mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 14:52:43 +00:00 
			
		
		
		
	 efdbd8238e
			
		
	
	
		efdbd8238e
		
	
	
	
	
		
			
			This change separates a part of the `draw_text_run()` function, which is responsible for calculating the positions for glyphs that need to be painted, into a separate function called `get_glyph_run()`. It is a part of the preparation for text run painting using OpenGL, where we can't immediately blit glyph bitmaps but instead need to prepare a sequence of quads for them in advance.
		
			
				
	
	
		
			584 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			584 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/Function.h>
 | |
| #include <AK/HashTable.h>
 | |
| #include <AK/Math.h>
 | |
| #include <AK/QuickSort.h>
 | |
| #include <AK/StringBuilder.h>
 | |
| #include <AK/TypeCasts.h>
 | |
| #include <LibGfx/Font/ScaledFont.h>
 | |
| #include <LibGfx/Painter.h>
 | |
| #include <LibGfx/Path.h>
 | |
| #include <LibGfx/TextLayout.h>
 | |
| 
 | |
| namespace Gfx {
 | |
| 
 | |
| void Path::approximate_elliptical_arc_with_cubic_beziers(FloatPoint center, FloatSize radii, float x_axis_rotation, float theta, float theta_delta)
 | |
| {
 | |
|     float sin_x_rotation;
 | |
|     float cos_x_rotation;
 | |
|     AK::sincos(x_axis_rotation, sin_x_rotation, cos_x_rotation);
 | |
|     auto arc_point_and_derivative = [&](float t, FloatPoint& point, FloatPoint& derivative) {
 | |
|         float sin_angle;
 | |
|         float cos_angle;
 | |
|         AK::sincos(t, sin_angle, cos_angle);
 | |
|         point = FloatPoint {
 | |
|             center.x()
 | |
|                 + radii.width() * cos_x_rotation * cos_angle
 | |
|                 - radii.height() * sin_x_rotation * sin_angle,
 | |
|             center.y()
 | |
|                 + radii.width() * sin_x_rotation * cos_angle
 | |
|                 + radii.height() * cos_x_rotation * sin_angle,
 | |
|         };
 | |
|         derivative = FloatPoint {
 | |
|             -radii.width() * cos_x_rotation * sin_angle
 | |
|                 - radii.height() * sin_x_rotation * cos_angle,
 | |
|             -radii.width() * sin_x_rotation * sin_angle
 | |
|                 + radii.height() * cos_x_rotation * cos_angle,
 | |
|         };
 | |
|     };
 | |
|     auto approximate_arc_between = [&](float start_angle, float end_angle) {
 | |
|         auto t = AK::tan((end_angle - start_angle) / 2);
 | |
|         auto alpha = AK::sin(end_angle - start_angle) * ((AK::sqrt(4 + 3 * t * t) - 1) / 3);
 | |
|         FloatPoint p1, d1;
 | |
|         FloatPoint p2, d2;
 | |
|         arc_point_and_derivative(start_angle, p1, d1);
 | |
|         arc_point_and_derivative(end_angle, p2, d2);
 | |
|         auto q1 = p1 + d1.scaled(alpha, alpha);
 | |
|         auto q2 = p2 - d2.scaled(alpha, alpha);
 | |
|         cubic_bezier_curve_to(q1, q2, p2);
 | |
|     };
 | |
|     // FIXME: Come up with a more mathematically sound step size (using some error calculation).
 | |
|     auto step = theta_delta;
 | |
|     int step_count = 1;
 | |
|     while (fabs(step) > AK::Pi<float> / 4) {
 | |
|         step /= 2;
 | |
|         step_count *= 2;
 | |
|     }
 | |
|     float prev = theta;
 | |
|     float t = prev + step;
 | |
|     for (int i = 0; i < step_count; i++, prev = t, t += step)
 | |
|         approximate_arc_between(prev, t);
 | |
| }
 | |
| 
 | |
| void Path::elliptical_arc_to(FloatPoint point, FloatSize radii, float x_axis_rotation, bool large_arc, bool sweep)
 | |
| {
 | |
|     auto next_point = point;
 | |
| 
 | |
|     double rx = radii.width();
 | |
|     double ry = radii.height();
 | |
| 
 | |
|     double x_axis_rotation_s;
 | |
|     double x_axis_rotation_c;
 | |
|     AK::sincos(static_cast<double>(x_axis_rotation), x_axis_rotation_s, x_axis_rotation_c);
 | |
|     FloatPoint last_point = this->last_point();
 | |
| 
 | |
|     // Step 1 of out-of-range radii correction
 | |
|     if (rx == 0.0 || ry == 0.0) {
 | |
|         append_segment<LineSegment>(next_point);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Step 2 of out-of-range radii correction
 | |
|     if (rx < 0)
 | |
|         rx *= -1.0;
 | |
|     if (ry < 0)
 | |
|         ry *= -1.0;
 | |
| 
 | |
|     // POSSIBLY HACK: Handle the case where both points are the same.
 | |
|     auto same_endpoints = next_point == last_point;
 | |
|     if (same_endpoints) {
 | |
|         if (!large_arc) {
 | |
|             // Nothing is going to be drawn anyway.
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         // Move the endpoint by a small amount to avoid division by zero.
 | |
|         next_point.translate_by(0.01f, 0.01f);
 | |
|     }
 | |
| 
 | |
|     // Find (cx, cy), theta_1, theta_delta
 | |
|     // Step 1: Compute (x1', y1')
 | |
|     auto x_avg = static_cast<double>(last_point.x() - next_point.x()) / 2.0;
 | |
|     auto y_avg = static_cast<double>(last_point.y() - next_point.y()) / 2.0;
 | |
|     auto x1p = x_axis_rotation_c * x_avg + x_axis_rotation_s * y_avg;
 | |
|     auto y1p = -x_axis_rotation_s * x_avg + x_axis_rotation_c * y_avg;
 | |
| 
 | |
|     // Step 2: Compute (cx', cy')
 | |
|     double x1p_sq = x1p * x1p;
 | |
|     double y1p_sq = y1p * y1p;
 | |
|     double rx_sq = rx * rx;
 | |
|     double ry_sq = ry * ry;
 | |
| 
 | |
|     // Step 3 of out-of-range radii correction
 | |
|     double lambda = x1p_sq / rx_sq + y1p_sq / ry_sq;
 | |
|     double multiplier;
 | |
| 
 | |
|     if (lambda > 1.0) {
 | |
|         auto lambda_sqrt = AK::sqrt(lambda);
 | |
|         rx *= lambda_sqrt;
 | |
|         ry *= lambda_sqrt;
 | |
|         multiplier = 0.0;
 | |
|     } else {
 | |
|         double numerator = rx_sq * ry_sq - rx_sq * y1p_sq - ry_sq * x1p_sq;
 | |
|         double denominator = rx_sq * y1p_sq + ry_sq * x1p_sq;
 | |
|         multiplier = AK::sqrt(numerator / denominator);
 | |
|     }
 | |
| 
 | |
|     if (large_arc == sweep)
 | |
|         multiplier *= -1.0;
 | |
| 
 | |
|     double cxp = multiplier * rx * y1p / ry;
 | |
|     double cyp = multiplier * -ry * x1p / rx;
 | |
| 
 | |
|     // Step 3: Compute (cx, cy) from (cx', cy')
 | |
|     x_avg = (last_point.x() + next_point.x()) / 2.0f;
 | |
|     y_avg = (last_point.y() + next_point.y()) / 2.0f;
 | |
|     double cx = x_axis_rotation_c * cxp - x_axis_rotation_s * cyp + x_avg;
 | |
|     double cy = x_axis_rotation_s * cxp + x_axis_rotation_c * cyp + y_avg;
 | |
| 
 | |
|     double theta_1 = AK::atan2((y1p - cyp) / ry, (x1p - cxp) / rx);
 | |
|     double theta_2 = AK::atan2((-y1p - cyp) / ry, (-x1p - cxp) / rx);
 | |
| 
 | |
|     auto theta_delta = theta_2 - theta_1;
 | |
| 
 | |
|     if (!sweep && theta_delta > 0.0) {
 | |
|         theta_delta -= 2 * AK::Pi<double>;
 | |
|     } else if (sweep && theta_delta < 0) {
 | |
|         theta_delta += 2 * AK::Pi<double>;
 | |
|     }
 | |
| 
 | |
|     approximate_elliptical_arc_with_cubic_beziers(
 | |
|         { cx, cy },
 | |
|         { rx, ry },
 | |
|         x_axis_rotation,
 | |
|         theta_1,
 | |
|         theta_delta);
 | |
| }
 | |
| 
 | |
| void Path::text(Utf8View text, Font const& font)
 | |
| {
 | |
|     if (!is<ScaledFont>(font)) {
 | |
|         // FIXME: This API only accepts Gfx::Font for ease of use.
 | |
|         dbgln("Cannot path-ify bitmap fonts!");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     auto& scaled_font = static_cast<ScaledFont const&>(font);
 | |
|     for_each_glyph_position(
 | |
|         last_point(), text, font, [&](DrawGlyphOrEmoji glyph_or_emoji) {
 | |
|             if (glyph_or_emoji.has<DrawGlyph>()) {
 | |
|                 auto& glyph = glyph_or_emoji.get<DrawGlyph>();
 | |
|                 move_to(glyph.position);
 | |
|                 auto glyph_id = scaled_font.glyph_id_for_code_point(glyph.code_point);
 | |
|                 scaled_font.append_glyph_path_to(*this, glyph_id);
 | |
|             }
 | |
|         },
 | |
|         IncludeLeftBearing::Yes);
 | |
| }
 | |
| 
 | |
| FloatPoint Path::last_point()
 | |
| {
 | |
|     FloatPoint last_point { 0, 0 };
 | |
|     if (!m_segments.is_empty())
 | |
|         last_point = m_segments.last()->point();
 | |
|     return last_point;
 | |
| }
 | |
| 
 | |
| void Path::close()
 | |
| {
 | |
|     if (m_segments.size() <= 1)
 | |
|         return;
 | |
| 
 | |
|     auto last_point = m_segments.last()->point();
 | |
| 
 | |
|     for (ssize_t i = m_segments.size() - 1; i >= 0; --i) {
 | |
|         auto& segment = m_segments[i];
 | |
|         if (segment->type() == Segment::Type::MoveTo) {
 | |
|             if (last_point == segment->point())
 | |
|                 return;
 | |
|             append_segment<LineSegment>(segment->point());
 | |
|             invalidate_split_lines();
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Path::close_all_subpaths()
 | |
| {
 | |
|     if (m_segments.size() <= 1)
 | |
|         return;
 | |
| 
 | |
|     invalidate_split_lines();
 | |
| 
 | |
|     Optional<FloatPoint> cursor, start_of_subpath;
 | |
|     bool is_first_point_in_subpath { false };
 | |
| 
 | |
|     auto close_previous_subpath = [&] {
 | |
|         if (cursor.has_value() && !is_first_point_in_subpath) {
 | |
|             // This is a move from a subpath to another
 | |
|             // connect the two ends of this subpath before
 | |
|             // moving on to the next one
 | |
|             VERIFY(start_of_subpath.has_value());
 | |
| 
 | |
|             append_segment<MoveSegment>(cursor.value());
 | |
|             append_segment<LineSegment>(start_of_subpath.value());
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     auto segment_count = m_segments.size();
 | |
|     for (size_t i = 0; i < segment_count; i++) {
 | |
|         // Note: We need to use m_segments[i] as append_segment() may invalidate any references.
 | |
|         switch (m_segments[i]->type()) {
 | |
|         case Segment::Type::MoveTo: {
 | |
|             close_previous_subpath();
 | |
|             is_first_point_in_subpath = true;
 | |
|             cursor = m_segments[i]->point();
 | |
|             break;
 | |
|         }
 | |
|         case Segment::Type::LineTo:
 | |
|         case Segment::Type::QuadraticBezierCurveTo:
 | |
|         case Segment::Type::CubicBezierCurveTo:
 | |
|             if (is_first_point_in_subpath) {
 | |
|                 start_of_subpath = cursor;
 | |
|                 is_first_point_in_subpath = false;
 | |
|             }
 | |
|             cursor = m_segments[i]->point();
 | |
|             break;
 | |
|         case Segment::Type::Invalid:
 | |
|             VERIFY_NOT_REACHED();
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (m_segments.last()->type() != Segment::Type::MoveTo)
 | |
|         close_previous_subpath();
 | |
| }
 | |
| 
 | |
| DeprecatedString Path::to_deprecated_string() const
 | |
| {
 | |
|     StringBuilder builder;
 | |
|     builder.append("Path { "sv);
 | |
|     for (auto& segment : m_segments) {
 | |
|         switch (segment->type()) {
 | |
|         case Segment::Type::MoveTo:
 | |
|             builder.append("MoveTo"sv);
 | |
|             break;
 | |
|         case Segment::Type::LineTo:
 | |
|             builder.append("LineTo"sv);
 | |
|             break;
 | |
|         case Segment::Type::QuadraticBezierCurveTo:
 | |
|             builder.append("QuadraticBezierCurveTo"sv);
 | |
|             break;
 | |
|         case Segment::Type::CubicBezierCurveTo:
 | |
|             builder.append("CubicBezierCurveTo"sv);
 | |
|             break;
 | |
|         case Segment::Type::Invalid:
 | |
|             builder.append("Invalid"sv);
 | |
|             break;
 | |
|         }
 | |
|         builder.appendff("({}", segment->point());
 | |
| 
 | |
|         switch (segment->type()) {
 | |
|         case Segment::Type::QuadraticBezierCurveTo:
 | |
|             builder.append(", "sv);
 | |
|             builder.append(static_cast<QuadraticBezierCurveSegment const&>(*segment).through().to_deprecated_string());
 | |
|             break;
 | |
|         case Segment::Type::CubicBezierCurveTo:
 | |
|             builder.append(", "sv);
 | |
|             builder.append(static_cast<CubicBezierCurveSegment const&>(*segment).through_0().to_deprecated_string());
 | |
|             builder.append(", "sv);
 | |
|             builder.append(static_cast<CubicBezierCurveSegment const&>(*segment).through_1().to_deprecated_string());
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         builder.append(") "sv);
 | |
|     }
 | |
|     builder.append('}');
 | |
|     return builder.to_deprecated_string();
 | |
| }
 | |
| 
 | |
| void Path::segmentize_path()
 | |
| {
 | |
|     Vector<FloatLine> segments;
 | |
|     float min_x = 0;
 | |
|     float min_y = 0;
 | |
|     float max_x = 0;
 | |
|     float max_y = 0;
 | |
| 
 | |
|     bool first = true;
 | |
|     auto add_point_to_bbox = [&](Gfx::FloatPoint point) {
 | |
|         float x = point.x();
 | |
|         float y = point.y();
 | |
|         if (first) {
 | |
|             min_x = max_x = x;
 | |
|             min_y = max_y = y;
 | |
|             first = false;
 | |
|         } else {
 | |
|             min_x = min(min_x, x);
 | |
|             min_y = min(min_y, y);
 | |
|             max_x = max(max_x, x);
 | |
|             max_y = max(max_y, y);
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     auto add_line = [&](auto const& p0, auto const& p1) {
 | |
|         segments.append({ p0, p1 });
 | |
|         add_point_to_bbox(p1);
 | |
|     };
 | |
| 
 | |
|     FloatPoint cursor { 0, 0 };
 | |
|     for (auto& segment : m_segments) {
 | |
|         switch (segment->type()) {
 | |
|         case Segment::Type::MoveTo:
 | |
|             add_point_to_bbox(segment->point());
 | |
|             cursor = segment->point();
 | |
|             break;
 | |
|         case Segment::Type::LineTo: {
 | |
|             add_line(cursor, segment->point());
 | |
|             cursor = segment->point();
 | |
|             break;
 | |
|         }
 | |
|         case Segment::Type::QuadraticBezierCurveTo: {
 | |
|             auto control = static_cast<QuadraticBezierCurveSegment const&>(*segment).through();
 | |
|             Painter::for_each_line_segment_on_bezier_curve(control, cursor, segment->point(), [&](FloatPoint p0, FloatPoint p1) {
 | |
|                 add_line(p0, p1);
 | |
|             });
 | |
|             cursor = segment->point();
 | |
|             break;
 | |
|         }
 | |
|         case Segment::Type::CubicBezierCurveTo: {
 | |
|             auto& curve = static_cast<CubicBezierCurveSegment const&>(*segment);
 | |
|             auto control_0 = curve.through_0();
 | |
|             auto control_1 = curve.through_1();
 | |
|             Painter::for_each_line_segment_on_cubic_bezier_curve(control_0, control_1, cursor, segment->point(), [&](FloatPoint p0, FloatPoint p1) {
 | |
|                 add_line(p0, p1);
 | |
|             });
 | |
|             cursor = segment->point();
 | |
|             break;
 | |
|         }
 | |
|         case Segment::Type::Invalid:
 | |
|             VERIFY_NOT_REACHED();
 | |
|         }
 | |
| 
 | |
|         first = false;
 | |
|     }
 | |
| 
 | |
|     m_split_lines = move(segments);
 | |
|     m_bounding_box = Gfx::FloatRect { min_x, min_y, max_x - min_x, max_y - min_y };
 | |
| }
 | |
| 
 | |
| Path Path::copy_transformed(Gfx::AffineTransform const& transform) const
 | |
| {
 | |
|     Path result;
 | |
| 
 | |
|     for (auto const& segment : m_segments) {
 | |
|         switch (segment->type()) {
 | |
|         case Segment::Type::MoveTo:
 | |
|             result.move_to(transform.map(segment->point()));
 | |
|             break;
 | |
|         case Segment::Type::LineTo: {
 | |
|             result.line_to(transform.map(segment->point()));
 | |
|             break;
 | |
|         }
 | |
|         case Segment::Type::QuadraticBezierCurveTo: {
 | |
|             auto const& quadratic_segment = static_cast<QuadraticBezierCurveSegment const&>(*segment);
 | |
|             result.quadratic_bezier_curve_to(transform.map(quadratic_segment.through()), transform.map(segment->point()));
 | |
|             break;
 | |
|         }
 | |
|         case Segment::Type::CubicBezierCurveTo: {
 | |
|             auto const& cubic_segment = static_cast<CubicBezierCurveSegment const&>(*segment);
 | |
|             result.cubic_bezier_curve_to(transform.map(cubic_segment.through_0()), transform.map(cubic_segment.through_1()), transform.map(segment->point()));
 | |
|             break;
 | |
|         }
 | |
|         case Segment::Type::Invalid:
 | |
|             VERIFY_NOT_REACHED();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| void Path::add_path(Path const& other)
 | |
| {
 | |
|     m_segments.extend(other.m_segments);
 | |
|     invalidate_split_lines();
 | |
| }
 | |
| 
 | |
| void Path::ensure_subpath(FloatPoint point)
 | |
| {
 | |
|     if (m_need_new_subpath && m_segments.is_empty()) {
 | |
|         move_to(point);
 | |
|         m_need_new_subpath = false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| struct RoundTrip {
 | |
|     RoundTrip(ReadonlySpan<T> span)
 | |
|         : m_span(span)
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     size_t size() const
 | |
|     {
 | |
|         return m_span.size() * 2 - 1;
 | |
|     }
 | |
| 
 | |
|     T const& operator[](size_t index) const
 | |
|     {
 | |
|         // Follow the path:
 | |
|         if (index < m_span.size())
 | |
|             return m_span[index];
 | |
|         // Then in reverse:
 | |
|         if (index < size())
 | |
|             return m_span[size() - index - 1];
 | |
|         // Then wrap around again:
 | |
|         return m_span[index - size() + 1];
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     ReadonlySpan<T> m_span;
 | |
| };
 | |
| 
 | |
| Path Path::stroke_to_fill(float thickness) const
 | |
| {
 | |
|     // Note: This convolves a polygon with the path using the algorithm described
 | |
|     // in https://keithp.com/~keithp/talks/cairo2003.pdf (3.1 Stroking Splines via Convolution)
 | |
| 
 | |
|     VERIFY(thickness > 0);
 | |
| 
 | |
|     auto& lines = split_lines();
 | |
|     if (lines.is_empty())
 | |
|         return Path {};
 | |
| 
 | |
|     // Paths can be disconnected, which a pain to deal with, so split it up.
 | |
|     Vector<Vector<FloatPoint>> segments;
 | |
|     segments.append({ lines.first().a() });
 | |
|     for (auto& line : lines) {
 | |
|         if (line.a() == segments.last().last()) {
 | |
|             segments.last().append(line.b());
 | |
|         } else {
 | |
|             segments.append({ line.a(), line.b() });
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Note: This is the same as the tolerance from bezier curve splitting.
 | |
|     constexpr auto flatness = 0.015f;
 | |
|     auto pen_vertex_count = max(
 | |
|         static_cast<int>(ceilf(AK::Pi<float> / acosf(1 - (2 * flatness) / thickness))), 4);
 | |
|     if (pen_vertex_count % 2 == 1)
 | |
|         pen_vertex_count += 1;
 | |
| 
 | |
|     Vector<FloatPoint, 128> pen_vertices;
 | |
|     pen_vertices.ensure_capacity(pen_vertex_count);
 | |
| 
 | |
|     // Generate vertices for the pen (going counterclockwise). The pen does not necessarily need
 | |
|     // to be a circle (or an approximation of one), but other shapes are untested.
 | |
|     float theta = 0;
 | |
|     float theta_delta = (AK::Pi<float> * 2) / pen_vertex_count;
 | |
|     for (int i = 0; i < pen_vertex_count; i++) {
 | |
|         float sin_theta;
 | |
|         float cos_theta;
 | |
|         AK::sincos(theta, sin_theta, cos_theta);
 | |
|         pen_vertices.unchecked_append({ cos_theta * thickness / 2, sin_theta * thickness / 2 });
 | |
|         theta -= theta_delta;
 | |
|     }
 | |
| 
 | |
|     auto wrapping_index = [](auto& vertices, auto index) {
 | |
|         return vertices[(index + vertices.size()) % vertices.size()];
 | |
|     };
 | |
| 
 | |
|     auto angle_between = [](auto p1, auto p2) {
 | |
|         auto delta = p2 - p1;
 | |
|         return atan2f(delta.y(), delta.x());
 | |
|     };
 | |
| 
 | |
|     struct ActiveRange {
 | |
|         float start;
 | |
|         float end;
 | |
| 
 | |
|         bool in_range(float angle) const
 | |
|         {
 | |
|             // Note: Since active ranges go counterclockwise start > end unless we wrap around at 180 degrees
 | |
|             return ((angle <= start && angle >= end)
 | |
|                 || (start < end && angle <= start)
 | |
|                 || (start < end && angle >= end));
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     Vector<ActiveRange, 128> active_ranges;
 | |
|     active_ranges.ensure_capacity(pen_vertices.size());
 | |
|     for (auto i = 0; i < pen_vertex_count; i++) {
 | |
|         active_ranges.unchecked_append({ angle_between(wrapping_index(pen_vertices, i - 1), pen_vertices[i]),
 | |
|             angle_between(pen_vertices[i], wrapping_index(pen_vertices, i + 1)) });
 | |
|     }
 | |
| 
 | |
|     auto clockwise = [](float current_angle, float target_angle) {
 | |
|         if (target_angle < 0)
 | |
|             target_angle += AK::Pi<float> * 2;
 | |
|         if (current_angle < 0)
 | |
|             current_angle += AK::Pi<float> * 2;
 | |
|         if (target_angle < current_angle)
 | |
|             target_angle += AK::Pi<float> * 2;
 | |
|         return (target_angle - current_angle) <= AK::Pi<float>;
 | |
|     };
 | |
| 
 | |
|     Path convolution;
 | |
|     for (auto& segment : segments) {
 | |
|         RoundTrip<FloatPoint> shape { segment };
 | |
| 
 | |
|         bool first = true;
 | |
|         auto add_vertex = [&](auto v) {
 | |
|             if (first) {
 | |
|                 convolution.move_to(v);
 | |
|                 first = false;
 | |
|             } else {
 | |
|                 convolution.line_to(v);
 | |
|             }
 | |
|         };
 | |
| 
 | |
|         auto shape_idx = 0u;
 | |
| 
 | |
|         auto slope = [&] {
 | |
|             return angle_between(shape[shape_idx], shape[shape_idx + 1]);
 | |
|         };
 | |
| 
 | |
|         auto start_slope = slope();
 | |
|         // Note: At least one range must be active.
 | |
|         auto active = *active_ranges.find_first_index_if([&](auto& range) {
 | |
|             return range.in_range(start_slope);
 | |
|         });
 | |
| 
 | |
|         while (shape_idx < shape.size()) {
 | |
|             add_vertex(shape[shape_idx] + pen_vertices[active]);
 | |
|             auto slope_now = slope();
 | |
|             auto range = active_ranges[active];
 | |
|             if (range.in_range(slope_now)) {
 | |
|                 shape_idx++;
 | |
|             } else {
 | |
|                 if (clockwise(slope_now, range.end)) {
 | |
|                     if (active == static_cast<size_t>(pen_vertex_count - 1))
 | |
|                         active = 0;
 | |
|                     else
 | |
|                         active++;
 | |
|                 } else {
 | |
|                     if (active == 0)
 | |
|                         active = pen_vertex_count - 1;
 | |
|                     else
 | |
|                         active--;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return convolution;
 | |
| }
 | |
| 
 | |
| }
 |