1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-18 18:35:06 +00:00
serenity/Libraries/LibWeb/TreeNode.h
Andreas Kling f79e28bd65 LibWeb: Break reference cycles so DOM::Document actually gets deleted
When a document reaches ref_count==0, we will now remove all of the
descendant nodes from the document, and also break all the explicit
links (such as the currently hovered element.)

Basically, DOM nodes will keep the document alive even after the
document reaches ref_count==0. This allows JS wrappers to stay alive
and keep the document alive as well. This matches the behavior of
at least some other browsers.

This patch also adds a bunch of sanity checking assertions around
DOM teardown, to help catch mistakes in the future.

Fixes #3771.
2020-10-22 23:41:32 +02:00

410 lines
12 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Assertions.h>
#include <AK/NonnullRefPtr.h>
#include <AK/TypeCasts.h>
#include <AK/Weakable.h>
#include <LibWeb/Forward.h>
namespace Web {
template<typename T>
class TreeNode : public Weakable<T> {
public:
void ref()
{
ASSERT(!m_in_removed_last_ref);
ASSERT(m_ref_count);
++m_ref_count;
}
void unref()
{
ASSERT(!m_in_removed_last_ref);
ASSERT(m_ref_count);
if (!--m_ref_count) {
if constexpr (IsBaseOf<DOM::Node, T>::value) {
m_in_removed_last_ref = true;
static_cast<T*>(this)->removed_last_ref();
} else {
delete static_cast<T*>(this);
}
return;
}
}
int ref_count() const { return m_ref_count; }
T* parent() { return m_parent; }
const T* parent() const { return m_parent; }
bool has_children() const { return m_first_child; }
T* next_sibling() { return m_next_sibling; }
T* previous_sibling() { return m_previous_sibling; }
T* first_child() { return m_first_child; }
T* last_child() { return m_last_child; }
const T* next_sibling() const { return m_next_sibling; }
const T* previous_sibling() const { return m_previous_sibling; }
const T* first_child() const { return m_first_child; }
const T* last_child() const { return m_last_child; }
int child_count() const
{
int count = 0;
for (auto* child = first_child(); child; child = child->next_sibling())
++count;
return count;
}
T* child_at_index(int index)
{
int count = 0;
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (count == index)
return child;
++count;
}
return nullptr;
}
const T* child_at_index(int index) const
{
return const_cast<TreeNode*>(this)->child_at_index(index);
}
bool is_ancestor_of(const TreeNode&) const;
void prepend_child(NonnullRefPtr<T> node);
void append_child(NonnullRefPtr<T> node, bool notify = true);
void insert_before(NonnullRefPtr<T> node, RefPtr<T> child, bool notify = true);
NonnullRefPtr<T> remove_child(NonnullRefPtr<T> node);
bool is_child_allowed(const T&) const { return true; }
T* next_in_pre_order()
{
if (first_child())
return first_child();
T* node;
if (!(node = next_sibling())) {
node = parent();
while (node && !node->next_sibling())
node = node->parent();
if (node)
node = node->next_sibling();
}
return node;
}
const T* next_in_pre_order() const
{
return const_cast<TreeNode*>(this)->next_in_pre_order();
}
bool is_before(const T& other) const
{
if (this == &other)
return false;
for (auto* node = this; node; node = node->next_in_pre_order()) {
if (node == &other)
return true;
}
return false;
}
template<typename Callback>
IterationDecision for_each_in_subtree(Callback callback) const
{
if (callback(static_cast<const T&>(*this)) == IterationDecision::Break)
return IterationDecision::Break;
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (child->for_each_in_subtree(callback) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<typename Callback>
IterationDecision for_each_in_subtree(Callback callback)
{
if (callback(static_cast<T&>(*this)) == IterationDecision::Break)
return IterationDecision::Break;
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (child->for_each_in_subtree(callback) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<typename U, typename Callback>
IterationDecision for_each_in_subtree_of_type(Callback callback)
{
if (is<U>(static_cast<const T&>(*this))) {
if (callback(static_cast<U&>(*this)) == IterationDecision::Break)
return IterationDecision::Break;
}
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (child->template for_each_in_subtree_of_type<U>(callback) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<typename U, typename Callback>
IterationDecision for_each_in_subtree_of_type(Callback callback) const
{
if (is<U>(static_cast<const T&>(*this))) {
if (callback(static_cast<const U&>(*this)) == IterationDecision::Break)
return IterationDecision::Break;
}
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (child->template for_each_in_subtree_of_type<U>(callback) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<typename Callback>
void for_each_child(Callback callback) const
{
return const_cast<TreeNode*>(this)->template for_each_child(move(callback));
}
template<typename Callback>
void for_each_child(Callback callback)
{
for (auto* node = first_child(); node; node = node->next_sibling())
callback(*node);
}
template<typename U, typename Callback>
void for_each_child_of_type(Callback callback)
{
for (auto* node = first_child(); node; node = node->next_sibling()) {
if (is<U>(node))
callback(downcast<U>(*node));
}
}
template<typename U, typename Callback>
void for_each_child_of_type(Callback callback) const
{
return const_cast<TreeNode*>(this)->template for_each_child_of_type<U>(move(callback));
}
template<typename U>
const U* next_sibling_of_type() const
{
return const_cast<TreeNode*>(this)->template next_sibling_of_type<U>();
}
template<typename U>
inline U* next_sibling_of_type()
{
for (auto* sibling = next_sibling(); sibling; sibling = sibling->next_sibling()) {
if (is<U>(*sibling))
return &downcast<U>(*sibling);
}
return nullptr;
}
template<typename U>
const U* previous_sibling_of_type() const
{
return const_cast<TreeNode*>(this)->template previous_sibling_of_type<U>();
}
template<typename U>
U* previous_sibling_of_type()
{
for (auto* sibling = previous_sibling(); sibling; sibling = sibling->previous_sibling()) {
if (is<U>(*sibling))
return &downcast<U>(*sibling);
}
return nullptr;
}
template<typename U>
const U* first_child_of_type() const
{
return const_cast<TreeNode*>(this)->template first_child_of_type<U>();
}
template<typename U>
U* first_child_of_type()
{
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (is<U>(*child))
return &downcast<U>(*child);
}
return nullptr;
}
template<typename U>
const U* first_ancestor_of_type() const
{
return const_cast<TreeNode*>(this)->template first_ancestor_of_type<U>();
}
template<typename U>
U* first_ancestor_of_type()
{
for (auto* ancestor = parent(); ancestor; ancestor = ancestor->parent()) {
if (is<U>(*ancestor))
return &downcast<U>(*ancestor);
}
return nullptr;
}
protected:
TreeNode() { }
bool m_deletion_has_begun { false };
bool m_in_removed_last_ref { false };
private:
int m_ref_count { 1 };
T* m_parent { nullptr };
T* m_first_child { nullptr };
T* m_last_child { nullptr };
T* m_next_sibling { nullptr };
T* m_previous_sibling { nullptr };
};
template<typename T>
inline NonnullRefPtr<T> TreeNode<T>::remove_child(NonnullRefPtr<T> node)
{
ASSERT(node->m_parent == this);
if (m_first_child == node)
m_first_child = node->m_next_sibling;
if (m_last_child == node)
m_last_child = node->m_previous_sibling;
if (node->m_next_sibling)
node->m_next_sibling->m_previous_sibling = node->m_previous_sibling;
if (node->m_previous_sibling)
node->m_previous_sibling->m_next_sibling = node->m_next_sibling;
node->m_next_sibling = nullptr;
node->m_previous_sibling = nullptr;
node->m_parent = nullptr;
node->removed_from(static_cast<T&>(*this));
node->unref();
static_cast<T*>(this)->children_changed();
return node;
}
template<typename T>
inline void TreeNode<T>::append_child(NonnullRefPtr<T> node, bool notify)
{
ASSERT(!node->m_parent);
if (!static_cast<T*>(this)->is_child_allowed(*node))
return;
if (m_last_child)
m_last_child->m_next_sibling = node.ptr();
node->m_previous_sibling = m_last_child;
node->m_parent = static_cast<T*>(this);
m_last_child = node.ptr();
if (!m_first_child)
m_first_child = m_last_child;
if (notify)
node->inserted_into(static_cast<T&>(*this));
(void)node.leak_ref();
if (notify)
static_cast<T*>(this)->children_changed();
}
template<typename T>
inline void TreeNode<T>::insert_before(NonnullRefPtr<T> node, RefPtr<T> child, bool notify)
{
if (!child)
return append_child(move(node), notify);
ASSERT(!node->m_parent);
ASSERT(child->parent() == this);
if (!static_cast<T*>(this)->is_child_allowed(*node))
return;
node->m_previous_sibling = child->m_previous_sibling;
node->m_next_sibling = child;
if (m_first_child == child)
m_first_child = node;
node->m_parent = static_cast<T*>(this);
if (notify)
node->inserted_into(static_cast<T&>(*this));
(void)node.leak_ref();
if (notify)
static_cast<T*>(this)->children_changed();
}
template<typename T>
inline void TreeNode<T>::prepend_child(NonnullRefPtr<T> node)
{
ASSERT(!node->m_parent);
if (!static_cast<T*>(this)->is_child_allowed(*node))
return;
if (m_first_child)
m_first_child->m_previous_sibling = node.ptr();
node->m_next_sibling = m_first_child;
node->m_parent = static_cast<T*>(this);
m_first_child = node.ptr();
if (!m_last_child)
m_last_child = m_first_child;
node->inserted_into(static_cast<T&>(*this));
(void)node.leak_ref();
static_cast<T*>(this)->children_changed();
}
template<typename T>
inline bool TreeNode<T>::is_ancestor_of(const TreeNode<T>& other) const
{
for (auto* ancestor = other.parent(); ancestor; ancestor = ancestor->parent()) {
if (ancestor == this)
return true;
}
return false;
}
}