
// The bulk of exec() is done by do_exec(), which ensures that all locals
|
|
// are cleaned up by the time we yield-teleport below.
|
|
Thread* new_main_thread = nullptr;
|
|
u32 prev_flags = 0;
|
|
TRY(do_exec(move(description), move(arguments), move(environment), move(interpreter_description), new_main_thread, prev_flags, *main_program_header));
|
|
|
|
VERIFY_INTERRUPTS_DISABLED();
|
|
VERIFY(Processor::in_critical());
|
|
|
|
auto current_thread = Thread::current();
|
|
if (current_thread == new_main_thread) {
|
|
// We need to enter the scheduler lock before changing the state
|
|
// and it will be released after the context switch into that
|
|
// thread. We should also still be in our critical section
|
|
VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
|
|
VERIFY(Processor::in_critical() == 1);
|
|
g_scheduler_lock.lock();
|
|
current_thread->set_state(Thread::State::Running);
|
|
Processor::assume_context(*current_thread, prev_flags);
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
if (prev_flags & 0x200)
|
|
sti();
|
|
Processor::leave_critical();
|
|
return KSuccess;
|
|
}
|
|
|
|
KResultOr<FlatPtr> Process::sys$execve(Userspace<const Syscall::SC_execve_params*> user_params)
|
|
{
|
|
VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
|
|
REQUIRE_PROMISE(exec);
|
|
|
|
// NOTE: Be extremely careful with allocating any kernel memory in exec().
|
|
// On success, the kernel stack will be lost.
|
|
auto params = TRY(copy_typed_from_user(user_params));
|
|
|
|
if (params.arguments.length > ARG_MAX || params.environment.length > ARG_MAX)
|
|
return E2BIG;
|
|
|
|
// FIXME: This should use KString.
|
|
String path;
|
|
{
|
|
auto path_arg = TRY(get_syscall_path_argument(params.path));
|
|
path = path_arg->view();
|
|
}
|
|
|
|
auto copy_user_strings = [](const auto& list, auto& output) -> KResult {
|
|
if (!list.length)
|
|
return KSuccess;
|
|
Checked<size_t> size = sizeof(*list.strings);
|
|
size *= list.length;
|
|
if (size.has_overflow())
|
|
return EOVERFLOW;
|
|
Vector<Syscall::StringArgument, 32> strings;
|
|
if (!strings.try_resize(list.length))
|
|
return ENOMEM;
|
|
TRY(copy_from_user(strings.data(), list.strings, size.value()));
|
|
for (size_t i = 0; i < list.length; ++i) {
|
|
auto string = TRY(try_copy_kstring_from_user(strings[i]));
|
|
// FIXME: Don't convert to String here, use KString all the way.
|
|
auto ak_string = String(string->view());
|
|
if (!output.try_append(move(ak_string)))
|
|
return ENOMEM;
|
|
}
|
|
return KSuccess;
|
|
};
|
|
|
|
Vector<String> arguments;
|
|
TRY(copy_user_strings(params.arguments, arguments));
|
|
|
|
Vector<String> environment;
|
|
TRY(copy_user_strings(params.environment, environment));
|
|
|
|
auto result = exec(move(path), move(arguments), move(environment));
|
|
VERIFY(result.is_error()); // We should never continue after a successful exec!
|
|
return result.error();
|
|
}
|
|
}
|