mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 02:32:45 +00:00 
			
		
		
		
	 d158f2ed89
			
		
	
	
		d158f2ed89
		
	
	
	
	
		
			
			PVS-Studio flagged these as uninitialized. While there is no bug here, it is our policy to always initialize members to avoid potential bugs in the future.
		
			
				
	
	
		
			176 lines
		
	
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			176 lines
		
	
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/Assertions.h>
 | |
| #include <AK/Memory.h>
 | |
| #include <Kernel/Heap/SlabAllocator.h>
 | |
| #include <Kernel/Heap/kmalloc.h>
 | |
| #include <Kernel/Memory/Region.h>
 | |
| #include <Kernel/Sections.h>
 | |
| 
 | |
| #define SANITIZE_SLABS
 | |
| 
 | |
| namespace Kernel {
 | |
| 
 | |
| template<size_t templated_slab_size>
 | |
| class SlabAllocator {
 | |
| public:
 | |
|     SlabAllocator() = default;
 | |
| 
 | |
|     void init(size_t size)
 | |
|     {
 | |
|         m_base = kmalloc_eternal(size);
 | |
|         m_end = (u8*)m_base + size;
 | |
|         FreeSlab* slabs = (FreeSlab*)m_base;
 | |
|         m_slab_count = size / templated_slab_size;
 | |
|         for (size_t i = 1; i < m_slab_count; ++i) {
 | |
|             slabs[i].next = &slabs[i - 1];
 | |
|         }
 | |
|         slabs[0].next = nullptr;
 | |
|         m_freelist = &slabs[m_slab_count - 1];
 | |
|         m_num_allocated = 0;
 | |
|     }
 | |
| 
 | |
|     constexpr size_t slab_size() const { return templated_slab_size; }
 | |
|     size_t slab_count() const { return m_slab_count; }
 | |
| 
 | |
|     void* alloc()
 | |
|     {
 | |
|         FreeSlab* free_slab;
 | |
|         {
 | |
|             // We want to avoid being swapped out in the middle of this
 | |
|             ScopedCritical critical;
 | |
|             FreeSlab* next_free;
 | |
|             free_slab = m_freelist.load(AK::memory_order_consume);
 | |
|             do {
 | |
|                 if (!free_slab)
 | |
|                     return kmalloc(slab_size());
 | |
|                 // It's possible another processor is doing the same thing at
 | |
|                 // the same time, so next_free *can* be a bogus pointer. However,
 | |
|                 // in that case compare_exchange_strong would fail and we would
 | |
|                 // try again.
 | |
|                 next_free = free_slab->next;
 | |
|             } while (!m_freelist.compare_exchange_strong(free_slab, next_free, AK::memory_order_acq_rel));
 | |
| 
 | |
|             m_num_allocated++;
 | |
|         }
 | |
| 
 | |
| #ifdef SANITIZE_SLABS
 | |
|         memset(free_slab, SLAB_ALLOC_SCRUB_BYTE, slab_size());
 | |
| #endif
 | |
|         return free_slab;
 | |
|     }
 | |
| 
 | |
|     void dealloc(void* ptr)
 | |
|     {
 | |
|         VERIFY(ptr);
 | |
|         if (ptr < m_base || ptr >= m_end) {
 | |
|             kfree(ptr);
 | |
|             return;
 | |
|         }
 | |
|         FreeSlab* free_slab = (FreeSlab*)ptr;
 | |
| #ifdef SANITIZE_SLABS
 | |
|         if (slab_size() > sizeof(FreeSlab*))
 | |
|             memset(free_slab->padding, SLAB_DEALLOC_SCRUB_BYTE, sizeof(FreeSlab::padding));
 | |
| #endif
 | |
| 
 | |
|         // We want to avoid being swapped out in the middle of this
 | |
|         ScopedCritical critical;
 | |
|         FreeSlab* next_free = m_freelist.load(AK::memory_order_consume);
 | |
|         do {
 | |
|             free_slab->next = next_free;
 | |
|         } while (!m_freelist.compare_exchange_strong(next_free, free_slab, AK::memory_order_acq_rel));
 | |
| 
 | |
|         m_num_allocated--;
 | |
|     }
 | |
| 
 | |
|     size_t num_allocated() const { return m_num_allocated; }
 | |
|     size_t num_free() const { return m_slab_count - m_num_allocated; }
 | |
| 
 | |
| private:
 | |
|     struct FreeSlab {
 | |
|         FreeSlab* next;
 | |
|         char padding[templated_slab_size - sizeof(FreeSlab*)];
 | |
|     };
 | |
| 
 | |
|     Atomic<FreeSlab*> m_freelist { nullptr };
 | |
|     Atomic<size_t, AK::MemoryOrder::memory_order_relaxed> m_num_allocated { 0 };
 | |
|     size_t m_slab_count { 0 };
 | |
|     void* m_base { nullptr };
 | |
|     void* m_end { nullptr };
 | |
| 
 | |
|     static_assert(AssertSize<FreeSlab, templated_slab_size>());
 | |
| };
 | |
| 
 | |
| static SlabAllocator<16> s_slab_allocator_16;
 | |
| static SlabAllocator<32> s_slab_allocator_32;
 | |
| static SlabAllocator<64> s_slab_allocator_64;
 | |
| static SlabAllocator<128> s_slab_allocator_128;
 | |
| static SlabAllocator<256> s_slab_allocator_256;
 | |
| 
 | |
| #if ARCH(I386)
 | |
| static_assert(sizeof(Memory::Region) <= s_slab_allocator_128.slab_size());
 | |
| #endif
 | |
| 
 | |
| template<typename Callback>
 | |
| void for_each_allocator(Callback callback)
 | |
| {
 | |
|     callback(s_slab_allocator_16);
 | |
|     callback(s_slab_allocator_32);
 | |
|     callback(s_slab_allocator_64);
 | |
|     callback(s_slab_allocator_128);
 | |
|     callback(s_slab_allocator_256);
 | |
| }
 | |
| 
 | |
| UNMAP_AFTER_INIT void slab_alloc_init()
 | |
| {
 | |
|     s_slab_allocator_16.init(128 * KiB);
 | |
|     s_slab_allocator_32.init(128 * KiB);
 | |
|     s_slab_allocator_64.init(512 * KiB);
 | |
|     s_slab_allocator_128.init(512 * KiB);
 | |
|     s_slab_allocator_256.init(128 * KiB);
 | |
| }
 | |
| 
 | |
| void* slab_alloc(size_t slab_size)
 | |
| {
 | |
|     if (slab_size <= 16)
 | |
|         return s_slab_allocator_16.alloc();
 | |
|     if (slab_size <= 32)
 | |
|         return s_slab_allocator_32.alloc();
 | |
|     if (slab_size <= 64)
 | |
|         return s_slab_allocator_64.alloc();
 | |
|     if (slab_size <= 128)
 | |
|         return s_slab_allocator_128.alloc();
 | |
|     if (slab_size <= 256)
 | |
|         return s_slab_allocator_256.alloc();
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| void slab_dealloc(void* ptr, size_t slab_size)
 | |
| {
 | |
|     if (slab_size <= 16)
 | |
|         return s_slab_allocator_16.dealloc(ptr);
 | |
|     if (slab_size <= 32)
 | |
|         return s_slab_allocator_32.dealloc(ptr);
 | |
|     if (slab_size <= 64)
 | |
|         return s_slab_allocator_64.dealloc(ptr);
 | |
|     if (slab_size <= 128)
 | |
|         return s_slab_allocator_128.dealloc(ptr);
 | |
|     if (slab_size <= 256)
 | |
|         return s_slab_allocator_256.dealloc(ptr);
 | |
|     VERIFY_NOT_REACHED();
 | |
| }
 | |
| 
 | |
| void slab_alloc_stats(Function<void(size_t slab_size, size_t allocated, size_t free)> callback)
 | |
| {
 | |
|     for_each_allocator([&](auto& allocator) {
 | |
|         auto num_allocated = allocator.num_allocated();
 | |
|         auto num_free = allocator.slab_count() - num_allocated;
 | |
|         callback(allocator.slab_size(), num_allocated, num_free);
 | |
|     });
 | |
| }
 | |
| 
 | |
| }
 |