mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 20:32:44 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			958 lines
		
	
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			958 lines
		
	
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 | |
|  * Copyright (c) 2022, the SerenityOS developers.
 | |
|  *
 | |
|  * SPDX-License-Identifier: BSD-2-Clause
 | |
|  */
 | |
| 
 | |
| #include <AK/Array.h>
 | |
| #include <AK/Debug.h>
 | |
| #include <AK/Endian.h>
 | |
| #include <AK/Vector.h>
 | |
| #include <LibCompress/Zlib.h>
 | |
| #include <LibGfx/PNGLoader.h>
 | |
| #include <LibGfx/PNGShared.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #ifdef __serenity__
 | |
| #    include <LibCompress/Deflate.h>
 | |
| #endif
 | |
| 
 | |
| namespace Gfx {
 | |
| 
 | |
| struct PNG_IHDR {
 | |
|     NetworkOrdered<u32> width;
 | |
|     NetworkOrdered<u32> height;
 | |
|     u8 bit_depth { 0 };
 | |
|     PNG::ColorType color_type { 0 };
 | |
|     u8 compression_method { 0 };
 | |
|     u8 filter_method { 0 };
 | |
|     u8 interlace_method { 0 };
 | |
| };
 | |
| 
 | |
| static_assert(AssertSize<PNG_IHDR, 13>());
 | |
| 
 | |
| struct Scanline {
 | |
|     PNG::FilterType filter;
 | |
|     ReadonlyBytes data {};
 | |
| };
 | |
| 
 | |
| struct [[gnu::packed]] PaletteEntry {
 | |
|     u8 r;
 | |
|     u8 g;
 | |
|     u8 b;
 | |
|     // u8 a;
 | |
| };
 | |
| 
 | |
| template<typename T>
 | |
| struct [[gnu::packed]] Tuple {
 | |
|     T gray;
 | |
|     T a;
 | |
| };
 | |
| 
 | |
| template<typename T>
 | |
| struct [[gnu::packed]] Triplet {
 | |
|     T r;
 | |
|     T g;
 | |
|     T b;
 | |
| 
 | |
|     bool operator==(Triplet const& other) const = default;
 | |
| };
 | |
| 
 | |
| template<typename T>
 | |
| struct [[gnu::packed]] Quartet {
 | |
|     T r;
 | |
|     T g;
 | |
|     T b;
 | |
|     T a;
 | |
| };
 | |
| 
 | |
| enum PngInterlaceMethod {
 | |
|     Null = 0,
 | |
|     Adam7 = 1
 | |
| };
 | |
| 
 | |
| struct PNGLoadingContext {
 | |
|     enum State {
 | |
|         NotDecoded = 0,
 | |
|         Error,
 | |
|         HeaderDecoded,
 | |
|         SizeDecoded,
 | |
|         ChunksDecoded,
 | |
|         BitmapDecoded,
 | |
|     };
 | |
|     State state { State::NotDecoded };
 | |
|     u8 const* data { nullptr };
 | |
|     size_t data_size { 0 };
 | |
|     int width { -1 };
 | |
|     int height { -1 };
 | |
|     u8 bit_depth { 0 };
 | |
|     PNG::ColorType color_type { 0 };
 | |
|     u8 compression_method { 0 };
 | |
|     u8 filter_method { 0 };
 | |
|     u8 interlace_method { 0 };
 | |
|     u8 channels { 0 };
 | |
|     bool has_seen_zlib_header { false };
 | |
|     bool has_alpha() const { return to_underlying(color_type) & 4 || palette_transparency_data.size() > 0; }
 | |
|     Vector<Scanline> scanlines;
 | |
|     ByteBuffer unfiltered_data;
 | |
|     RefPtr<Gfx::Bitmap> bitmap;
 | |
|     ByteBuffer* decompression_buffer { nullptr };
 | |
|     Vector<u8> compressed_data;
 | |
|     Vector<PaletteEntry> palette_data;
 | |
|     Vector<u8> palette_transparency_data;
 | |
| 
 | |
|     Checked<int> compute_row_size_for_width(int width)
 | |
|     {
 | |
|         Checked<int> row_size = width;
 | |
|         row_size *= channels;
 | |
|         row_size *= bit_depth;
 | |
|         row_size += 7;
 | |
|         row_size /= 8;
 | |
|         if (row_size.has_overflow()) {
 | |
|             dbgln("PNG too large, integer overflow while computing row size");
 | |
|             state = State::Error;
 | |
|         }
 | |
|         return row_size;
 | |
|     }
 | |
| };
 | |
| 
 | |
| class Streamer {
 | |
| public:
 | |
|     Streamer(u8 const* data, size_t size)
 | |
|         : m_data_ptr(data)
 | |
|         , m_size_remaining(size)
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     template<typename T>
 | |
|     bool read(T& value)
 | |
|     {
 | |
|         if (m_size_remaining < sizeof(T))
 | |
|             return false;
 | |
|         value = *((NetworkOrdered<T> const*)m_data_ptr);
 | |
|         m_data_ptr += sizeof(T);
 | |
|         m_size_remaining -= sizeof(T);
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     bool read_bytes(u8* buffer, size_t count)
 | |
|     {
 | |
|         if (m_size_remaining < count)
 | |
|             return false;
 | |
|         memcpy(buffer, m_data_ptr, count);
 | |
|         m_data_ptr += count;
 | |
|         m_size_remaining -= count;
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     bool wrap_bytes(ReadonlyBytes& buffer, size_t count)
 | |
|     {
 | |
|         if (m_size_remaining < count)
 | |
|             return false;
 | |
|         buffer = ReadonlyBytes { m_data_ptr, count };
 | |
|         m_data_ptr += count;
 | |
|         m_size_remaining -= count;
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     bool at_end() const { return !m_size_remaining; }
 | |
| 
 | |
| private:
 | |
|     u8 const* m_data_ptr { nullptr };
 | |
|     size_t m_size_remaining { 0 };
 | |
| };
 | |
| 
 | |
| static bool process_chunk(Streamer&, PNGLoadingContext& context);
 | |
| 
 | |
| union [[gnu::packed]] Pixel {
 | |
|     ARGB32 rgba { 0 };
 | |
|     u8 v[4];
 | |
|     struct {
 | |
|         u8 r;
 | |
|         u8 g;
 | |
|         u8 b;
 | |
|         u8 a;
 | |
|     };
 | |
| };
 | |
| static_assert(AssertSize<Pixel, 4>());
 | |
| 
 | |
| static void unfilter_scanline(PNG::FilterType filter, Bytes scanline_data, ReadonlyBytes previous_scanlines_data, u8 bytes_per_complete_pixel)
 | |
| {
 | |
|     VERIFY(filter != PNG::FilterType::None);
 | |
| 
 | |
|     switch (filter) {
 | |
|     case PNG::FilterType::Sub:
 | |
|         // This loop starts at bytes_per_complete_pixel because all bytes before that are
 | |
|         // guaranteed to have no valid byte at index (i - bytes_per_complete pixel).
 | |
|         // All such invalid byte indexes should be treated as 0, and adding 0 to the current
 | |
|         // byte would do nothing, so the first bytes_per_complete_pixel bytes can instead
 | |
|         // just be skipped.
 | |
|         for (size_t i = bytes_per_complete_pixel; i < scanline_data.size(); ++i) {
 | |
|             u8 left = scanline_data[i - bytes_per_complete_pixel];
 | |
|             scanline_data[i] += left;
 | |
|         }
 | |
|         break;
 | |
|     case PNG::FilterType::Up:
 | |
|         for (size_t i = 0; i < scanline_data.size(); ++i) {
 | |
|             u8 above = previous_scanlines_data[i];
 | |
|             scanline_data[i] += above;
 | |
|         }
 | |
|         break;
 | |
|     case PNG::FilterType::Average:
 | |
|         for (size_t i = 0; i < scanline_data.size(); ++i) {
 | |
|             u32 left = (i < bytes_per_complete_pixel) ? 0 : scanline_data[i - bytes_per_complete_pixel];
 | |
|             u32 above = previous_scanlines_data[i];
 | |
|             u8 average = (left + above) / 2;
 | |
|             scanline_data[i] += average;
 | |
|         }
 | |
|         break;
 | |
|     case PNG::FilterType::Paeth:
 | |
|         for (size_t i = 0; i < scanline_data.size(); ++i) {
 | |
|             u8 left = (i < bytes_per_complete_pixel) ? 0 : scanline_data[i - bytes_per_complete_pixel];
 | |
|             u8 above = previous_scanlines_data[i];
 | |
|             u8 upper_left = (i < bytes_per_complete_pixel) ? 0 : previous_scanlines_data[i - bytes_per_complete_pixel];
 | |
|             i32 predictor = left + above - upper_left;
 | |
|             u32 predictor_left = abs(predictor - left);
 | |
|             u32 predictor_above = abs(predictor - above);
 | |
|             u32 predictor_upper_left = abs(predictor - upper_left);
 | |
|             u8 nearest;
 | |
|             if (predictor_left <= predictor_above && predictor_left <= predictor_upper_left) {
 | |
|                 nearest = left;
 | |
|             } else if (predictor_above <= predictor_upper_left) {
 | |
|                 nearest = above;
 | |
|             } else {
 | |
|                 nearest = upper_left;
 | |
|             }
 | |
|             scanline_data[i] += nearest;
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| ALWAYS_INLINE static void unpack_grayscale_without_alpha(PNGLoadingContext& context)
 | |
| {
 | |
|     for (int y = 0; y < context.height; ++y) {
 | |
|         auto* gray_values = reinterpret_cast<const T*>(context.scanlines[y].data.data());
 | |
|         for (int i = 0; i < context.width; ++i) {
 | |
|             auto& pixel = (Pixel&)context.bitmap->scanline(y)[i];
 | |
|             pixel.r = gray_values[i];
 | |
|             pixel.g = gray_values[i];
 | |
|             pixel.b = gray_values[i];
 | |
|             pixel.a = 0xff;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| ALWAYS_INLINE static void unpack_grayscale_with_alpha(PNGLoadingContext& context)
 | |
| {
 | |
|     for (int y = 0; y < context.height; ++y) {
 | |
|         auto* tuples = reinterpret_cast<Tuple<T> const*>(context.scanlines[y].data.data());
 | |
|         for (int i = 0; i < context.width; ++i) {
 | |
|             auto& pixel = (Pixel&)context.bitmap->scanline(y)[i];
 | |
|             pixel.r = tuples[i].gray;
 | |
|             pixel.g = tuples[i].gray;
 | |
|             pixel.b = tuples[i].gray;
 | |
|             pixel.a = tuples[i].a;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| ALWAYS_INLINE static void unpack_triplets_without_alpha(PNGLoadingContext& context)
 | |
| {
 | |
|     for (int y = 0; y < context.height; ++y) {
 | |
|         auto* triplets = reinterpret_cast<Triplet<T> const*>(context.scanlines[y].data.data());
 | |
|         for (int i = 0; i < context.width; ++i) {
 | |
|             auto& pixel = (Pixel&)context.bitmap->scanline(y)[i];
 | |
|             pixel.r = triplets[i].r;
 | |
|             pixel.g = triplets[i].g;
 | |
|             pixel.b = triplets[i].b;
 | |
|             pixel.a = 0xff;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| ALWAYS_INLINE static void unpack_triplets_with_transparency_value(PNGLoadingContext& context, Triplet<T> transparency_value)
 | |
| {
 | |
|     for (int y = 0; y < context.height; ++y) {
 | |
|         auto* triplets = reinterpret_cast<Triplet<T> const*>(context.scanlines[y].data.data());
 | |
|         for (int i = 0; i < context.width; ++i) {
 | |
|             auto& pixel = (Pixel&)context.bitmap->scanline(y)[i];
 | |
|             pixel.r = triplets[i].r;
 | |
|             pixel.g = triplets[i].g;
 | |
|             pixel.b = triplets[i].b;
 | |
|             if (triplets[i] == transparency_value)
 | |
|                 pixel.a = 0x00;
 | |
|             else
 | |
|                 pixel.a = 0xff;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| NEVER_INLINE FLATTEN static ErrorOr<void> unfilter(PNGLoadingContext& context)
 | |
| {
 | |
|     // First unfilter the scanlines:
 | |
| 
 | |
|     // FIXME: Instead of creating a separate buffer for the scanlines that need to be
 | |
|     //        mutated, the mutation could be done in place (if the data was non-const).
 | |
|     size_t bytes_per_scanline = context.scanlines[0].data.size();
 | |
|     size_t bytes_needed_for_all_unfiltered_scanlines = 0;
 | |
|     for (int y = 0; y < context.height; ++y) {
 | |
|         if (context.scanlines[y].filter != PNG::FilterType::None) {
 | |
|             bytes_needed_for_all_unfiltered_scanlines += bytes_per_scanline;
 | |
|         }
 | |
|     }
 | |
|     context.unfiltered_data = TRY(ByteBuffer::create_uninitialized(bytes_needed_for_all_unfiltered_scanlines));
 | |
| 
 | |
|     // From section 6.3 of http://www.libpng.org/pub/png/spec/1.2/PNG-Filters.html
 | |
|     // "bpp is defined as the number of bytes per complete pixel, rounding up to one.
 | |
|     // For example, for color type 2 with a bit depth of 16, bpp is equal to 6
 | |
|     // (three samples, two bytes per sample); for color type 0 with a bit depth of 2,
 | |
|     // bpp is equal to 1 (rounding up); for color type 4 with a bit depth of 16, bpp
 | |
|     // is equal to 4 (two-byte grayscale sample, plus two-byte alpha sample)."
 | |
|     u8 bytes_per_complete_pixel = (context.bit_depth + 7) / 8 * context.channels;
 | |
| 
 | |
|     u8 dummy_scanline_bytes[bytes_per_scanline];
 | |
|     memset(dummy_scanline_bytes, 0, sizeof(dummy_scanline_bytes));
 | |
|     auto previous_scanlines_data = ReadonlyBytes { dummy_scanline_bytes, sizeof(dummy_scanline_bytes) };
 | |
| 
 | |
|     for (int y = 0, data_start = 0; y < context.height; ++y) {
 | |
|         if (context.scanlines[y].filter != PNG::FilterType::None) {
 | |
|             auto scanline_data_slice = context.unfiltered_data.bytes().slice(data_start, bytes_per_scanline);
 | |
| 
 | |
|             // Copy the current values over and set the scanline's data to the to-be-mutated slice
 | |
|             context.scanlines[y].data.copy_to(scanline_data_slice);
 | |
|             context.scanlines[y].data = scanline_data_slice;
 | |
| 
 | |
|             unfilter_scanline(context.scanlines[y].filter, scanline_data_slice, previous_scanlines_data, bytes_per_complete_pixel);
 | |
| 
 | |
|             data_start += bytes_per_scanline;
 | |
|         }
 | |
|         previous_scanlines_data = context.scanlines[y].data;
 | |
|     }
 | |
| 
 | |
|     // Now unpack the scanlines to RGBA:
 | |
|     switch (context.color_type) {
 | |
|     case PNG::ColorType::Greyscale:
 | |
|         if (context.bit_depth == 8) {
 | |
|             unpack_grayscale_without_alpha<u8>(context);
 | |
|         } else if (context.bit_depth == 16) {
 | |
|             unpack_grayscale_without_alpha<u16>(context);
 | |
|         } else if (context.bit_depth == 1 || context.bit_depth == 2 || context.bit_depth == 4) {
 | |
|             auto bit_depth_squared = context.bit_depth * context.bit_depth;
 | |
|             auto pixels_per_byte = 8 / context.bit_depth;
 | |
|             auto mask = (1 << context.bit_depth) - 1;
 | |
|             for (int y = 0; y < context.height; ++y) {
 | |
|                 auto* gray_values = context.scanlines[y].data.data();
 | |
|                 for (int x = 0; x < context.width; ++x) {
 | |
|                     auto bit_offset = (8 - context.bit_depth) - (context.bit_depth * (x % pixels_per_byte));
 | |
|                     auto value = (gray_values[x / pixels_per_byte] >> bit_offset) & mask;
 | |
|                     auto& pixel = (Pixel&)context.bitmap->scanline(y)[x];
 | |
|                     pixel.r = value * (0xff / bit_depth_squared);
 | |
|                     pixel.g = value * (0xff / bit_depth_squared);
 | |
|                     pixel.b = value * (0xff / bit_depth_squared);
 | |
|                     pixel.a = 0xff;
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             VERIFY_NOT_REACHED();
 | |
|         }
 | |
|         break;
 | |
|     case PNG::ColorType::GreyscaleWithAlpha:
 | |
|         if (context.bit_depth == 8) {
 | |
|             unpack_grayscale_with_alpha<u8>(context);
 | |
|         } else if (context.bit_depth == 16) {
 | |
|             unpack_grayscale_with_alpha<u16>(context);
 | |
|         } else {
 | |
|             VERIFY_NOT_REACHED();
 | |
|         }
 | |
|         break;
 | |
|     case PNG::ColorType::Truecolor:
 | |
|         if (context.palette_transparency_data.size() == 6) {
 | |
|             if (context.bit_depth == 8) {
 | |
|                 unpack_triplets_with_transparency_value<u8>(context, Triplet<u8> { context.palette_transparency_data[0], context.palette_transparency_data[2], context.palette_transparency_data[4] });
 | |
|             } else if (context.bit_depth == 16) {
 | |
|                 u16 tr = context.palette_transparency_data[0] | context.palette_transparency_data[1] << 8;
 | |
|                 u16 tg = context.palette_transparency_data[2] | context.palette_transparency_data[3] << 8;
 | |
|                 u16 tb = context.palette_transparency_data[4] | context.palette_transparency_data[5] << 8;
 | |
|                 unpack_triplets_with_transparency_value<u16>(context, Triplet<u16> { tr, tg, tb });
 | |
|             } else {
 | |
|                 VERIFY_NOT_REACHED();
 | |
|             }
 | |
|         } else {
 | |
|             if (context.bit_depth == 8)
 | |
|                 unpack_triplets_without_alpha<u8>(context);
 | |
|             else if (context.bit_depth == 16)
 | |
|                 unpack_triplets_without_alpha<u16>(context);
 | |
|             else
 | |
|                 VERIFY_NOT_REACHED();
 | |
|         }
 | |
|         break;
 | |
|     case PNG::ColorType::TruecolorWithAlpha:
 | |
|         if (context.bit_depth == 8) {
 | |
|             for (int y = 0; y < context.height; ++y) {
 | |
|                 memcpy(context.bitmap->scanline(y), context.scanlines[y].data.data(), context.scanlines[y].data.size());
 | |
|             }
 | |
|         } else if (context.bit_depth == 16) {
 | |
|             for (int y = 0; y < context.height; ++y) {
 | |
|                 auto* quartets = reinterpret_cast<Quartet<u16> const*>(context.scanlines[y].data.data());
 | |
|                 for (int i = 0; i < context.width; ++i) {
 | |
|                     auto& pixel = (Pixel&)context.bitmap->scanline(y)[i];
 | |
|                     pixel.r = quartets[i].r & 0xFF;
 | |
|                     pixel.g = quartets[i].g & 0xFF;
 | |
|                     pixel.b = quartets[i].b & 0xFF;
 | |
|                     pixel.a = quartets[i].a & 0xFF;
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             VERIFY_NOT_REACHED();
 | |
|         }
 | |
|         break;
 | |
|     case PNG::ColorType::IndexedColor:
 | |
|         if (context.bit_depth == 8) {
 | |
|             for (int y = 0; y < context.height; ++y) {
 | |
|                 auto* palette_index = context.scanlines[y].data.data();
 | |
|                 for (int i = 0; i < context.width; ++i) {
 | |
|                     auto& pixel = (Pixel&)context.bitmap->scanline(y)[i];
 | |
|                     if (palette_index[i] >= context.palette_data.size())
 | |
|                         return Error::from_string_literal("PNGImageDecoderPlugin: Palette index out of range");
 | |
|                     auto& color = context.palette_data.at((int)palette_index[i]);
 | |
|                     auto transparency = context.palette_transparency_data.size() >= palette_index[i] + 1u
 | |
|                         ? context.palette_transparency_data.data()[palette_index[i]]
 | |
|                         : 0xff;
 | |
|                     pixel.r = color.r;
 | |
|                     pixel.g = color.g;
 | |
|                     pixel.b = color.b;
 | |
|                     pixel.a = transparency;
 | |
|                 }
 | |
|             }
 | |
|         } else if (context.bit_depth == 1 || context.bit_depth == 2 || context.bit_depth == 4) {
 | |
|             auto pixels_per_byte = 8 / context.bit_depth;
 | |
|             auto mask = (1 << context.bit_depth) - 1;
 | |
|             for (int y = 0; y < context.height; ++y) {
 | |
|                 auto* palette_indices = context.scanlines[y].data.data();
 | |
|                 for (int i = 0; i < context.width; ++i) {
 | |
|                     auto bit_offset = (8 - context.bit_depth) - (context.bit_depth * (i % pixels_per_byte));
 | |
|                     auto palette_index = (palette_indices[i / pixels_per_byte] >> bit_offset) & mask;
 | |
|                     auto& pixel = (Pixel&)context.bitmap->scanline(y)[i];
 | |
|                     if ((size_t)palette_index >= context.palette_data.size())
 | |
|                         return Error::from_string_literal("PNGImageDecoderPlugin: Palette index out of range");
 | |
|                     auto& color = context.palette_data.at(palette_index);
 | |
|                     auto transparency = context.palette_transparency_data.size() >= palette_index + 1u
 | |
|                         ? context.palette_transparency_data.data()[palette_index]
 | |
|                         : 0xff;
 | |
|                     pixel.r = color.r;
 | |
|                     pixel.g = color.g;
 | |
|                     pixel.b = color.b;
 | |
|                     pixel.a = transparency;
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             VERIFY_NOT_REACHED();
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         VERIFY_NOT_REACHED();
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     // Swap r and b values:
 | |
|     for (int y = 0; y < context.height; ++y) {
 | |
|         auto* pixels = (Pixel*)context.bitmap->scanline(y);
 | |
|         for (int i = 0; i < context.bitmap->width(); ++i) {
 | |
|             auto& x = pixels[i];
 | |
|             swap(x.r, x.b);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return {};
 | |
| }
 | |
| 
 | |
| static bool decode_png_header(PNGLoadingContext& context)
 | |
| {
 | |
|     if (context.state >= PNGLoadingContext::HeaderDecoded)
 | |
|         return true;
 | |
| 
 | |
|     if (!context.data || context.data_size < sizeof(PNG::header)) {
 | |
|         dbgln_if(PNG_DEBUG, "Missing PNG header");
 | |
|         context.state = PNGLoadingContext::State::Error;
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (memcmp(context.data, PNG::header.span().data(), sizeof(PNG::header)) != 0) {
 | |
|         dbgln_if(PNG_DEBUG, "Invalid PNG header");
 | |
|         context.state = PNGLoadingContext::State::Error;
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     context.state = PNGLoadingContext::HeaderDecoded;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool decode_png_size(PNGLoadingContext& context)
 | |
| {
 | |
|     if (context.state >= PNGLoadingContext::SizeDecoded)
 | |
|         return true;
 | |
| 
 | |
|     if (context.state < PNGLoadingContext::HeaderDecoded) {
 | |
|         if (!decode_png_header(context))
 | |
|             return false;
 | |
|     }
 | |
| 
 | |
|     u8 const* data_ptr = context.data + sizeof(PNG::header);
 | |
|     size_t data_remaining = context.data_size - sizeof(PNG::header);
 | |
| 
 | |
|     Streamer streamer(data_ptr, data_remaining);
 | |
|     while (!streamer.at_end()) {
 | |
|         if (!process_chunk(streamer, context)) {
 | |
|             context.state = PNGLoadingContext::State::Error;
 | |
|             return false;
 | |
|         }
 | |
|         if (context.width && context.height) {
 | |
|             context.state = PNGLoadingContext::State::SizeDecoded;
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static bool decode_png_chunks(PNGLoadingContext& context)
 | |
| {
 | |
|     if (context.state >= PNGLoadingContext::State::ChunksDecoded)
 | |
|         return true;
 | |
| 
 | |
|     if (context.state < PNGLoadingContext::HeaderDecoded) {
 | |
|         if (!decode_png_header(context))
 | |
|             return false;
 | |
|     }
 | |
| 
 | |
|     u8 const* data_ptr = context.data + sizeof(PNG::header);
 | |
|     int data_remaining = context.data_size - sizeof(PNG::header);
 | |
| 
 | |
|     context.compressed_data.ensure_capacity(context.data_size);
 | |
| 
 | |
|     Streamer streamer(data_ptr, data_remaining);
 | |
|     while (!streamer.at_end()) {
 | |
|         if (!process_chunk(streamer, context)) {
 | |
|             // Ignore failed chunk and just consider chunk decoding being done.
 | |
|             // decode_png_bitmap() will check whether we got all required ones anyway.
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     context.state = PNGLoadingContext::State::ChunksDecoded;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static ErrorOr<void> decode_png_bitmap_simple(PNGLoadingContext& context)
 | |
| {
 | |
|     Streamer streamer(context.decompression_buffer->data(), context.decompression_buffer->size());
 | |
| 
 | |
|     for (int y = 0; y < context.height; ++y) {
 | |
|         PNG::FilterType filter;
 | |
|         if (!streamer.read(filter)) {
 | |
|             context.state = PNGLoadingContext::State::Error;
 | |
|             return Error::from_string_literal("PNGImageDecoderPlugin: Decoding failed");
 | |
|         }
 | |
| 
 | |
|         if (to_underlying(filter) > 4) {
 | |
|             context.state = PNGLoadingContext::State::Error;
 | |
|             return Error::from_string_literal("PNGImageDecoderPlugin: Invalid PNG filter");
 | |
|         }
 | |
| 
 | |
|         context.scanlines.append({ filter });
 | |
|         auto& scanline_buffer = context.scanlines.last().data;
 | |
|         auto row_size = context.compute_row_size_for_width(context.width);
 | |
|         if (row_size.has_overflow())
 | |
|             return Error::from_string_literal("PNGImageDecoderPlugin: Row size overflow");
 | |
| 
 | |
|         if (!streamer.wrap_bytes(scanline_buffer, row_size.value())) {
 | |
|             context.state = PNGLoadingContext::State::Error;
 | |
|             return Error::from_string_literal("PNGImageDecoderPlugin: Decoding failed");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     context.bitmap = TRY(Bitmap::try_create(context.has_alpha() ? BitmapFormat::BGRA8888 : BitmapFormat::BGRx8888, { context.width, context.height }));
 | |
|     return unfilter(context);
 | |
| }
 | |
| 
 | |
| static int adam7_height(PNGLoadingContext& context, int pass)
 | |
| {
 | |
|     switch (pass) {
 | |
|     case 1:
 | |
|         return (context.height + 7) / 8;
 | |
|     case 2:
 | |
|         return (context.height + 7) / 8;
 | |
|     case 3:
 | |
|         return (context.height + 3) / 8;
 | |
|     case 4:
 | |
|         return (context.height + 3) / 4;
 | |
|     case 5:
 | |
|         return (context.height + 1) / 4;
 | |
|     case 6:
 | |
|         return (context.height + 1) / 2;
 | |
|     case 7:
 | |
|         return context.height / 2;
 | |
|     default:
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int adam7_width(PNGLoadingContext& context, int pass)
 | |
| {
 | |
|     switch (pass) {
 | |
|     case 1:
 | |
|         return (context.width + 7) / 8;
 | |
|     case 2:
 | |
|         return (context.width + 3) / 8;
 | |
|     case 3:
 | |
|         return (context.width + 3) / 4;
 | |
|     case 4:
 | |
|         return (context.width + 1) / 4;
 | |
|     case 5:
 | |
|         return (context.width + 1) / 2;
 | |
|     case 6:
 | |
|         return context.width / 2;
 | |
|     case 7:
 | |
|         return context.width;
 | |
|     default:
 | |
|         VERIFY_NOT_REACHED();
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Index 0 unused (non-interlaced case)
 | |
| static int adam7_starty[8] = { 0, 0, 0, 4, 0, 2, 0, 1 };
 | |
| static int adam7_startx[8] = { 0, 0, 4, 0, 2, 0, 1, 0 };
 | |
| static int adam7_stepy[8] = { 1, 8, 8, 8, 4, 4, 2, 2 };
 | |
| static int adam7_stepx[8] = { 1, 8, 8, 4, 4, 2, 2, 1 };
 | |
| 
 | |
| static ErrorOr<void> decode_adam7_pass(PNGLoadingContext& context, Streamer& streamer, int pass)
 | |
| {
 | |
|     PNGLoadingContext subimage_context;
 | |
|     subimage_context.width = adam7_width(context, pass);
 | |
|     subimage_context.height = adam7_height(context, pass);
 | |
|     subimage_context.channels = context.channels;
 | |
|     subimage_context.color_type = context.color_type;
 | |
|     subimage_context.palette_data = context.palette_data;
 | |
|     subimage_context.palette_transparency_data = context.palette_transparency_data;
 | |
|     subimage_context.bit_depth = context.bit_depth;
 | |
|     subimage_context.filter_method = context.filter_method;
 | |
| 
 | |
|     // For small images, some passes might be empty
 | |
|     if (!subimage_context.width || !subimage_context.height)
 | |
|         return {};
 | |
| 
 | |
|     subimage_context.scanlines.clear_with_capacity();
 | |
|     for (int y = 0; y < subimage_context.height; ++y) {
 | |
|         PNG::FilterType filter;
 | |
|         if (!streamer.read(filter)) {
 | |
|             context.state = PNGLoadingContext::State::Error;
 | |
|             return Error::from_string_literal("PNGImageDecoderPlugin: Decoding failed");
 | |
|         }
 | |
| 
 | |
|         if (to_underlying(filter) > 4) {
 | |
|             context.state = PNGLoadingContext::State::Error;
 | |
|             return Error::from_string_literal("PNGImageDecoderPlugin: Invalid PNG filter");
 | |
|         }
 | |
| 
 | |
|         subimage_context.scanlines.append({ filter });
 | |
|         auto& scanline_buffer = subimage_context.scanlines.last().data;
 | |
| 
 | |
|         auto row_size = context.compute_row_size_for_width(subimage_context.width);
 | |
|         if (row_size.has_overflow())
 | |
|             return Error::from_string_literal("PNGImageDecoderPlugin: Row size overflow");
 | |
|         if (!streamer.wrap_bytes(scanline_buffer, row_size.value())) {
 | |
|             context.state = PNGLoadingContext::State::Error;
 | |
|             return Error::from_string_literal("PNGImageDecoderPlugin: Decoding failed");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     subimage_context.bitmap = TRY(Bitmap::try_create(context.bitmap->format(), { subimage_context.width, subimage_context.height }));
 | |
|     TRY(unfilter(subimage_context));
 | |
| 
 | |
|     // Copy the subimage data into the main image according to the pass pattern
 | |
|     for (int y = 0, dy = adam7_starty[pass]; y < subimage_context.height && dy < context.height; ++y, dy += adam7_stepy[pass]) {
 | |
|         for (int x = 0, dx = adam7_startx[pass]; x < subimage_context.width && dy < context.width; ++x, dx += adam7_stepx[pass]) {
 | |
|             context.bitmap->set_pixel(dx, dy, subimage_context.bitmap->get_pixel(x, y));
 | |
|         }
 | |
|     }
 | |
|     return {};
 | |
| }
 | |
| 
 | |
| static ErrorOr<void> decode_png_adam7(PNGLoadingContext& context)
 | |
| {
 | |
|     Streamer streamer(context.decompression_buffer->data(), context.decompression_buffer->size());
 | |
|     context.bitmap = TRY(Bitmap::try_create(context.has_alpha() ? BitmapFormat::BGRA8888 : BitmapFormat::BGRx8888, { context.width, context.height }));
 | |
|     for (int pass = 1; pass <= 7; ++pass)
 | |
|         TRY(decode_adam7_pass(context, streamer, pass));
 | |
|     return {};
 | |
| }
 | |
| 
 | |
| static ErrorOr<void> decode_png_bitmap(PNGLoadingContext& context)
 | |
| {
 | |
|     if (context.state < PNGLoadingContext::State::ChunksDecoded) {
 | |
|         if (!decode_png_chunks(context))
 | |
|             return Error::from_string_literal("PNGImageDecoderPlugin: Decoding failed");
 | |
|     }
 | |
| 
 | |
|     if (context.state >= PNGLoadingContext::State::BitmapDecoded)
 | |
|         return {};
 | |
| 
 | |
|     if (context.width == -1 || context.height == -1)
 | |
|         return Error::from_string_literal("PNGImageDecoderPlugin: Didn't see an IHDR chunk.");
 | |
| 
 | |
|     if (context.color_type == PNG::ColorType::IndexedColor && context.palette_data.is_empty())
 | |
|         return Error::from_string_literal("PNGImageDecoderPlugin: Didn't see a PLTE chunk for a palletized image, or it was empty.");
 | |
| 
 | |
|     auto result = Compress::Zlib::decompress_all(context.compressed_data.span());
 | |
|     if (!result.has_value()) {
 | |
|         context.state = PNGLoadingContext::State::Error;
 | |
|         return Error::from_string_literal("PNGImageDecoderPlugin: Decompression failed");
 | |
|     }
 | |
|     context.decompression_buffer = &result.value();
 | |
|     context.compressed_data.clear();
 | |
| 
 | |
|     context.scanlines.ensure_capacity(context.height);
 | |
|     switch (context.interlace_method) {
 | |
|     case PngInterlaceMethod::Null:
 | |
|         TRY(decode_png_bitmap_simple(context));
 | |
|         break;
 | |
|     case PngInterlaceMethod::Adam7:
 | |
|         TRY(decode_png_adam7(context));
 | |
|         break;
 | |
|     default:
 | |
|         context.state = PNGLoadingContext::State::Error;
 | |
|         return Error::from_string_literal("PNGImageDecoderPlugin: Invalid interlace method");
 | |
|     }
 | |
| 
 | |
|     context.decompression_buffer = nullptr;
 | |
| 
 | |
|     context.state = PNGLoadingContext::State::BitmapDecoded;
 | |
|     return {};
 | |
| }
 | |
| 
 | |
| static bool is_valid_compression_method(u8 compression_method)
 | |
| {
 | |
|     return compression_method == 0;
 | |
| }
 | |
| 
 | |
| static bool is_valid_filter_method(u8 filter_method)
 | |
| {
 | |
|     return filter_method == 0;
 | |
| }
 | |
| 
 | |
| static bool process_IHDR(ReadonlyBytes data, PNGLoadingContext& context)
 | |
| {
 | |
|     if (data.size() < (int)sizeof(PNG_IHDR))
 | |
|         return false;
 | |
|     auto& ihdr = *(const PNG_IHDR*)data.data();
 | |
| 
 | |
|     if (ihdr.width > maximum_width_for_decoded_images || ihdr.height > maximum_height_for_decoded_images) {
 | |
|         dbgln("This PNG is too large for comfort: {}x{}", (u32)ihdr.width, (u32)ihdr.height);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (!is_valid_compression_method(ihdr.compression_method)) {
 | |
|         dbgln("PNG has invalid compression method {}", ihdr.compression_method);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (!is_valid_filter_method(ihdr.filter_method)) {
 | |
|         dbgln("PNG has invalid filter method {}", ihdr.filter_method);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     context.width = ihdr.width;
 | |
|     context.height = ihdr.height;
 | |
|     context.bit_depth = ihdr.bit_depth;
 | |
|     context.color_type = ihdr.color_type;
 | |
|     context.compression_method = ihdr.compression_method;
 | |
|     context.filter_method = ihdr.filter_method;
 | |
|     context.interlace_method = ihdr.interlace_method;
 | |
| 
 | |
|     dbgln_if(PNG_DEBUG, "PNG: {}x{} ({} bpp)", context.width, context.height, context.bit_depth);
 | |
|     dbgln_if(PNG_DEBUG, "     Color type: {}", to_underlying(context.color_type));
 | |
|     dbgln_if(PNG_DEBUG, "Compress Method: {}", context.compression_method);
 | |
|     dbgln_if(PNG_DEBUG, "  Filter Method: {}", context.filter_method);
 | |
|     dbgln_if(PNG_DEBUG, " Interlace type: {}", context.interlace_method);
 | |
| 
 | |
|     if (context.interlace_method != PngInterlaceMethod::Null && context.interlace_method != PngInterlaceMethod::Adam7) {
 | |
|         dbgln_if(PNG_DEBUG, "PNGLoader::process_IHDR: unknown interlace method: {}", context.interlace_method);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     switch (context.color_type) {
 | |
|     case PNG::ColorType::Greyscale:
 | |
|         if (context.bit_depth != 1 && context.bit_depth != 2 && context.bit_depth != 4 && context.bit_depth != 8 && context.bit_depth != 16)
 | |
|             return false;
 | |
|         context.channels = 1;
 | |
|         break;
 | |
|     case PNG::ColorType::GreyscaleWithAlpha:
 | |
|         if (context.bit_depth != 8 && context.bit_depth != 16)
 | |
|             return false;
 | |
|         context.channels = 2;
 | |
|         break;
 | |
|     case PNG::ColorType::Truecolor:
 | |
|         if (context.bit_depth != 8 && context.bit_depth != 16)
 | |
|             return false;
 | |
|         context.channels = 3;
 | |
|         break;
 | |
|     case PNG::ColorType::IndexedColor:
 | |
|         if (context.bit_depth != 1 && context.bit_depth != 2 && context.bit_depth != 4 && context.bit_depth != 8)
 | |
|             return false;
 | |
|         context.channels = 1;
 | |
|         break;
 | |
|     case PNG::ColorType::TruecolorWithAlpha:
 | |
|         if (context.bit_depth != 8 && context.bit_depth != 16)
 | |
|             return false;
 | |
|         context.channels = 4;
 | |
|         break;
 | |
|     default:
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool process_IDAT(ReadonlyBytes data, PNGLoadingContext& context)
 | |
| {
 | |
|     context.compressed_data.append(data.data(), data.size());
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool process_PLTE(ReadonlyBytes data, PNGLoadingContext& context)
 | |
| {
 | |
|     context.palette_data.append((PaletteEntry const*)data.data(), data.size() / 3);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool process_tRNS(ReadonlyBytes data, PNGLoadingContext& context)
 | |
| {
 | |
|     switch (context.color_type) {
 | |
|     case PNG::ColorType::Greyscale:
 | |
|     case PNG::ColorType::Truecolor:
 | |
|     case PNG::ColorType::IndexedColor:
 | |
|         context.palette_transparency_data.append(data.data(), data.size());
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool process_chunk(Streamer& streamer, PNGLoadingContext& context)
 | |
| {
 | |
|     u32 chunk_size;
 | |
|     if (!streamer.read(chunk_size)) {
 | |
|         dbgln_if(PNG_DEBUG, "Bail at chunk_size");
 | |
|         return false;
 | |
|     }
 | |
|     u8 chunk_type[5];
 | |
|     chunk_type[4] = '\0';
 | |
|     if (!streamer.read_bytes(chunk_type, 4)) {
 | |
|         dbgln_if(PNG_DEBUG, "Bail at chunk_type");
 | |
|         return false;
 | |
|     }
 | |
|     ReadonlyBytes chunk_data;
 | |
|     if (!streamer.wrap_bytes(chunk_data, chunk_size)) {
 | |
|         dbgln_if(PNG_DEBUG, "Bail at chunk_data");
 | |
|         return false;
 | |
|     }
 | |
|     u32 chunk_crc;
 | |
|     if (!streamer.read(chunk_crc)) {
 | |
|         dbgln_if(PNG_DEBUG, "Bail at chunk_crc");
 | |
|         return false;
 | |
|     }
 | |
|     dbgln_if(PNG_DEBUG, "Chunk type: '{}', size: {}, crc: {:x}", chunk_type, chunk_size, chunk_crc);
 | |
| 
 | |
|     if (!strcmp((char const*)chunk_type, "IHDR"))
 | |
|         return process_IHDR(chunk_data, context);
 | |
|     if (!strcmp((char const*)chunk_type, "IDAT"))
 | |
|         return process_IDAT(chunk_data, context);
 | |
|     if (!strcmp((char const*)chunk_type, "PLTE"))
 | |
|         return process_PLTE(chunk_data, context);
 | |
|     if (!strcmp((char const*)chunk_type, "tRNS"))
 | |
|         return process_tRNS(chunk_data, context);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| PNGImageDecoderPlugin::PNGImageDecoderPlugin(u8 const* data, size_t size)
 | |
| {
 | |
|     m_context = make<PNGLoadingContext>();
 | |
|     m_context->data = data;
 | |
|     m_context->data_size = size;
 | |
| }
 | |
| 
 | |
| PNGImageDecoderPlugin::~PNGImageDecoderPlugin() = default;
 | |
| 
 | |
| IntSize PNGImageDecoderPlugin::size()
 | |
| {
 | |
|     if (m_context->state == PNGLoadingContext::State::Error)
 | |
|         return {};
 | |
| 
 | |
|     if (m_context->state < PNGLoadingContext::State::SizeDecoded) {
 | |
|         bool success = decode_png_size(*m_context);
 | |
|         if (!success)
 | |
|             return {};
 | |
|     }
 | |
| 
 | |
|     return { m_context->width, m_context->height };
 | |
| }
 | |
| 
 | |
| void PNGImageDecoderPlugin::set_volatile()
 | |
| {
 | |
|     if (m_context->bitmap)
 | |
|         m_context->bitmap->set_volatile();
 | |
| }
 | |
| 
 | |
| bool PNGImageDecoderPlugin::set_nonvolatile(bool& was_purged)
 | |
| {
 | |
|     if (!m_context->bitmap)
 | |
|         return false;
 | |
|     return m_context->bitmap->set_nonvolatile(was_purged);
 | |
| }
 | |
| 
 | |
| bool PNGImageDecoderPlugin::sniff()
 | |
| {
 | |
|     return decode_png_header(*m_context);
 | |
| }
 | |
| 
 | |
| bool PNGImageDecoderPlugin::is_animated()
 | |
| {
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| size_t PNGImageDecoderPlugin::loop_count()
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| size_t PNGImageDecoderPlugin::frame_count()
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| ErrorOr<ImageFrameDescriptor> PNGImageDecoderPlugin::frame(size_t index)
 | |
| {
 | |
|     if (index > 0)
 | |
|         return Error::from_string_literal("PNGImageDecoderPlugin: Invalid frame index");
 | |
| 
 | |
|     if (m_context->state == PNGLoadingContext::State::Error)
 | |
|         return Error::from_string_literal("PNGImageDecoderPlugin: Decoding failed");
 | |
| 
 | |
|     if (m_context->state < PNGLoadingContext::State::BitmapDecoded) {
 | |
|         // NOTE: This forces the chunk decoding to happen.
 | |
|         TRY(decode_png_bitmap(*m_context));
 | |
|     }
 | |
| 
 | |
|     VERIFY(m_context->bitmap);
 | |
|     return ImageFrameDescriptor { m_context->bitmap, 0 };
 | |
| }
 | |
| 
 | |
| }
 | 
