mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 02:02:45 +00:00 
			
		
		
		
	 1682f0b760
			
		
	
	
		1682f0b760
		
	
	
	
	
		
			
			SPDX License Identifiers are a more compact / standardized way of representing file license information. See: https://spdx.dev/resources/use/#identifiers This was done with the `ambr` search and replace tool. ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
		
			
				
	
	
		
			290 lines
		
	
	
	
		
			9.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			290 lines
		
	
	
	
		
			9.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2020, The SerenityOS developers.
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/Checked.h>
 | |
| #include <AK/Time.h>
 | |
| 
 | |
| // Make a reasonable guess as to which timespec/timeval definition to use.
 | |
| // It doesn't really matter, since both are identical.
 | |
| #ifdef KERNEL
 | |
| #    include <Kernel/UnixTypes.h>
 | |
| #else
 | |
| #    include <sys/time.h>
 | |
| #endif
 | |
| 
 | |
| namespace AK {
 | |
| 
 | |
| int day_of_year(int year, unsigned month, int day)
 | |
| {
 | |
|     VERIFY(month >= 1 && month <= 12);
 | |
| 
 | |
|     static const int seek_table[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
 | |
|     int day_of_year = seek_table[month - 1] + day - 1;
 | |
| 
 | |
|     if (is_leap_year(year) && month >= 3)
 | |
|         day_of_year++;
 | |
| 
 | |
|     return day_of_year;
 | |
| }
 | |
| 
 | |
| int days_in_month(int year, unsigned month)
 | |
| {
 | |
|     VERIFY(month >= 1 && month <= 12);
 | |
|     if (month == 2)
 | |
|         return is_leap_year(year) ? 29 : 28;
 | |
| 
 | |
|     bool is_long_month = (month == 1 || month == 3 || month == 5 || month == 7 || month == 8 || month == 10 || month == 12);
 | |
|     return is_long_month ? 31 : 30;
 | |
| }
 | |
| 
 | |
| unsigned day_of_week(int year, unsigned month, int day)
 | |
| {
 | |
|     VERIFY(month >= 1 && month <= 12);
 | |
|     static const int seek_table[] = { 0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4 };
 | |
|     if (month < 3)
 | |
|         --year;
 | |
| 
 | |
|     return (year + year / 4 - year / 100 + year / 400 + seek_table[month - 1] + day) % 7;
 | |
| }
 | |
| 
 | |
| Time Time::from_timespec(const struct timespec& ts)
 | |
| {
 | |
|     i32 nsecs = ts.tv_nsec;
 | |
|     i32 extra_secs = sane_mod(nsecs, 1'000'000'000);
 | |
|     return Time::from_half_sanitized(ts.tv_sec, extra_secs, nsecs);
 | |
| }
 | |
| Time Time::from_timeval(const struct timeval& tv)
 | |
| {
 | |
|     i32 usecs = tv.tv_usec;
 | |
|     i32 extra_secs = sane_mod(usecs, 1'000'000);
 | |
|     VERIFY(0 <= usecs && usecs < 1'000'000);
 | |
|     return Time::from_half_sanitized(tv.tv_sec, extra_secs, usecs * 1'000);
 | |
| }
 | |
| 
 | |
| i64 Time::to_truncated_seconds() const
 | |
| {
 | |
|     VERIFY(m_nanoseconds < 1'000'000'000);
 | |
|     if (m_seconds < 0 && m_nanoseconds) {
 | |
|         // Since m_seconds is negative, adding 1 can't possibly overflow
 | |
|         return m_seconds + 1;
 | |
|     }
 | |
|     return m_seconds;
 | |
| }
 | |
| i64 Time::to_truncated_milliseconds() const
 | |
| {
 | |
|     VERIFY(m_nanoseconds < 1'000'000'000);
 | |
|     Checked<i64> milliseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds);
 | |
|     milliseconds *= 1'000;
 | |
|     milliseconds += m_nanoseconds / 1'000'000;
 | |
|     if (m_seconds < 0) {
 | |
|         if (m_nanoseconds % 1'000'000 != 0) {
 | |
|             // Does not overflow: milliseconds <= 1'999.
 | |
|             milliseconds++;
 | |
|         }
 | |
|         // We dropped one second previously, put it back in now that we have handled the rounding.
 | |
|         milliseconds -= 1'000;
 | |
|     }
 | |
|     if (!milliseconds.has_overflow())
 | |
|         return milliseconds.value();
 | |
|     return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL;
 | |
| }
 | |
| i64 Time::to_truncated_microseconds() const
 | |
| {
 | |
|     VERIFY(m_nanoseconds < 1'000'000'000);
 | |
|     Checked<i64> microseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds);
 | |
|     microseconds *= 1'000'000;
 | |
|     microseconds += m_nanoseconds / 1'000;
 | |
|     if (m_seconds < 0) {
 | |
|         if (m_nanoseconds % 1'000 != 0) {
 | |
|             // Does not overflow: microseconds <= 1'999'999.
 | |
|             microseconds++;
 | |
|         }
 | |
|         // We dropped one second previously, put it back in now that we have handled the rounding.
 | |
|         microseconds -= 1'000'000;
 | |
|     }
 | |
|     if (!microseconds.has_overflow())
 | |
|         return microseconds.value();
 | |
|     return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL;
 | |
| }
 | |
| i64 Time::to_seconds() const
 | |
| {
 | |
|     VERIFY(m_nanoseconds < 1'000'000'000);
 | |
|     if (m_seconds >= 0 && m_nanoseconds) {
 | |
|         Checked<i64> seconds(m_seconds);
 | |
|         seconds++;
 | |
|         return seconds.has_overflow() ? 0x7fff'ffff'ffff'ffffLL : seconds.value();
 | |
|     }
 | |
|     return m_seconds;
 | |
| }
 | |
| i64 Time::to_milliseconds() const
 | |
| {
 | |
|     VERIFY(m_nanoseconds < 1'000'000'000);
 | |
|     Checked<i64> milliseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds);
 | |
|     milliseconds *= 1'000;
 | |
|     milliseconds += m_nanoseconds / 1'000'000;
 | |
|     if (m_seconds >= 0 && m_nanoseconds % 1'000'000 != 0)
 | |
|         milliseconds++;
 | |
|     if (m_seconds < 0) {
 | |
|         // We dropped one second previously, put it back in now that we have handled the rounding.
 | |
|         milliseconds -= 1'000;
 | |
|     }
 | |
|     if (!milliseconds.has_overflow())
 | |
|         return milliseconds.value();
 | |
|     return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL;
 | |
| }
 | |
| i64 Time::to_microseconds() const
 | |
| {
 | |
|     VERIFY(m_nanoseconds < 1'000'000'000);
 | |
|     Checked<i64> microseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds);
 | |
|     microseconds *= 1'000'000;
 | |
|     microseconds += m_nanoseconds / 1'000;
 | |
|     if (m_seconds >= 0 && m_nanoseconds % 1'000 != 0)
 | |
|         microseconds++;
 | |
|     if (m_seconds < 0) {
 | |
|         // We dropped one second previously, put it back in now that we have handled the rounding.
 | |
|         microseconds -= 1'000'000;
 | |
|     }
 | |
|     if (!microseconds.has_overflow())
 | |
|         return microseconds.value();
 | |
|     return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL;
 | |
| }
 | |
| i64 Time::to_nanoseconds() const
 | |
| {
 | |
|     VERIFY(m_nanoseconds < 1'000'000'000);
 | |
|     Checked<i64> nanoseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds);
 | |
|     nanoseconds *= 1'000'000'000;
 | |
|     nanoseconds += m_nanoseconds;
 | |
|     if (m_seconds < 0) {
 | |
|         // We dropped one second previously, put it back in now that we have handled the rounding.
 | |
|         nanoseconds -= 1'000'000'000;
 | |
|     }
 | |
|     if (!nanoseconds.has_overflow())
 | |
|         return nanoseconds.value();
 | |
|     return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL;
 | |
| }
 | |
| timespec Time::to_timespec() const
 | |
| {
 | |
|     VERIFY(m_nanoseconds < 1'000'000'000);
 | |
|     return { static_cast<i64>(m_seconds), static_cast<i32>(m_nanoseconds) };
 | |
| }
 | |
| timeval Time::to_timeval() const
 | |
| {
 | |
|     VERIFY(m_nanoseconds < 1'000'000'000);
 | |
|     return { static_cast<i64>(m_seconds), static_cast<i32>(m_nanoseconds) / 1000 };
 | |
| }
 | |
| 
 | |
| Time Time::operator+(const Time& other) const
 | |
| {
 | |
|     VERIFY(m_nanoseconds < 1'000'000'000);
 | |
|     VERIFY(other.m_nanoseconds < 1'000'000'000);
 | |
| 
 | |
|     u32 new_nsecs = m_nanoseconds + other.m_nanoseconds;
 | |
|     u32 extra_secs = new_nsecs / 1'000'000'000;
 | |
|     new_nsecs %= 1'000'000'000;
 | |
| 
 | |
|     i64 this_secs = m_seconds;
 | |
|     i64 other_secs = other.m_seconds;
 | |
|     // We would like to just add "this_secs + other_secs + extra_secs".
 | |
|     // However, computing this naively may overflow even though the result is in-bounds.
 | |
|     // Example in 8-bit: (-127) + (-2) + (+1) = (-128), which fits in an i8.
 | |
|     // Example in 8-bit, the other way around: (-2) + (127) + (+1) = 126.
 | |
|     // So we do something more sophisticated:
 | |
|     if (extra_secs) {
 | |
|         VERIFY(extra_secs == 1);
 | |
|         if (this_secs != 0x7fff'ffff'ffff'ffff) {
 | |
|             this_secs += 1;
 | |
|         } else if (other_secs != 0x7fff'ffff'ffff'ffff) {
 | |
|             other_secs += 1;
 | |
|         } else {
 | |
|             /* If *both* are INT64_MAX, then adding them will overflow in any case. */
 | |
|             return Time::max();
 | |
|         }
 | |
|         extra_secs = 0;
 | |
|     }
 | |
| 
 | |
|     Checked<i64> new_secs { this_secs };
 | |
|     new_secs += other_secs;
 | |
|     if (new_secs.has_overflow()) {
 | |
|         if (other_secs > 0)
 | |
|             return Time::max();
 | |
|         else
 | |
|             return Time::min();
 | |
|     }
 | |
| 
 | |
|     return Time { new_secs.value(), new_nsecs };
 | |
| }
 | |
| 
 | |
| Time& Time::operator+=(const Time& other)
 | |
| {
 | |
|     *this = *this + other;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| Time Time::operator-(const Time& other) const
 | |
| {
 | |
|     VERIFY(m_nanoseconds < 1'000'000'000);
 | |
|     VERIFY(other.m_nanoseconds < 1'000'000'000);
 | |
| 
 | |
|     if (other.m_nanoseconds)
 | |
|         return *this + Time((i64) ~(u64)other.m_seconds, 1'000'000'000 - other.m_nanoseconds);
 | |
| 
 | |
|     if (other.m_seconds != (i64)-0x8000'0000'0000'0000)
 | |
|         return *this + Time(-other.m_seconds, 0);
 | |
| 
 | |
|     // Only remaining case: We want to subtract -0x8000'0000'0000'0000 seconds,
 | |
|     // i.e. add a very large number.
 | |
| 
 | |
|     if (m_seconds >= 0)
 | |
|         return Time::max();
 | |
|     return Time { (m_seconds + 0x4000'0000'0000'0000) + 0x4000'0000'0000'0000, m_nanoseconds };
 | |
| }
 | |
| 
 | |
| Time& Time::operator-=(const Time& other)
 | |
| {
 | |
|     *this = *this - other;
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| bool Time::operator<(const Time& other) const
 | |
| {
 | |
|     return m_seconds < other.m_seconds || (m_seconds == other.m_seconds && m_nanoseconds < other.m_nanoseconds);
 | |
| }
 | |
| bool Time::operator<=(const Time& other) const
 | |
| {
 | |
|     return m_seconds < other.m_seconds || (m_seconds == other.m_seconds && m_nanoseconds <= other.m_nanoseconds);
 | |
| }
 | |
| bool Time::operator>(const Time& other) const
 | |
| {
 | |
|     return m_seconds > other.m_seconds || (m_seconds == other.m_seconds && m_nanoseconds > other.m_nanoseconds);
 | |
| }
 | |
| bool Time::operator>=(const Time& other) const
 | |
| {
 | |
|     return m_seconds > other.m_seconds || (m_seconds == other.m_seconds && m_nanoseconds >= other.m_nanoseconds);
 | |
| }
 | |
| 
 | |
| Time Time::from_half_sanitized(i64 seconds, i32 extra_seconds, u32 nanoseconds)
 | |
| {
 | |
|     VERIFY(nanoseconds < 1'000'000'000);
 | |
| 
 | |
|     if ((seconds <= 0 && extra_seconds > 0) || (seconds >= 0 && extra_seconds < 0)) {
 | |
|         // Opposite signs mean that we can definitely add them together without fear of overflowing i64:
 | |
|         seconds += extra_seconds;
 | |
|         extra_seconds = 0;
 | |
|     }
 | |
| 
 | |
|     // Now the only possible way to become invalid is overflowing i64 towards positive infinity:
 | |
|     if (Checked<i64>::addition_would_overflow<i64, i64>(seconds, extra_seconds)) {
 | |
|         if (seconds < 0) {
 | |
|             return Time::min();
 | |
|         } else {
 | |
|             return Time::max();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return Time { seconds + extra_seconds, nanoseconds };
 | |
| }
 | |
| 
 | |
| }
 |