mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 12:32:43 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			90 lines
		
	
	
	
		
			3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			90 lines
		
	
	
	
		
			3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2023, Nico Weber <thakis@chromium.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/Format.h>
 | |
| #include <AK/Math.h>
 | |
| #include <LibGfx/DeltaE.h>
 | |
| #include <math.h>
 | |
| 
 | |
| namespace Gfx {
 | |
| 
 | |
| float DeltaE(CIELAB const& c1, CIELAB const& c2)
 | |
| {
 | |
|     // https://en.wikipedia.org/wiki/Color_difference#CIEDE2000
 | |
|     // http://zschuessler.github.io/DeltaE/learn/
 | |
|     // https://www.hajim.rochester.edu/ece/sites/gsharma/ciede2000/ciede2000noteCRNA.pdf
 | |
| 
 | |
|     float delta_L_prime = c2.L - c1.L;
 | |
|     float L_bar = (c1.L + c2.L) / 2;
 | |
| 
 | |
|     float C1 = hypotf(c1.a, c1.b);
 | |
|     float C2 = hypotf(c2.a, c2.b);
 | |
|     float C_bar = (C1 + C2) / 2;
 | |
| 
 | |
|     float G = 0.5f * (1 - sqrtf(powf(C_bar, 7) / (powf(C_bar, 7) + powf(25, 7))));
 | |
|     float a1_prime = (1 + G) * c1.a;
 | |
|     float a2_prime = (1 + G) * c2.a;
 | |
| 
 | |
|     float C1_prime = hypotf(a1_prime, c1.b);
 | |
|     float C2_prime = hypotf(a2_prime, c2.b);
 | |
| 
 | |
|     float C_prime_bar = (C1_prime + C2_prime) / 2;
 | |
|     float delta_C_prime = C2_prime - C1_prime;
 | |
| 
 | |
|     auto h_prime = [](float b, float a_prime) {
 | |
|         if (b == 0 && a_prime == 0)
 | |
|             return 0.f;
 | |
|         float h_prime = atan2(b, a_prime);
 | |
|         if (h_prime < 0)
 | |
|             h_prime += 2 * static_cast<float>(M_PI);
 | |
|         return AK::to_degrees(h_prime);
 | |
|     };
 | |
|     float h1_prime = h_prime(c1.b, a1_prime);
 | |
|     float h2_prime = h_prime(c2.b, a2_prime);
 | |
| 
 | |
|     float delta_h_prime;
 | |
|     if (C1_prime == 0 || C2_prime == 0)
 | |
|         delta_h_prime = 0;
 | |
|     else if (fabsf(h1_prime - h2_prime) <= 180.f)
 | |
|         delta_h_prime = h2_prime - h1_prime;
 | |
|     else if (h2_prime <= h1_prime)
 | |
|         delta_h_prime = h2_prime - h1_prime + 360;
 | |
|     else
 | |
|         delta_h_prime = h2_prime - h1_prime - 360;
 | |
| 
 | |
|     auto sin_degrees = [](float x) { return sinf(AK::to_radians(x)); };
 | |
|     auto cos_degrees = [](float x) { return cosf(AK::to_radians(x)); };
 | |
| 
 | |
|     float delta_H_prime = 2 * sqrtf(C1_prime * C2_prime) * sin_degrees(delta_h_prime / 2);
 | |
| 
 | |
|     float h_prime_bar;
 | |
|     if (C1_prime == 0 || C2_prime == 0)
 | |
|         h_prime_bar = h1_prime + h2_prime;
 | |
|     else if (fabsf(h1_prime - h2_prime) <= 180.f)
 | |
|         h_prime_bar = (h1_prime + h2_prime) / 2;
 | |
|     else if (h1_prime + h2_prime < 360)
 | |
|         h_prime_bar = (h1_prime + h2_prime + 360) / 2;
 | |
|     else
 | |
|         h_prime_bar = (h1_prime + h2_prime - 360) / 2;
 | |
| 
 | |
|     float T = 1 - 0.17f * cos_degrees(h_prime_bar - 30) + 0.24f * cos_degrees(2 * h_prime_bar) + 0.32f * cos_degrees(3 * h_prime_bar + 6) - 0.2f * cos_degrees(4 * h_prime_bar - 63);
 | |
| 
 | |
|     float S_L = 1 + 0.015f * powf(L_bar - 50, 2) / sqrtf(20 + powf(L_bar - 50, 2));
 | |
|     float S_C = 1 + 0.045f * C_prime_bar;
 | |
|     float S_H = 1 + 0.015f * C_prime_bar * T;
 | |
| 
 | |
|     float R_T = -2 * sqrtf(powf(C_prime_bar, 7) / (powf(C_prime_bar, 7) + powf(25, 7))) * sin_degrees(60 * exp(-powf((h_prime_bar - 275) / 25, 2)));
 | |
| 
 | |
|     // "kL, kC, and kH are usually unity."
 | |
|     float k_L = 1, k_C = 1, k_H = 1;
 | |
| 
 | |
|     float L = delta_L_prime / (k_L * S_L);
 | |
|     float C = delta_C_prime / (k_C * S_C);
 | |
|     float H = delta_H_prime / (k_H * S_H);
 | |
|     return sqrtf(powf(L, 2) + powf(C, 2) + powf(H, 2) + R_T * C * H);
 | |
| }
 | |
| 
 | |
| }
 | 
