mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 15:32:46 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			523 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			523 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | ||
|  * Copyright (c) 2022-2023, MacDue <macdue@dueutil.tech>
 | ||
|  *
 | ||
|  * SPDX-License-Identifier: BSD-2-Clause
 | ||
|  */
 | ||
| 
 | ||
| #include <AK/Math.h>
 | ||
| #include <LibGfx/Gradients.h>
 | ||
| #include <LibGfx/PaintStyle.h>
 | ||
| #include <LibGfx/Painter.h>
 | ||
| 
 | ||
| #if defined(AK_COMPILER_GCC)
 | ||
| #    pragma GCC optimize("O3")
 | ||
| #endif
 | ||
| 
 | ||
| namespace Gfx {
 | ||
| 
 | ||
| // Note: This file implements the CSS/Canvas gradients for LibWeb according to the spec.
 | ||
| // Please do not make ad-hoc changes that may break spec compliance!
 | ||
| 
 | ||
| static float color_stop_step(ColorStop const& previous_stop, ColorStop const& next_stop, float position)
 | ||
| {
 | ||
|     if (position < previous_stop.position)
 | ||
|         return 0;
 | ||
|     if (position > next_stop.position)
 | ||
|         return 1;
 | ||
|     // For any given point between the two color stops,
 | ||
|     // determine the point’s location as a percentage of the distance between the two color stops.
 | ||
|     // Let this percentage be P.
 | ||
|     auto stop_length = next_stop.position - previous_stop.position;
 | ||
|     // FIXME: Avoids NaNs... Still not quite correct?
 | ||
|     if (stop_length <= 0)
 | ||
|         return 1;
 | ||
|     auto p = (position - previous_stop.position) / stop_length;
 | ||
|     if (!next_stop.transition_hint.has_value())
 | ||
|         return p;
 | ||
|     if (*next_stop.transition_hint >= 1)
 | ||
|         return 0;
 | ||
|     if (*next_stop.transition_hint <= 0)
 | ||
|         return 1;
 | ||
|     // Let C, the color weighting at that point, be equal to P^(logH(.5)).
 | ||
|     auto c = AK::pow(p, AK::log<float>(0.5) / AK::log(*next_stop.transition_hint));
 | ||
|     // The color at that point is then a linear blend between the colors of the two color stops,
 | ||
|     // blending (1 - C) of the first stop and C of the second stop.
 | ||
|     return c;
 | ||
| }
 | ||
| 
 | ||
| enum class UsePremultipliedAlpha {
 | ||
|     Yes,
 | ||
|     No
 | ||
| };
 | ||
| 
 | ||
| class GradientLine {
 | ||
| public:
 | ||
|     GradientLine(int gradient_length, ReadonlySpan<ColorStop> color_stops, Optional<float> repeat_length, UsePremultipliedAlpha use_premultiplied_alpha = UsePremultipliedAlpha::Yes)
 | ||
|         : m_repeating(repeat_length.has_value())
 | ||
|         , m_start_offset(round_to<int>((m_repeating ? color_stops.first().position : 0.0f) * gradient_length))
 | ||
|         , m_color_stops(color_stops)
 | ||
|         , m_use_premultiplied_alpha(use_premultiplied_alpha)
 | ||
|     {
 | ||
|         // Avoid generating excessive amounts of colors when the not enough shades to fill that length.
 | ||
|         auto necessary_length = min<int>((color_stops.size() - 1) * 255, gradient_length);
 | ||
|         m_sample_scale = float(necessary_length) / gradient_length;
 | ||
|         // Note: color_count will be < gradient_length for repeating gradients.
 | ||
|         auto color_count = round_to<int>(repeat_length.value_or(1.0f) * necessary_length);
 | ||
|         m_gradient_line_colors.resize(color_count);
 | ||
| 
 | ||
|         for (int loc = 0; loc < color_count; loc++) {
 | ||
|             auto relative_loc = float(loc + m_start_offset) / necessary_length;
 | ||
|             Color gradient_color = color_blend(color_stops[0].color, color_stops[1].color,
 | ||
|                 color_stop_step(color_stops[0], color_stops[1], relative_loc));
 | ||
|             for (size_t i = 1; i < color_stops.size() - 1; i++) {
 | ||
|                 gradient_color = color_blend(gradient_color, color_stops[i + 1].color,
 | ||
|                     color_stop_step(color_stops[i], color_stops[i + 1], relative_loc));
 | ||
|             }
 | ||
|             m_gradient_line_colors[loc] = gradient_color;
 | ||
|             if (gradient_color.alpha() < 255)
 | ||
|                 m_requires_blending = true;
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     Color color_blend(Color a, Color b, float amount) const
 | ||
|     {
 | ||
|         // Note: color.mixed_with() performs premultiplied alpha mixing when necessary as defined in:
 | ||
|         // https://drafts.csswg.org/css-images/#coloring-gradient-line
 | ||
|         if (m_use_premultiplied_alpha == UsePremultipliedAlpha::Yes)
 | ||
|             return a.mixed_with(b, amount);
 | ||
|         return a.interpolate(b, amount);
 | ||
|     };
 | ||
| 
 | ||
|     Color get_color(i64 index) const
 | ||
|     {
 | ||
|         if (index < 0)
 | ||
|             return m_color_stops.first().color;
 | ||
|         if (index >= static_cast<i64>(m_gradient_line_colors.size()))
 | ||
|             return m_color_stops.last().color;
 | ||
|         return m_gradient_line_colors[index];
 | ||
|     }
 | ||
| 
 | ||
|     Color sample_color(float loc) const
 | ||
|     {
 | ||
|         if (!isfinite(loc))
 | ||
|             return Color();
 | ||
|         if (m_sample_scale != 1.0f)
 | ||
|             loc *= m_sample_scale;
 | ||
|         auto repeat_wrap_if_required = [&](i64 loc) {
 | ||
|             if (m_repeating)
 | ||
|                 return (loc + m_start_offset) % static_cast<i64>(m_gradient_line_colors.size());
 | ||
|             return loc;
 | ||
|         };
 | ||
|         auto int_loc = static_cast<i64>(floor(loc));
 | ||
|         auto blend = loc - int_loc;
 | ||
|         auto color = get_color(repeat_wrap_if_required(int_loc));
 | ||
|         // Blend between the two neighboring colors (this fixes some nasty aliasing issues at small angles)
 | ||
|         if (blend >= 0.004f)
 | ||
|             color = color_blend(color, get_color(repeat_wrap_if_required(int_loc + 1)), blend);
 | ||
|         return color;
 | ||
|     }
 | ||
| 
 | ||
|     void paint_into_physical_rect(Painter& painter, IntRect rect, auto location_transform)
 | ||
|     {
 | ||
|         auto clipped_rect = rect.intersected(painter.clip_rect() * painter.scale());
 | ||
|         auto start_offset = clipped_rect.location() - rect.location();
 | ||
|         for (int y = 0; y < clipped_rect.height(); y++) {
 | ||
|             for (int x = 0; x < clipped_rect.width(); x++) {
 | ||
|                 auto pixel = sample_color(location_transform(x + start_offset.x(), y + start_offset.y()));
 | ||
|                 painter.set_physical_pixel(clipped_rect.location().translated(x, y), pixel, m_requires_blending);
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
| private:
 | ||
|     bool m_repeating { false };
 | ||
|     int m_start_offset { 0 };
 | ||
|     float m_sample_scale { 1 };
 | ||
|     ReadonlySpan<ColorStop> m_color_stops {};
 | ||
|     UsePremultipliedAlpha m_use_premultiplied_alpha { UsePremultipliedAlpha::Yes };
 | ||
| 
 | ||
|     Vector<Color, 1024> m_gradient_line_colors;
 | ||
|     bool m_requires_blending = false;
 | ||
| };
 | ||
| 
 | ||
| template<typename TransformFunction>
 | ||
| struct Gradient {
 | ||
|     Gradient(GradientLine gradient_line, TransformFunction transform_function)
 | ||
|         : m_gradient_line(move(gradient_line))
 | ||
|         , m_transform_function(move(transform_function))
 | ||
|     {
 | ||
|     }
 | ||
| 
 | ||
|     void paint(Painter& painter, IntRect rect)
 | ||
|     {
 | ||
|         m_gradient_line.paint_into_physical_rect(painter, rect, m_transform_function);
 | ||
|     }
 | ||
| 
 | ||
|     template<typename CoordinateType = int>
 | ||
|     auto sample_function()
 | ||
|     {
 | ||
|         return [this](Point<CoordinateType> point) {
 | ||
|             return m_gradient_line.sample_color(m_transform_function(point.x(), point.y()));
 | ||
|         };
 | ||
|     }
 | ||
| 
 | ||
| private:
 | ||
|     GradientLine m_gradient_line;
 | ||
|     TransformFunction m_transform_function;
 | ||
| };
 | ||
| 
 | ||
| static auto create_linear_gradient(IntRect const& physical_rect, ReadonlySpan<ColorStop> color_stops, float angle, Optional<float> repeat_length)
 | ||
| {
 | ||
|     float normalized_angle = normalized_gradient_angle_radians(angle);
 | ||
|     float sin_angle, cos_angle;
 | ||
|     AK::sincos(normalized_angle, sin_angle, cos_angle);
 | ||
| 
 | ||
|     // Full length of the gradient
 | ||
|     auto gradient_length = calculate_gradient_length(physical_rect.size(), sin_angle, cos_angle);
 | ||
|     IntPoint offset { cos_angle * (gradient_length / 2), sin_angle * (gradient_length / 2) };
 | ||
|     auto center = physical_rect.translated(-physical_rect.location()).center();
 | ||
|     auto start_point = center - offset;
 | ||
|     // Rotate gradient line to be horizontal
 | ||
|     auto rotated_start_point_x = start_point.x() * cos_angle - start_point.y() * -sin_angle;
 | ||
| 
 | ||
|     GradientLine gradient_line(gradient_length, color_stops, repeat_length);
 | ||
|     return Gradient {
 | ||
|         move(gradient_line),
 | ||
|         [=](int x, int y) {
 | ||
|             return (x * cos_angle - (physical_rect.height() - y) * -sin_angle) - rotated_start_point_x;
 | ||
|         }
 | ||
|     };
 | ||
| }
 | ||
| 
 | ||
| static auto create_conic_gradient(ReadonlySpan<ColorStop> color_stops, FloatPoint center_point, float start_angle, Optional<float> repeat_length, UsePremultipliedAlpha use_premultiplied_alpha = UsePremultipliedAlpha::Yes)
 | ||
| {
 | ||
|     // FIXME: Do we need/want sub-degree accuracy for the gradient line?
 | ||
|     GradientLine gradient_line(360, color_stops, repeat_length, use_premultiplied_alpha);
 | ||
|     float normalized_start_angle = (360.0f - start_angle) + 90.0f;
 | ||
|     // The flooring can make gradients that want soft edges look worse, so only floor if we have hard edges.
 | ||
|     // Which makes sure the hard edge stay hard edges :^)
 | ||
|     bool should_floor_angles = false;
 | ||
|     for (size_t i = 0; i < color_stops.size() - 1; i++) {
 | ||
|         if (color_stops[i + 1].position - color_stops[i].position <= 0.01f) {
 | ||
|             should_floor_angles = true;
 | ||
|             break;
 | ||
|         }
 | ||
|     }
 | ||
|     return Gradient {
 | ||
|         move(gradient_line),
 | ||
|         [=](int x, int y) {
 | ||
|             auto point = FloatPoint { x, y } - center_point;
 | ||
|             // FIXME: We could probably get away with some approximation here:
 | ||
|             auto loc = fmod((AK::atan2(point.y(), point.x()) * 180.0f / AK::Pi<float> + 360.0f + normalized_start_angle), 360.0f);
 | ||
|             return should_floor_angles ? floor(loc) : loc;
 | ||
|         }
 | ||
|     };
 | ||
| }
 | ||
| 
 | ||
| static auto create_radial_gradient(IntRect const& physical_rect, ReadonlySpan<ColorStop> color_stops, IntPoint center, IntSize size, Optional<float> repeat_length, Optional<float> rotation_angle = {})
 | ||
| {
 | ||
|     // A conservative guesstimate on how many colors we need to generate:
 | ||
|     auto max_dimension = max(physical_rect.width(), physical_rect.height());
 | ||
|     auto max_visible_gradient = max(max_dimension / 2, min(size.width(), max_dimension));
 | ||
|     GradientLine gradient_line(max_visible_gradient, color_stops, repeat_length);
 | ||
|     auto center_point = FloatPoint { center }.translated(0.5, 0.5);
 | ||
|     AffineTransform rotation_transform;
 | ||
|     if (rotation_angle.has_value()) {
 | ||
|         auto angle_as_radians = rotation_angle.value() * (AK::Pi<float> / 180);
 | ||
|         rotation_transform.rotate_radians(angle_as_radians);
 | ||
|     }
 | ||
| 
 | ||
|     return Gradient {
 | ||
|         move(gradient_line),
 | ||
|         [=](int x, int y) {
 | ||
|             // FIXME: See if there's a more efficient calculation we do there :^)
 | ||
|             auto point = FloatPoint(x, y) - center_point;
 | ||
| 
 | ||
|             if (rotation_angle.has_value())
 | ||
|                 point.transform_by(rotation_transform);
 | ||
| 
 | ||
|             auto gradient_x = point.x() / size.width();
 | ||
|             auto gradient_y = point.y() / size.height();
 | ||
|             return AK::sqrt(gradient_x * gradient_x + gradient_y * gradient_y) * max_visible_gradient;
 | ||
|         }
 | ||
|     };
 | ||
| }
 | ||
| 
 | ||
| void Painter::fill_rect_with_linear_gradient(IntRect const& rect, ReadonlySpan<ColorStop> color_stops, float angle, Optional<float> repeat_length)
 | ||
| {
 | ||
|     auto a_rect = to_physical(rect);
 | ||
|     if (a_rect.intersected(clip_rect() * scale()).is_empty())
 | ||
|         return;
 | ||
|     auto linear_gradient = create_linear_gradient(a_rect, color_stops, angle, repeat_length);
 | ||
|     linear_gradient.paint(*this, a_rect);
 | ||
| }
 | ||
| 
 | ||
| static FloatPoint pixel_center(IntPoint point)
 | ||
| {
 | ||
|     return point.to_type<float>().translated(0.5f, 0.5f);
 | ||
| }
 | ||
| 
 | ||
| void Painter::fill_rect_with_conic_gradient(IntRect const& rect, ReadonlySpan<ColorStop> color_stops, IntPoint center, float start_angle, Optional<float> repeat_length)
 | ||
| {
 | ||
|     auto a_rect = to_physical(rect);
 | ||
|     if (a_rect.intersected(clip_rect() * scale()).is_empty())
 | ||
|         return;
 | ||
|     // Translate position/center to the center of the pixel (avoids some funky painting)
 | ||
|     auto center_point = pixel_center(center * scale());
 | ||
|     auto conic_gradient = create_conic_gradient(color_stops, center_point, start_angle, repeat_length);
 | ||
|     conic_gradient.paint(*this, a_rect);
 | ||
| }
 | ||
| 
 | ||
| void Painter::fill_rect_with_radial_gradient(IntRect const& rect, ReadonlySpan<ColorStop> color_stops, IntPoint center, IntSize size, Optional<float> repeat_length, Optional<float> rotation_angle)
 | ||
| {
 | ||
|     auto a_rect = to_physical(rect);
 | ||
|     if (a_rect.intersected(clip_rect() * scale()).is_empty())
 | ||
|         return;
 | ||
| 
 | ||
|     auto radial_gradient = create_radial_gradient(a_rect, color_stops, center * scale(), size * scale(), repeat_length, rotation_angle);
 | ||
|     radial_gradient.paint(*this, a_rect);
 | ||
| }
 | ||
| 
 | ||
| // TODO: Figure out how to handle scale() here... Not important while not supported by fill_path()
 | ||
| 
 | ||
| void LinearGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
 | ||
| {
 | ||
|     VERIFY(color_stops().size() > 2);
 | ||
|     auto linear_gradient = create_linear_gradient(physical_bounding_box, color_stops(), m_angle, repeat_length());
 | ||
|     paint(linear_gradient.sample_function());
 | ||
| }
 | ||
| 
 | ||
| void ConicGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
 | ||
| {
 | ||
|     VERIFY(color_stops().size() > 2);
 | ||
|     (void)physical_bounding_box;
 | ||
|     auto conic_gradient = create_conic_gradient(color_stops(), pixel_center(m_center), m_start_angle, repeat_length());
 | ||
|     paint(conic_gradient.sample_function());
 | ||
| }
 | ||
| 
 | ||
| void RadialGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
 | ||
| {
 | ||
|     VERIFY(color_stops().size() > 2);
 | ||
|     auto radial_gradient = create_radial_gradient(physical_bounding_box, color_stops(), m_center, m_size, repeat_length());
 | ||
|     paint(radial_gradient.sample_function());
 | ||
| }
 | ||
| 
 | ||
| // The following implements the gradient fill/stoke styles for the HTML canvas: https://html.spec.whatwg.org/multipage/canvas.html#fill-and-stroke-styles
 | ||
| 
 | ||
| static auto make_sample_non_relative(IntPoint draw_location, auto sample)
 | ||
| {
 | ||
|     return [=, sample = move(sample)](IntPoint point) { return sample(point.translated(draw_location)); };
 | ||
| }
 | ||
| 
 | ||
| static auto make_linear_gradient_between_two_points(FloatPoint p0, FloatPoint p1, ReadonlySpan<ColorStop> color_stops, Optional<float> repeat_length)
 | ||
| {
 | ||
|     auto delta = p1 - p0;
 | ||
|     auto angle = AK::atan2(delta.y(), delta.x());
 | ||
|     float sin_angle, cos_angle;
 | ||
|     AK::sincos(angle, sin_angle, cos_angle);
 | ||
|     int gradient_length = ceilf(p1.distance_from(p0));
 | ||
|     auto rotated_start_point_x = p0.x() * cos_angle - p0.y() * -sin_angle;
 | ||
| 
 | ||
|     return Gradient {
 | ||
|         GradientLine(gradient_length, color_stops, repeat_length, UsePremultipliedAlpha::No),
 | ||
|         [=](int x, int y) {
 | ||
|             return (x * cos_angle - y * -sin_angle) - rotated_start_point_x;
 | ||
|         }
 | ||
|     };
 | ||
| }
 | ||
| 
 | ||
| void CanvasLinearGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
 | ||
| {
 | ||
|     // If x0 = x1 and y0 = y1, then the linear gradient must paint nothing.
 | ||
|     if (m_p0 == m_p1)
 | ||
|         return;
 | ||
|     if (color_stops().is_empty())
 | ||
|         return;
 | ||
|     if (color_stops().size() < 2)
 | ||
|         return paint([this](IntPoint) { return color_stops().first().color; });
 | ||
| 
 | ||
|     auto linear_gradient = make_linear_gradient_between_two_points(m_p0, m_p1, color_stops(), repeat_length());
 | ||
|     paint(make_sample_non_relative(physical_bounding_box.location(), linear_gradient.sample_function()));
 | ||
| }
 | ||
| 
 | ||
| void SVGGradientPaintStyle::set_gradient_transform(AffineTransform transform)
 | ||
| {
 | ||
|     // Note: The scaling is removed so enough points on the gradient line are generated.
 | ||
|     // Otherwise, if you scale a tiny path the gradient looks pixelated.
 | ||
|     m_scale = 1.0f;
 | ||
|     if (auto inverse = transform.inverse(); inverse.has_value()) {
 | ||
|         auto transform_scale = transform.scale();
 | ||
|         m_scale = max(transform_scale.x(), transform_scale.y());
 | ||
|         m_inverse_transform = AffineTransform {}.scale(m_scale, m_scale).multiply(*inverse);
 | ||
|     } else {
 | ||
|         m_inverse_transform = OptionalNone {};
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void SVGLinearGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
 | ||
| {
 | ||
|     if (color_stops().is_empty())
 | ||
|         return;
 | ||
|     // If ‘x1’ = ‘x2’ and ‘y1’ = ‘y2’, then the area to be painted will be painted as
 | ||
|     // a single color using the color and opacity of the last gradient stop.
 | ||
|     if (m_p0 == m_p1)
 | ||
|         return paint([this](IntPoint) { return color_stops().last().color; });
 | ||
|     if (color_stops().size() < 2)
 | ||
|         return paint([this](IntPoint) { return color_stops().first().color; });
 | ||
| 
 | ||
|     float scale = gradient_transform_scale();
 | ||
|     auto linear_gradient = make_linear_gradient_between_two_points(
 | ||
|         m_p0.scaled(scale, scale), m_p1.scaled(scale, scale),
 | ||
|         color_stops(), repeat_length());
 | ||
| 
 | ||
|     paint([&, sampler = linear_gradient.sample_function<float>()](IntPoint target_point) {
 | ||
|         auto point = target_point.translated(physical_bounding_box.location()).to_type<float>();
 | ||
|         if (auto inverse_transform = scale_adjusted_inverse_gradient_transform(); inverse_transform.has_value())
 | ||
|             point = inverse_transform->map(point);
 | ||
| 
 | ||
|         return sampler(point);
 | ||
|     });
 | ||
| }
 | ||
| 
 | ||
| void CanvasConicGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
 | ||
| {
 | ||
|     if (color_stops().is_empty())
 | ||
|         return;
 | ||
|     if (color_stops().size() < 2)
 | ||
|         return paint([this](IntPoint) { return color_stops().first().color; });
 | ||
| 
 | ||
|     // Follows the same rendering rule as CSS 'conic-gradient' and it is equivalent to CSS
 | ||
|     // 'conic-gradient(from adjustedStartAnglerad at xpx ypx, angularColorStopList)'.
 | ||
|     //  Here:
 | ||
|     //      adjustedStartAngle is given by startAngle + π/2;
 | ||
|     auto conic_gradient = create_conic_gradient(color_stops(), m_center, m_start_angle + 90.0f, repeat_length(), UsePremultipliedAlpha::No);
 | ||
|     paint(make_sample_non_relative(physical_bounding_box.location(), conic_gradient.sample_function()));
 | ||
| }
 | ||
| 
 | ||
| static auto create_radial_gradient_between_two_circles(Gfx::FloatPoint start_center, float start_radius, Gfx::FloatPoint end_center, float end_radius, ReadonlySpan<ColorStop> color_stops, Optional<float> repeat_length)
 | ||
| {
 | ||
|     if (fabs(start_radius - end_radius) < 1)
 | ||
|         start_radius += 1;
 | ||
| 
 | ||
|     // Needed for the start circle > end circle case, but FIXME, this seems kind of hacky.
 | ||
|     bool reverse_gradient = end_radius < start_radius;
 | ||
|     if (reverse_gradient) {
 | ||
|         swap(end_radius, start_radius);
 | ||
|         swap(end_center, start_center);
 | ||
|     }
 | ||
| 
 | ||
|     // Spec steps: Useless for writing an actual implementation (give it a go :P):
 | ||
|     //
 | ||
|     // 2. Let x(ω) = (x1-x0)ω + x0
 | ||
|     //    Let y(ω) = (y1-y0)ω + y0
 | ||
|     //    Let r(ω) = (r1-r0)ω + r0
 | ||
|     // Let the color at ω be the color at that position on the gradient
 | ||
|     // (with the colors coming from the interpolation and extrapolation described above).
 | ||
|     //
 | ||
|     // 3. For all values of ω where r(ω) > 0, starting with the value of ω nearest to positive infinity and
 | ||
|     // ending with the value of ω nearest to negative infinity, draw the circumference of the circle with
 | ||
|     // radius r(ω) at position (x(ω), y(ω)), with the color at ω, but only painting on the parts of the
 | ||
|     // bitmap that have not yet been painted on by earlier circles in this step for this rendering of the gradient.
 | ||
| 
 | ||
|     auto center_delta = end_center - start_center;
 | ||
|     auto center_dist = end_center.distance_from(start_center);
 | ||
|     bool inner_contained = ((center_dist + start_radius) < end_radius);
 | ||
| 
 | ||
|     auto start_point = start_center;
 | ||
|     if (!inner_contained) {
 | ||
|         // The intersection point of the direct common tangents of the start/end circles.
 | ||
|         start_point = FloatPoint {
 | ||
|             (start_radius * end_center.x() - end_radius * start_center.x()) / (start_radius - end_radius),
 | ||
|             (start_radius * end_center.y() - end_radius * start_center.y()) / (start_radius - end_radius)
 | ||
|         };
 | ||
|     }
 | ||
| 
 | ||
|     // This is just an approximate upperbound (the gradient line class will shorten this if necessary).
 | ||
|     int gradient_length = AK::ceil(center_dist + end_radius + start_radius);
 | ||
|     GradientLine gradient_line(gradient_length, color_stops, repeat_length, UsePremultipliedAlpha::No);
 | ||
| 
 | ||
|     auto radius2 = end_radius * end_radius;
 | ||
|     center_delta = end_center - start_point;
 | ||
|     auto dx2_factor = (radius2 - center_delta.y() * center_delta.y());
 | ||
|     auto dy2_factor = (radius2 - center_delta.x() * center_delta.x());
 | ||
| 
 | ||
|     // If you can simplify this please do, this is "best guess" implementation due to lack of specification.
 | ||
|     // It was implemented to visually match chrome/firefox in all cases:
 | ||
|     //      - Start circle inside end circle
 | ||
|     //      - Start circle outside end circle
 | ||
|     //      - Start circle radius == end circle radius
 | ||
|     //      - Start circle larger than end circle (inside end circle)
 | ||
|     //      - Start circle larger than end circle (outside end circle)
 | ||
|     //      - Start circle or end circle radius == 0
 | ||
| 
 | ||
|     return Gradient {
 | ||
|         move(gradient_line),
 | ||
|         [=](float x, float y) {
 | ||
|             auto get_gradient_location = [&] {
 | ||
|                 FloatPoint point { x, y };
 | ||
|                 auto dist = point.distance_from(start_point);
 | ||
|                 if (dist == 0)
 | ||
|                     return 0.0f;
 | ||
|                 auto vec = (point - start_point) / dist;
 | ||
|                 auto dx2 = vec.x() * vec.x();
 | ||
|                 auto dy2 = vec.y() * vec.y();
 | ||
|                 // This works out the distance to the nearest point on the end circle in the direction of the "vec" vector.
 | ||
|                 // The "vec" vector points from the center of the start circle to the current point.
 | ||
|                 auto root = sqrtf(dx2 * dx2_factor + dy2 * dy2_factor
 | ||
|                     + 2 * vec.x() * vec.y() * center_delta.x() * center_delta.y());
 | ||
|                 auto dot = vec.x() * center_delta.x() + vec.y() * center_delta.y();
 | ||
|                 // Note: When reversed we always want the farthest point
 | ||
|                 auto edge_dist = (((inner_contained || reverse_gradient ? root : -root) + dot) / (dx2 + dy2));
 | ||
|                 auto start_offset = inner_contained ? start_radius : (edge_dist / end_radius) * start_radius;
 | ||
|                 // FIXME: Returning nan is a hack for "Don't paint me!"
 | ||
|                 if (edge_dist < 0)
 | ||
|                     return AK::NaN<float>;
 | ||
|                 if (edge_dist - start_offset < 0)
 | ||
|                     return float(gradient_length);
 | ||
|                 return ((dist - start_offset) / (edge_dist - start_offset));
 | ||
|             };
 | ||
|             auto loc = get_gradient_location();
 | ||
|             if (reverse_gradient)
 | ||
|                 loc = 1.0f - loc;
 | ||
|             return loc * gradient_length;
 | ||
|         }
 | ||
|     };
 | ||
| }
 | ||
| 
 | ||
| void CanvasRadialGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
 | ||
| {
 | ||
|     // 1. If x0 = x1 and y0 = y1 and r0 = r1, then the radial gradient must paint nothing. Return.
 | ||
|     if (m_start_center == m_end_center && m_start_radius == m_end_radius)
 | ||
|         return;
 | ||
|     if (color_stops().is_empty())
 | ||
|         return;
 | ||
|     if (color_stops().size() < 2)
 | ||
|         return paint([this](IntPoint) { return color_stops().first().color; });
 | ||
|     if (m_end_radius == 0 && m_start_radius == 0)
 | ||
|         return;
 | ||
|     auto radial_gradient = create_radial_gradient_between_two_circles(m_start_center, m_start_radius, m_end_center, m_end_radius, color_stops(), repeat_length());
 | ||
|     paint(make_sample_non_relative(physical_bounding_box.location(), radial_gradient.sample_function()));
 | ||
| }
 | ||
| 
 | ||
| void SVGRadialGradientPaintStyle::paint(IntRect physical_bounding_box, PaintFunction paint) const
 | ||
| {
 | ||
|     // FIXME: Ensure this handles all the edge cases of SVG gradients.
 | ||
|     if (color_stops().is_empty())
 | ||
|         return;
 | ||
|     if (color_stops().size() < 2 || (m_end_radius == 0 && m_start_radius == 0))
 | ||
|         return paint([this](IntPoint) { return color_stops().last().color; });
 | ||
| 
 | ||
|     float scale = gradient_transform_scale();
 | ||
|     auto radial_gradient = create_radial_gradient_between_two_circles(
 | ||
|         m_start_center.scaled(scale, scale), m_start_radius * scale, m_end_center.scaled(scale, scale), m_end_radius * scale,
 | ||
|         color_stops(), repeat_length());
 | ||
| 
 | ||
|     paint([&, sampler = radial_gradient.sample_function<float>()](IntPoint target_point) {
 | ||
|         auto point = target_point.translated(physical_bounding_box.location()).to_type<float>();
 | ||
|         if (auto inverse_transform = scale_adjusted_inverse_gradient_transform(); inverse_transform.has_value())
 | ||
|             point = inverse_transform->map(point);
 | ||
|         return sampler(point);
 | ||
|     });
 | ||
| }
 | ||
| 
 | ||
| }
 | 
