1
Fork 0
mirror of https://github.com/RGBCube/superfreq synced 2025-07-29 09:57:46 +00:00

watt: turn into a library

This commit is contained in:
RGBCube 2025-06-14 22:54:46 +03:00
parent 3c82679ada
commit a341d08c45
Signed by: RGBCube
SSH key fingerprint: SHA256:CzqbPcfwt+GxFYNnFVCqoN5Itn4YFrshg1TrnACpA5M
11 changed files with 115 additions and 84 deletions

28
watt/Cargo.toml Normal file
View file

@ -0,0 +1,28 @@
[package]
name = "watt"
description.workspace = true
version.workspace = true
edition.workspace = true
authors.workspace = true
rust-version.workspace = true
[lib]
path = "lib.rs"
[[bin]]
name = "watt"
path = "main.rs"
[dependencies]
anyhow.workspace = true
clap.workspace = true
clap-verbosity-flag.workspace = true
ctrlc.workspace = true
derive_more.workspace = true
env_logger.workspace = true
log.workspace = true
num_cpus.workspace = true
serde.workspace = true
thiserror.workspace = true
toml.workspace = true
yansi.workspace = true

580
watt/config.rs Normal file
View file

@ -0,0 +1,580 @@
use std::{
fs,
path::Path,
};
use anyhow::{
Context,
bail,
};
use serde::{
Deserialize,
Serialize,
};
use crate::{
cpu,
power_supply,
};
fn is_default<T: Default + PartialEq>(value: &T) -> bool {
*value == T::default()
}
#[derive(
Serialize, Deserialize, clap::Parser, Default, Debug, Clone, PartialEq, Eq,
)]
#[serde(deny_unknown_fields, default, rename_all = "kebab-case")]
pub struct CpuDelta {
/// The CPUs to apply the changes to. When unspecified, will be applied to
/// all CPUs.
#[arg(short = 'c', long = "for")]
#[serde(rename = "for", skip_serializing_if = "is_default")]
pub for_: Option<Vec<u32>>,
/// Set the CPU governor.
#[arg(short = 'g', long)]
#[serde(skip_serializing_if = "is_default")]
pub governor: Option<String>, /* TODO: Validate with clap for available
* governors. */
/// Set CPU Energy Performance Preference (EPP). Short form: --epp.
#[arg(short = 'p', long, alias = "epp")]
#[serde(skip_serializing_if = "is_default")]
pub energy_performance_preference: Option<String>, /* TODO: Validate with
* clap for available
* governors. */
/// Set CPU Energy Performance Bias (EPB). Short form: --epb.
#[arg(short = 'b', long, alias = "epb")]
#[serde(skip_serializing_if = "is_default")]
pub energy_performance_bias: Option<String>, /* TODO: Validate with clap for available governors. */
/// Set minimum CPU frequency in MHz. Short form: --freq-min.
#[arg(short = 'f', long, alias = "freq-min", value_parser = clap::value_parser!(u64).range(1..=10_000))]
#[serde(skip_serializing_if = "is_default")]
pub frequency_mhz_minimum: Option<u64>,
/// Set maximum CPU frequency in MHz. Short form: --freq-max.
#[arg(short = 'F', long, alias = "freq-max", value_parser = clap::value_parser!(u64).range(1..=10_000))]
#[serde(skip_serializing_if = "is_default")]
pub frequency_mhz_maximum: Option<u64>,
/// Set turbo boost behaviour. Has to be for all CPUs.
#[arg(short = 't', long, conflicts_with = "for_")]
#[serde(skip_serializing_if = "is_default")]
pub turbo: Option<bool>,
}
impl CpuDelta {
pub fn apply(&self) -> anyhow::Result<()> {
let mut cpus = match &self.for_ {
Some(numbers) => {
let mut cpus = Vec::with_capacity(numbers.len());
let cache = cpu::CpuRescanCache::default();
for &number in numbers {
cpus.push(cpu::Cpu::new(number, &cache)?);
}
cpus
},
None => {
cpu::Cpu::all()
.context("failed to get all CPUs and their information")?
},
};
for cpu in &mut cpus {
if let Some(governor) = self.governor.as_ref() {
cpu.set_governor(governor)?;
}
if let Some(epp) = self.energy_performance_preference.as_ref() {
cpu.set_epp(epp)?;
}
if let Some(epb) = self.energy_performance_bias.as_ref() {
cpu.set_epb(epb)?;
}
if let Some(mhz_minimum) = self.frequency_mhz_minimum {
cpu.set_frequency_mhz_minimum(mhz_minimum)?;
}
if let Some(mhz_maximum) = self.frequency_mhz_maximum {
cpu.set_frequency_mhz_maximum(mhz_maximum)?;
}
}
if let Some(turbo) = self.turbo {
cpu::Cpu::set_turbo(turbo)?;
}
Ok(())
}
}
#[derive(
Serialize, Deserialize, clap::Parser, Default, Debug, Clone, PartialEq, Eq,
)]
#[serde(deny_unknown_fields, default, rename_all = "kebab-case")]
pub struct PowerDelta {
/// The power supplies to apply the changes to. When unspecified, will be
/// applied to all power supplies.
#[arg(short = 'p', long = "for")]
#[serde(rename = "for", skip_serializing_if = "is_default")]
pub for_: Option<Vec<String>>,
/// Set the percentage that the power supply has to drop under for charging
/// to start. Short form: --charge-start.
#[arg(short = 'c', long, alias = "charge-start", value_parser = clap::value_parser!(u8).range(0..=100))]
#[serde(skip_serializing_if = "is_default")]
pub charge_threshold_start: Option<u8>,
/// Set the percentage where charging will stop. Short form: --charge-end.
#[arg(short = 'C', long, alias = "charge-end", value_parser = clap::value_parser!(u8).range(0..=100))]
#[serde(skip_serializing_if = "is_default")]
pub charge_threshold_end: Option<u8>,
/// Set ACPI platform profile. Has to be for all power supplies.
#[arg(short = 'f', long, alias = "profile", conflicts_with = "for_")]
#[serde(skip_serializing_if = "is_default")]
pub platform_profile: Option<String>,
}
impl PowerDelta {
pub fn apply(&self) -> anyhow::Result<()> {
let mut power_supplies = match &self.for_ {
Some(names) => {
let mut power_supplies = Vec::with_capacity(names.len());
for name in names {
power_supplies
.push(power_supply::PowerSupply::from_name(name.clone())?);
}
power_supplies
},
None => {
power_supply::PowerSupply::all()?
.into_iter()
.filter(|power_supply| power_supply.threshold_config.is_some())
.collect()
},
};
for power_supply in &mut power_supplies {
if let Some(threshold_start) = self.charge_threshold_start {
power_supply
.set_charge_threshold_start(threshold_start as f64 / 100.0)?;
}
if let Some(threshold_end) = self.charge_threshold_end {
power_supply.set_charge_threshold_end(threshold_end as f64 / 100.0)?;
}
}
if let Some(platform_profile) = self.platform_profile.as_ref() {
power_supply::PowerSupply::set_platform_profile(platform_profile)?;
}
Ok(())
}
}
macro_rules! named {
($variant:ident => $value:literal) => {
pub mod $variant {
pub fn serialize<S: serde::Serializer>(
serializer: S,
) -> Result<S::Ok, S::Error> {
serializer.serialize_str($value)
}
pub fn deserialize<'de, D: serde::Deserializer<'de>>(
deserializer: D,
) -> Result<(), D::Error> {
struct Visitor;
impl<'de> serde::de::Visitor<'de> for Visitor {
type Value = ();
fn expecting(
&self,
writer: &mut std::fmt::Formatter,
) -> std::fmt::Result {
writer.write_str(concat!("\"", $value, "\""))
}
fn visit_str<E: serde::de::Error>(
self,
value: &str,
) -> Result<Self::Value, E> {
if value != $value {
return Err(E::invalid_value(
serde::de::Unexpected::Str(value),
&self,
));
}
Ok(())
}
}
deserializer.deserialize_str(Visitor)
}
}
};
}
mod expression {
named!(cpu_usage => "%cpu-usage");
named!(cpu_usage_volatility => "$cpu-usage-volatility");
named!(cpu_temperature => "$cpu-temperature");
named!(cpu_temperature_volatility => "$cpu-temperature-volatility");
named!(cpu_idle_seconds => "$cpu-idle-seconds");
named!(power_supply_charge => "%power-supply-charge");
named!(power_supply_discharge_rate => "%power-supply-discharge-rate");
named!(discharging => "?discharging");
}
#[derive(Serialize, Deserialize, Debug, Clone, PartialEq)]
#[serde(untagged)]
pub enum Expression {
#[serde(with = "expression::cpu_usage")]
CpuUsage,
#[serde(with = "expression::cpu_usage_volatility")]
CpuUsageVolatility,
#[serde(with = "expression::cpu_temperature")]
CpuTemperature,
#[serde(with = "expression::cpu_temperature_volatility")]
CpuTemperatureVolatility,
#[serde(with = "expression::cpu_idle_seconds")]
CpuIdleSeconds,
#[serde(with = "expression::power_supply_charge")]
PowerSupplyCharge,
#[serde(with = "expression::power_supply_discharge_rate")]
PowerSupplyDischargeRate,
#[serde(with = "expression::discharging")]
Discharging,
Boolean(bool),
Number(f64),
Plus {
#[serde(rename = "value")]
a: Box<Expression>,
#[serde(rename = "plus")]
b: Box<Expression>,
},
Minus {
#[serde(rename = "value")]
a: Box<Expression>,
#[serde(rename = "minus")]
b: Box<Expression>,
},
Multiply {
#[serde(rename = "value")]
a: Box<Expression>,
#[serde(rename = "multiply")]
b: Box<Expression>,
},
Power {
#[serde(rename = "value")]
a: Box<Expression>,
#[serde(rename = "power")]
b: Box<Expression>,
},
Divide {
#[serde(rename = "value")]
a: Box<Expression>,
#[serde(rename = "divide")]
b: Box<Expression>,
},
LessThan {
#[serde(rename = "value")]
a: Box<Expression>,
#[serde(rename = "is-less-than")]
b: Box<Expression>,
},
MoreThan {
#[serde(rename = "value")]
a: Box<Expression>,
#[serde(rename = "is-more-than")]
b: Box<Expression>,
},
Equal {
#[serde(rename = "value")]
a: Box<Expression>,
#[serde(rename = "is-equal")]
b: Box<Expression>,
leeway: Box<Expression>,
},
And {
#[serde(rename = "value")]
a: Box<Expression>,
#[serde(rename = "and")]
b: Box<Expression>,
},
All {
all: Vec<Expression>,
},
Or {
#[serde(rename = "value")]
a: Box<Expression>,
#[serde(rename = "or")]
b: Box<Expression>,
},
Any {
any: Vec<Expression>,
},
Not {
not: Box<Expression>,
},
}
impl Default for Expression {
fn default() -> Self {
Self::Boolean(true)
}
}
impl Expression {
pub fn as_number(&self) -> anyhow::Result<f64> {
let Self::Number(number) = self else {
bail!("tried to cast '{self:?}' to a number, failed")
};
Ok(*number)
}
pub fn as_boolean(&self) -> anyhow::Result<bool> {
let Self::Boolean(boolean) = self else {
bail!("tried to cast '{self:?}' to a boolean, failed")
};
Ok(*boolean)
}
}
#[derive(Debug, Clone, PartialEq)]
pub struct EvalState {
pub cpu_usage: f64,
pub cpu_usage_volatility: Option<f64>,
pub cpu_temperature: f64,
pub cpu_temperature_volatility: Option<f64>,
pub cpu_idle_seconds: f64,
pub power_supply_charge: f64,
pub power_supply_discharge_rate: Option<f64>,
pub discharging: bool,
}
impl Expression {
pub fn eval(&self, state: &EvalState) -> anyhow::Result<Option<Expression>> {
use Expression::*;
macro_rules! try_ok {
($expression:expr) => {
match $expression {
Some(value) => value,
None => return Ok(None),
}
};
}
macro_rules! eval {
($expression:expr) => {
try_ok!($expression.eval(state)?)
};
}
// [e8dax09]: This may be look inefficient, and it definitely isn't optimal,
// but expressions in rules are usually so small that it doesn't matter or
// make a perceiveable performance difference.
//
// We also want to be strict, instead of lazy in binary operations, because
// we want to catch type errors immediately.
//
// FIXME: We currently cannot catch errors that will happen when propagating
// None. You can have a type error go uncaught on first startup by using
// $cpu-usage-volatility incorrectly, for example.
Ok(Some(match self {
CpuUsage => Number(state.cpu_usage),
CpuUsageVolatility => Number(try_ok!(state.cpu_usage_volatility)),
CpuTemperature => Number(state.cpu_temperature),
CpuTemperatureVolatility => {
Number(try_ok!(state.cpu_temperature_volatility))
},
CpuIdleSeconds => Number(state.cpu_idle_seconds),
PowerSupplyCharge => Number(state.cpu_idle_seconds),
PowerSupplyDischargeRate => {
Number(try_ok!(state.power_supply_discharge_rate))
},
Discharging => Boolean(state.discharging),
literal @ (Boolean(_) | Number(_)) => literal.clone(),
Plus { a, b } => Number(eval!(a).as_number()? + eval!(b).as_number()?),
Minus { a, b } => Number(eval!(a).as_number()? - eval!(b).as_number()?),
Multiply { a, b } => {
Number(eval!(a).as_number()? * eval!(b).as_number()?)
},
Power { a, b } => {
Number(eval!(a).as_number()?.powf(eval!(b).as_number()?))
},
Divide { a, b } => Number(eval!(a).as_number()? / eval!(b).as_number()?),
LessThan { a, b } => {
Boolean(eval!(a).as_number()? < eval!(b).as_number()?)
},
MoreThan { a, b } => {
Boolean(eval!(a).as_number()? > eval!(b).as_number()?)
},
Equal { a, b, leeway } => {
let a = eval!(a).as_number()?;
let b = eval!(b).as_number()?;
let leeway = eval!(leeway).as_number()?;
let minimum = a - leeway;
let maximum = a + leeway;
Boolean(minimum < b && b < maximum)
},
And { a, b } => {
let a = eval!(a).as_boolean()?;
let b = eval!(b).as_boolean()?;
Boolean(a && b)
},
All { all } => {
let mut result = true;
for value in all {
let value = eval!(value).as_boolean()?;
result = result && value;
}
Boolean(result)
},
Or { a, b } => {
let a = eval!(a).as_boolean()?;
let b = eval!(b).as_boolean()?;
Boolean(a || b)
},
Any { any } => {
let mut result = false;
for value in any {
let value = eval!(value).as_boolean()?;
result = result || value;
}
Boolean(result)
},
Not { not } => Boolean(!eval!(not).as_boolean()?),
}))
}
}
#[derive(Serialize, Deserialize, Default, Debug, Clone, PartialEq)]
#[serde(deny_unknown_fields, rename_all = "kebab-case")]
pub struct Rule {
pub priority: u8,
#[serde(default, rename = "if", skip_serializing_if = "is_default")]
pub condition: Expression,
#[serde(default, skip_serializing_if = "is_default")]
pub cpu: CpuDelta,
#[serde(default, skip_serializing_if = "is_default")]
pub power: PowerDelta,
}
#[derive(Serialize, Deserialize, Default, Debug, Clone, PartialEq)]
#[serde(default, rename_all = "kebab-case")]
pub struct DaemonConfig {
#[serde(rename = "rule")]
pub rules: Vec<Rule>,
}
impl DaemonConfig {
const DEFAULT: &str = include_str!("config.toml");
pub fn load_from(path: Option<&Path>) -> anyhow::Result<Self> {
let contents = if let Some(path) = path {
log::debug!("loading config from '{path}'", path = path.display());
&fs::read_to_string(path).with_context(|| {
format!("failed to read config from '{path}'", path = path.display())
})?
} else {
log::debug!(
"loading default config from embedded toml:\n{config}",
config = Self::DEFAULT,
);
Self::DEFAULT
};
let mut config: Self = toml::from_str(contents).with_context(|| {
path.map_or(
"failed to parse builtin default config, this is a bug".to_owned(),
|p| format!("failed to parse file at '{path}'", path = p.display()),
)
})?;
{
let mut priorities = Vec::with_capacity(config.rules.len());
for rule in &config.rules {
if priorities.contains(&rule.priority) {
bail!("each config rule must have a different priority")
}
priorities.push(rule.priority);
}
}
// This is just for debug traces.
if log::max_level() >= log::LevelFilter::Debug {
if config.rules.is_sorted_by_key(|rule| rule.priority) {
log::debug!(
"config rules are sorted by increasing priority, not doing anything"
);
} else {
log::debug!("config rules aren't sorted by priority, sorting");
}
}
config.rules.sort_by_key(|rule| rule.priority);
log::debug!("loaded config: {config:#?}");
Ok(config)
}
}

114
watt/config.toml Normal file
View file

@ -0,0 +1,114 @@
# Watt Default Configuration
# Rules are evaluated by priority (higher number => higher priority).
# Each rule can specify conditions and actions for CPU and power management.
# Emergency thermal protection (highest priority).
[[rule]]
if = { value = "$cpu-temperature", is-more-than = 85.0 }
priority = 100
cpu.energy-performance-preference = "power"
cpu.frequency-mhz-maximum = 2000
cpu.governor = "powersave"
cpu.turbo = false
# Critical battery preservation.
[[rule]]
if.all = [ "?discharging", { value = "%power-supply-charge", is-less-than = 0.3 } ]
priority = 90
cpu.energy-performance-preference = "power"
cpu.frequency-mhz-maximum = 800 # More aggressive below critical threshold.
cpu.governor = "powersave"
cpu.turbo = false
power.platform-profile = "low-power"
# High performance mode for sustained high load.
[[rule]]
if.all = [
{ value = "%cpu-usage", is-more-than = 0.8 },
{ value = "$cpu-idle-seconds", is-less-than = 30.0 },
{ value = "$cpu-temperature", is-less-than = 75.0 },
]
priority = 80
cpu.energy-performance-preference = "performance"
cpu.governor = "performance"
cpu.turbo = true
# Performance mode when not discharging.
[[rule]]
if.all = [
{ not = "?discharging" },
{ value = "%cpu-usage", is-more-than = 0.1 },
{ value = "$cpu-temperature", is-less-than = 80.0 },
]
priority = 70
cpu.energy-performance-bias = "balance_performance"
cpu.energy-performance-preference = "performance"
cpu.governor = "performance"
cpu.turbo = true
# Moderate performance for medium load.
[[rule]]
if.all = [
{ value = "%cpu-usage", is-more-than = 0.4 },
{ value = "%cpu-usage", is-less-than = 0.8 },
]
priority = 60
cpu.energy-performance-preference = "balance_performance"
cpu.governor = "schedutil"
# Power saving during low activity.
[[rule]]
if.all = [
{ value = "%cpu-usage", is-less-than = 0.2 },
{ value = "$cpu-idle-seconds", is-more-than = 60.0 },
]
priority = 50
cpu.energy-performance-preference = "power"
cpu.governor = "powersave"
cpu.turbo = false
# Extended idle power optimization.
[[rule]]
if = { value = "$cpu-idle-seconds", is-more-than = 300.0 }
priority = 40
cpu.energy-performance-preference = "power"
cpu.frequency-mhz-maximum = 1600
cpu.governor = "powersave"
cpu.turbo = false
# Battery conservation when discharging.
[[rule]]
if.all = [ "?discharging", { value = "%power-supply-charge", is-less-than = 0.5 } ]
priority = 30
cpu.energy-performance-preference = "power"
cpu.frequency-mhz-maximum = 2000
cpu.governor = "powersave"
cpu.turbo = false
power.platform-profile = "low-power"
# General battery mode.
[[rule]]
if = "?discharging"
priority = 20
cpu.energy-performance-bias = "balance_power"
cpu.energy-performance-preference = "power"
cpu.frequency-mhz-maximum = 1800
cpu.frequency-mhz-minimum = 200
cpu.governor = "powersave"
cpu.turbo = false
# Balanced performance for general use. Default fallback rule.
[[rule]]
cpu.energy-performance-preference = "balance_performance"
cpu.governor = "schedutil"
priority = 0

697
watt/cpu.rs Normal file
View file

@ -0,0 +1,697 @@
use std::{
cell::OnceCell,
collections::HashMap,
fmt,
mem,
rc::Rc,
string::ToString,
};
use anyhow::{
Context,
bail,
};
use yansi::Paint as _;
use crate::fs;
#[derive(Default, Debug, Clone, PartialEq)]
pub struct CpuRescanCache {
stat: OnceCell<HashMap<u32, CpuStat>>,
info: OnceCell<HashMap<u32, Rc<HashMap<String, String>>>>,
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct CpuStat {
pub user: u64,
pub nice: u64,
pub system: u64,
pub idle: u64,
pub iowait: u64,
pub irq: u64,
pub softirq: u64,
pub steal: u64,
}
impl CpuStat {
pub fn total(&self) -> u64 {
self.user
+ self.nice
+ self.system
+ self.idle
+ self.iowait
+ self.irq
+ self.softirq
+ self.steal
}
pub fn idle(&self) -> u64 {
self.idle + self.iowait
}
pub fn usage(&self) -> f64 {
1.0 - self.idle() as f64 / self.total() as f64
}
}
#[derive(Debug, Clone, PartialEq)]
pub struct Cpu {
pub number: u32,
pub has_cpufreq: bool,
pub available_governors: Vec<String>,
pub governor: Option<String>,
pub frequency_mhz: Option<u64>,
pub frequency_mhz_minimum: Option<u64>,
pub frequency_mhz_maximum: Option<u64>,
pub available_epps: Vec<String>,
pub epp: Option<String>,
pub available_epbs: Vec<String>,
pub epb: Option<String>,
pub stat: CpuStat,
pub info: Option<Rc<HashMap<String, String>>>,
pub temperature: Option<f64>,
}
impl fmt::Display for Cpu {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let number = self.number.cyan();
write!(f, "CPU {number}")
}
}
impl Cpu {
pub fn new(number: u32, cache: &CpuRescanCache) -> anyhow::Result<Self> {
let mut cpu = Self {
number,
has_cpufreq: false,
available_governors: Vec::new(),
governor: None,
frequency_mhz: None,
frequency_mhz_minimum: None,
frequency_mhz_maximum: None,
available_epps: Vec::new(),
epp: None,
available_epbs: Vec::new(),
epb: None,
stat: CpuStat {
user: 0,
nice: 0,
system: 0,
idle: 0,
iowait: 0,
irq: 0,
softirq: 0,
steal: 0,
},
info: None,
temperature: None,
};
cpu.rescan(cache)?;
Ok(cpu)
}
/// Get all CPUs.
pub fn all() -> anyhow::Result<Vec<Cpu>> {
const PATH: &str = "/sys/devices/system/cpu";
let mut cpus = vec![];
let cache = CpuRescanCache::default();
for entry in fs::read_dir(PATH)
.context("failed to read CPU entries")?
.with_context(|| format!("'{PATH}' doesn't exist, are you on linux?"))?
{
let entry =
entry.with_context(|| format!("failed to read entry of '{PATH}'"))?;
let entry_file_name = entry.file_name();
let Some(name) = entry_file_name.to_str() else {
continue;
};
let Some(cpu_prefix_removed) = name.strip_prefix("cpu") else {
continue;
};
// Has to match "cpu{N}".
let Ok(number) = cpu_prefix_removed.parse() else {
continue;
};
cpus.push(Self::new(number, &cache)?);
}
// Fall back if sysfs iteration above fails to find any cpufreq CPUs.
if cpus.is_empty() {
for number in 0..num_cpus::get() as u32 {
cpus.push(Self::new(number, &cache)?);
}
}
Ok(cpus)
}
/// Rescan CPU, tuning local copy of settings.
pub fn rescan(&mut self, cache: &CpuRescanCache) -> anyhow::Result<()> {
let Self { number, .. } = self;
if !fs::exists(format!("/sys/devices/system/cpu/cpu{number}")) {
bail!("{self} does not exist");
}
self.has_cpufreq =
fs::exists(format!("/sys/devices/system/cpu/cpu{number}/cpufreq"));
if self.has_cpufreq {
self.rescan_governor()?;
self.rescan_frequency()?;
self.rescan_epp()?;
self.rescan_epb()?;
}
self.rescan_stat(cache)?;
self.rescan_info(cache)?;
Ok(())
}
fn rescan_governor(&mut self) -> anyhow::Result<()> {
let Self { number, .. } = *self;
self.available_governors = 'available_governors: {
let Some(content) = fs::read(format!(
"/sys/devices/system/cpu/cpu{number}/cpufreq/\
scaling_available_governors"
))
.with_context(|| format!("failed to read {self} available governors"))?
else {
break 'available_governors Vec::new();
};
content
.split_whitespace()
.map(ToString::to_string)
.collect()
};
self.governor = Some(
fs::read(format!(
"/sys/devices/system/cpu/cpu{number}/cpufreq/scaling_governor"
))
.with_context(|| format!("failed to read {self} scaling governor"))?
.with_context(|| format!("failed to find {self} scaling governor"))?,
);
Ok(())
}
fn rescan_frequency(&mut self) -> anyhow::Result<()> {
let Self { number, .. } = *self;
let frequency_khz = fs::read_n::<u64>(format!(
"/sys/devices/system/cpu/cpu{number}/cpufreq/scaling_cur_freq"
))
.with_context(|| format!("failed to parse {self} frequency"))?
.with_context(|| format!("failed to find {self} frequency"))?;
let frequency_khz_minimum = fs::read_n::<u64>(format!(
"/sys/devices/system/cpu/cpu{number}/cpufreq/scaling_min_freq"
))
.with_context(|| format!("failed to parse {self} frequency minimum"))?
.with_context(|| format!("failed to find {self} frequency"))?;
let frequency_khz_maximum = fs::read_n::<u64>(format!(
"/sys/devices/system/cpu/cpu{number}/cpufreq/scaling_max_freq"
))
.with_context(|| format!("failed to parse {self} frequency maximum"))?
.with_context(|| format!("failed to find {self} frequency"))?;
self.frequency_mhz = Some(frequency_khz / 1000);
self.frequency_mhz_minimum = Some(frequency_khz_minimum / 1000);
self.frequency_mhz_maximum = Some(frequency_khz_maximum / 1000);
Ok(())
}
fn rescan_epp(&mut self) -> anyhow::Result<()> {
let Self { number, .. } = *self;
self.available_epps = 'available_epps: {
let Some(content) = fs::read(format!(
"/sys/devices/system/cpu/cpu{number}/cpufreq/\
energy_performance_available_preferences"
))
.with_context(|| format!("failed to read {self} available EPPs"))?
else {
break 'available_epps Vec::new();
};
content
.split_whitespace()
.map(ToString::to_string)
.collect()
};
self.epp = Some(
fs::read(format!(
"/sys/devices/system/cpu/cpu{number}/cpufreq/\
energy_performance_preference"
))
.with_context(|| format!("failed to read {self} EPP"))?
.with_context(|| format!("failed to find {self} EPP"))?,
);
Ok(())
}
fn rescan_epb(&mut self) -> anyhow::Result<()> {
let Self { number, .. } = self;
self.available_epbs = if self.has_cpufreq {
vec![
"1".to_owned(),
"2".to_owned(),
"3".to_owned(),
"4".to_owned(),
"5".to_owned(),
"6".to_owned(),
"7".to_owned(),
"8".to_owned(),
"9".to_owned(),
"10".to_owned(),
"11".to_owned(),
"12".to_owned(),
"13".to_owned(),
"14".to_owned(),
"15".to_owned(),
"performance".to_owned(),
"balance-performance".to_owned(),
"balance_performance".to_owned(), // Alternative form with underscore.
"balance-power".to_owned(),
"balance_power".to_owned(), // Alternative form with underscore.
"power".to_owned(),
]
} else {
Vec::new()
};
self.epb = Some(
fs::read(format!(
"/sys/devices/system/cpu/cpu{number}/cpufreq/energy_performance_bias"
))
.with_context(|| format!("failed to read {self} EPB"))?
.with_context(|| format!("failed to find {self} EPB"))?,
);
Ok(())
}
fn rescan_stat(&mut self, cache: &CpuRescanCache) -> anyhow::Result<()> {
// OnceCell::get_or_try_init is unstable. Cope:
let stat = match cache.stat.get() {
Some(stat) => stat,
None => {
let content = fs::read("/proc/stat")
.context("failed to read CPU stat")?
.context("/proc/stat does not exist")?;
cache
.stat
.set(HashMap::from_iter(content.lines().skip(1).filter_map(
|line| {
let mut parts = line.strip_prefix("cpu")?.split_whitespace();
let number = parts.next()?.parse().ok()?;
let stat = CpuStat {
user: parts.next()?.parse().ok()?,
nice: parts.next()?.parse().ok()?,
system: parts.next()?.parse().ok()?,
idle: parts.next()?.parse().ok()?,
iowait: parts.next()?.parse().ok()?,
irq: parts.next()?.parse().ok()?,
softirq: parts.next()?.parse().ok()?,
steal: parts.next()?.parse().ok()?,
};
Some((number, stat))
},
)))
.unwrap();
cache.stat.get().unwrap()
},
};
self.stat = stat
.get(&self.number)
.with_context(|| format!("failed to get stat of {self}"))?
.clone();
Ok(())
}
fn rescan_info(&mut self, cache: &CpuRescanCache) -> anyhow::Result<()> {
// OnceCell::get_or_try_init is unstable. Cope:
let info = match cache.info.get() {
Some(stat) => stat,
None => {
let content = fs::read("/proc/cpuinfo")
.context("failed to read CPU info")?
.context("/proc/cpuinfo does not exist")?;
let mut info = HashMap::new();
let mut current_number = None;
let mut current_data = HashMap::new();
macro_rules! try_save_data {
() => {
if let Some(number) = current_number.take() {
info.insert(number, Rc::new(mem::take(&mut current_data)));
}
};
}
for line in content.lines() {
let parts = line.splitn(2, ':').collect::<Vec<_>>();
if parts.len() == 2 {
let key = parts[0].trim();
let value = parts[1].trim();
if key == "processor" {
try_save_data!();
current_number = value.parse::<u32>().ok();
} else {
current_data.insert(key.to_owned(), value.to_owned());
}
}
}
try_save_data!();
cache.info.set(info).unwrap();
cache.info.get().unwrap()
},
};
self.info = info.get(&self.number).cloned();
Ok(())
}
pub fn set_governor(&mut self, governor: &str) -> anyhow::Result<()> {
let Self {
number,
available_governors: ref governors,
..
} = *self;
if !governors
.iter()
.any(|avail_governor| avail_governor == governor)
{
bail!(
"governor '{governor}' is not available for {self}. available \
governors: {governors}",
governors = governors.join(", "),
);
}
fs::write(
format!("/sys/devices/system/cpu/cpu{number}/cpufreq/scaling_governor"),
governor,
)
.with_context(|| {
format!(
"this probably means that {self} doesn't exist or doesn't support \
changing governors"
)
})?;
self.governor = Some(governor.to_owned());
Ok(())
}
pub fn set_epp(&mut self, epp: &str) -> anyhow::Result<()> {
let Self {
number,
available_epps: ref epps,
..
} = *self;
if !epps.iter().any(|avail_epp| avail_epp == epp) {
bail!(
"EPP value '{epp}' is not available for {self}. available EPP values: \
{epps}",
epps = epps.join(", "),
);
}
fs::write(
format!(
"/sys/devices/system/cpu/cpu{number}/cpufreq/\
energy_performance_preference"
),
epp,
)
.with_context(|| {
format!(
"this probably means that {self} doesn't exist or doesn't support \
changing EPP"
)
})?;
self.epp = Some(epp.to_owned());
Ok(())
}
pub fn set_epb(&mut self, epb: &str) -> anyhow::Result<()> {
let Self {
number,
available_epbs: ref epbs,
..
} = *self;
if !epbs.iter().any(|avail_epb| avail_epb == epb) {
bail!(
"EPB value '{epb}' is not available for {self}. available EPB values: \
{valid}",
valid = epbs.join(", "),
);
}
fs::write(
format!(
"/sys/devices/system/cpu/cpu{number}/cpufreq/energy_performance_bias"
),
epb,
)
.with_context(|| {
format!(
"this probably means that {self} doesn't exist or doesn't support \
changing EPB"
)
})?;
self.epb = Some(epb.to_owned());
Ok(())
}
pub fn set_frequency_mhz_minimum(
&mut self,
frequency_mhz: u64,
) -> anyhow::Result<()> {
let Self { number, .. } = *self;
self.validate_frequency_mhz_minimum(frequency_mhz)?;
// We use u64 for the intermediate calculation to prevent overflow
let frequency_khz = frequency_mhz * 1000;
let frequency_khz = frequency_khz.to_string();
fs::write(
format!("/sys/devices/system/cpu/cpu{number}/cpufreq/scaling_min_freq"),
&frequency_khz,
)
.with_context(|| {
format!(
"this probably means that {self} doesn't exist or doesn't support \
changing minimum frequency"
)
})?;
self.frequency_mhz_minimum = Some(frequency_mhz);
Ok(())
}
fn validate_frequency_mhz_minimum(
&self,
new_frequency_mhz: u64,
) -> anyhow::Result<()> {
let Self { number, .. } = self;
let Some(minimum_frequency_khz) = fs::read_n::<u64>(format!(
"/sys/devices/system/cpu/cpu{number}/cpufreq/scaling_min_freq"
))
.with_context(|| format!("failed to read {self} minimum frequency"))?
else {
// Just let it pass if we can't find anything.
return Ok(());
};
if new_frequency_mhz * 1000 < minimum_frequency_khz {
bail!(
"new minimum frequency ({new_frequency_mhz} MHz) cannot be lower than \
the minimum frequency ({} MHz) for {self}",
minimum_frequency_khz / 1000,
);
}
Ok(())
}
pub fn set_frequency_mhz_maximum(
&mut self,
frequency_mhz: u64,
) -> anyhow::Result<()> {
let Self { number, .. } = *self;
self.validate_frequency_mhz_maximum(frequency_mhz)?;
// We use u64 for the intermediate calculation to prevent overflow
let frequency_khz = frequency_mhz * 1000;
let frequency_khz = frequency_khz.to_string();
fs::write(
format!("/sys/devices/system/cpu/cpu{number}/cpufreq/scaling_max_freq"),
&frequency_khz,
)
.with_context(|| {
format!(
"this probably means that {self} doesn't exist or doesn't support \
changing maximum frequency"
)
})?;
self.frequency_mhz_maximum = Some(frequency_mhz);
Ok(())
}
fn validate_frequency_mhz_maximum(
&self,
new_frequency_mhz: u64,
) -> anyhow::Result<()> {
let Self { number, .. } = self;
let Some(maximum_frequency_khz) = fs::read_n::<u64>(format!(
"/sys/devices/system/cpu/cpu{number}/cpufreq/scaling_max_freq"
))
.with_context(|| format!("failed to read {self} maximum frequency"))?
else {
// Just let it pass if we can't find anything.
return Ok(());
};
if new_frequency_mhz * 1000 > maximum_frequency_khz {
bail!(
"new maximum frequency ({new_frequency_mhz} MHz) cannot be higher \
than the maximum frequency ({} MHz) for {self}",
maximum_frequency_khz / 1000,
);
}
Ok(())
}
pub fn set_turbo(on: bool) -> anyhow::Result<()> {
let value_boost = match on {
true => "1", // boost = 1 means turbo is enabled.
false => "0", // boost = 0 means turbo is disabled.
};
let value_boost_negated = match on {
true => "0", // no_turbo = 0 means turbo is enabled.
false => "1", // no_turbo = 1 means turbo is disabled.
};
// AMD specific paths
let amd_boost_path = "/sys/devices/system/cpu/amd_pstate/cpufreq/boost";
let msr_boost_path =
"/sys/devices/system/cpu/cpufreq/amd_pstate_enable_boost";
// Path priority (from most to least specific)
let intel_boost_path_negated =
"/sys/devices/system/cpu/intel_pstate/no_turbo";
let generic_boost_path = "/sys/devices/system/cpu/cpufreq/boost";
// Try each boost control path in order of specificity
if fs::write(intel_boost_path_negated, value_boost_negated).is_ok() {
return Ok(());
}
if fs::write(amd_boost_path, value_boost).is_ok() {
return Ok(());
}
if fs::write(msr_boost_path, value_boost).is_ok() {
return Ok(());
}
if fs::write(generic_boost_path, value_boost).is_ok() {
return Ok(());
}
// Also try per-core cpufreq boost for some AMD systems.
if Self::all()?.iter().any(|cpu| {
let Cpu { number, .. } = cpu;
fs::write(
format!("/sys/devices/system/cpu/cpu{number}/cpufreq/boost"),
value_boost,
)
.is_ok()
}) {
return Ok(());
}
bail!("no supported CPU boost control mechanism found");
}
pub fn turbo() -> anyhow::Result<Option<bool>> {
if let Some(content) =
fs::read_n::<u64>("/sys/devices/system/cpu/intel_pstate/no_turbo")
.context("failed to read CPU turbo boost status")?
{
return Ok(Some(content == 0));
}
if let Some(content) =
fs::read_n::<u64>("/sys/devices/system/cpu/cpufreq/boost")
.context("failed to read CPU turbo boost status")?
{
return Ok(Some(content == 1));
}
Ok(None)
}
}

463
watt/daemon.rs Normal file
View file

@ -0,0 +1,463 @@
use std::{
cell::LazyCell,
collections::{
HashMap,
VecDeque,
},
sync::{
Arc,
atomic::{
AtomicBool,
Ordering,
},
},
thread,
time::{
Duration,
Instant,
},
};
use anyhow::Context;
use crate::{
config,
system,
};
/// Calculate the idle time multiplier based on system idle time.
///
/// Returns a multiplier between 1.0 and 5.0:
/// - For idle times < 2 minutes: Linear interpolation from 1.0 to 2.0
/// - For idle times >= 2 minutes: Logarithmic scaling (1.0 + log2(minutes))
fn idle_multiplier(idle_for: Duration) -> f64 {
let factor = match idle_for.as_secs() < 120 {
// Less than 2 minutes.
// Linear interpolation from 1.0 (at 0s) to 2.0 (at 120s)
true => (idle_for.as_secs() as f64) / 120.0,
// 2 minutes or more.
// Logarithmic scaling: 1.0 + log2(minutes)
false => {
let idle_minutes = idle_for.as_secs() as f64 / 60.0;
idle_minutes.log2()
},
};
// Clamp the multiplier to avoid excessive delays.
(1.0 + factor).clamp(1.0, 5.0)
}
#[derive(Debug)]
struct Daemon {
/// Last time when there was user activity.
last_user_activity: Instant,
/// The last computed polling delay.
last_polling_delay: Option<Duration>,
/// The system state.
system: system::System,
/// CPU usage and temperature log.
cpu_log: VecDeque<CpuLog>,
/// Power supply status log.
power_supply_log: VecDeque<PowerSupplyLog>,
}
impl Daemon {
fn rescan(&mut self) -> anyhow::Result<()> {
self.system.rescan()?;
log::debug!("appending daemon logs...");
let at = Instant::now();
while self.cpu_log.len() > 100 {
log::debug!("daemon CPU log was too long, popping element");
self.cpu_log.pop_front();
}
let cpu_log = CpuLog {
at,
usage: self
.system
.cpus
.iter()
.map(|cpu| cpu.stat.usage())
.sum::<f64>()
/ self.system.cpus.len() as f64,
temperature: self.system.cpu_temperatures.values().sum::<f64>()
/ self.system.cpu_temperatures.len() as f64,
};
log::debug!("appending CPU log item: {cpu_log:?}");
self.cpu_log.push_back(cpu_log);
while self.power_supply_log.len() > 100 {
log::debug!("daemon power supply log was too long, popping element");
self.power_supply_log.pop_front();
}
let power_supply_log = PowerSupplyLog {
at,
charge: {
let (charge_sum, charge_nr) = self.system.power_supplies.iter().fold(
(0.0, 0u32),
|(sum, count), power_supply| {
if let Some(charge_percent) = power_supply.charge_percent {
(sum + charge_percent, count + 1)
} else {
(sum, count)
}
},
);
charge_sum / charge_nr as f64
},
};
log::debug!("appending power supply log item: {power_supply_log:?}");
self.power_supply_log.push_back(power_supply_log);
Ok(())
}
}
#[derive(Debug)]
struct CpuLog {
at: Instant,
/// CPU usage between 0-1, a percentage.
usage: f64,
/// CPU temperature in celsius.
temperature: f64,
}
#[derive(Debug)]
struct CpuVolatility {
usage: f64,
temperature: f64,
}
impl Daemon {
fn cpu_volatility(&self) -> Option<CpuVolatility> {
let recent_log_count = self
.cpu_log
.iter()
.rev()
.take_while(|log| log.at.elapsed() < Duration::from_secs(5 * 60))
.count();
if recent_log_count < 2 {
return None;
}
if self.cpu_log.len() < 2 {
return None;
}
let change_count = self.cpu_log.len() - 1;
let mut usage_change_sum = 0.0;
let mut temperature_change_sum = 0.0;
for index in 0..change_count {
let usage_change =
self.cpu_log[index + 1].usage - self.cpu_log[index].usage;
usage_change_sum += usage_change.abs();
let temperature_change =
self.cpu_log[index + 1].temperature - self.cpu_log[index].temperature;
temperature_change_sum += temperature_change.abs();
}
Some(CpuVolatility {
usage: usage_change_sum / change_count as f64,
temperature: temperature_change_sum / change_count as f64,
})
}
fn is_cpu_idle(&self) -> bool {
let recent_log_count = self
.cpu_log
.iter()
.rev()
.take_while(|log| log.at.elapsed() < Duration::from_secs(5 * 60))
.count();
if recent_log_count < 2 {
return false;
}
let recent_average = self
.cpu_log
.iter()
.rev()
.take(recent_log_count)
.map(|log| log.usage)
.sum::<f64>()
/ recent_log_count as f64;
recent_average < 0.1
&& self
.cpu_volatility()
.is_none_or(|volatility| volatility.usage < 0.05)
}
}
#[derive(Debug)]
struct PowerSupplyLog {
at: Instant,
/// Charge 0-1, as a percentage.
charge: f64,
}
impl Daemon {
fn discharging(&self) -> bool {
self.system.power_supplies.iter().any(|power_supply| {
power_supply.charge_state.as_deref() == Some("Discharging")
})
}
/// Calculates the discharge rate, returns a number between 0 and 1.
///
/// The discharge rate is averaged per hour.
/// So a return value of Some(0.3) means the battery has been
/// discharging 30% per hour.
fn power_supply_discharge_rate(&self) -> Option<f64> {
let mut last_charge = None;
// A list of increasing charge percentages.
let discharging: Vec<&PowerSupplyLog> = self
.power_supply_log
.iter()
.rev()
.take_while(move |log| {
let Some(last_charge_value) = last_charge else {
last_charge = Some(log.charge);
return true;
};
last_charge = Some(log.charge);
log.charge > last_charge_value
})
.collect();
if discharging.len() < 2 {
return None;
}
// Start of discharging. Has the most charge.
let start = discharging.last().unwrap();
// End of discharging, very close to now. Has the least charge.
let end = discharging.first().unwrap();
let discharging_duration_seconds = (start.at - end.at).as_secs_f64();
let discharging_duration_hours = discharging_duration_seconds / 60.0 / 60.0;
let discharged = start.charge - end.charge;
Some(discharged / discharging_duration_hours)
}
}
impl Daemon {
fn polling_delay(&mut self) -> Duration {
let mut delay = Duration::from_secs(5);
// We are on battery, so we must be more conservative with our polling.
if self.discharging() {
match self.power_supply_discharge_rate() {
Some(discharge_rate) => {
if discharge_rate > 0.2 {
delay *= 3;
} else if discharge_rate > 0.1 {
delay *= 2;
} else {
// *= 1.5;
delay /= 2;
delay *= 3;
}
},
// If we can't determine the discharge rate, that means that
// we were very recently started. Which is user activity.
None => {
delay *= 2;
},
}
}
if self.is_cpu_idle() {
let idle_for = self.last_user_activity.elapsed();
if idle_for > Duration::from_secs(30) {
let factor = idle_multiplier(idle_for);
log::debug!(
"system has been idle for {seconds} seconds (approx {minutes} \
minutes), applying idle factor: {factor:.2}x",
seconds = idle_for.as_secs(),
minutes = idle_for.as_secs() / 60,
);
delay = Duration::from_secs_f64(delay.as_secs_f64() * factor);
}
}
if let Some(volatility) = self.cpu_volatility() {
if volatility.usage > 0.1 || volatility.temperature > 0.02 {
delay = (delay / 2).max(Duration::from_secs(1));
}
}
let delay = match self.last_polling_delay {
Some(last_delay) => {
Duration::from_secs_f64(
// 30% of current computed delay, 70% of last delay.
delay.as_secs_f64() * 0.3 + last_delay.as_secs_f64() * 0.7,
)
},
None => delay,
};
let delay = Duration::from_secs_f64(delay.as_secs_f64().clamp(1.0, 30.0));
self.last_polling_delay = Some(delay);
delay
}
}
pub fn run(config: config::DaemonConfig) -> anyhow::Result<()> {
assert!(config.rules.is_sorted_by_key(|rule| rule.priority));
log::info!("starting daemon...");
let cancelled = Arc::new(AtomicBool::new(false));
log::debug!("setting ctrl-c handler...");
let cancelled_ = Arc::clone(&cancelled);
ctrlc::set_handler(move || {
log::info!("received shutdown signal");
cancelled_.store(true, Ordering::SeqCst);
})
.context("failed to set ctrl-c handler")?;
let mut daemon = Daemon {
last_user_activity: Instant::now(),
last_polling_delay: None,
system: system::System::new()?,
cpu_log: VecDeque::new(),
power_supply_log: VecDeque::new(),
};
while !cancelled.load(Ordering::SeqCst) {
daemon.rescan()?;
let delay = daemon.polling_delay();
log::info!(
"next poll will be in {seconds} seconds or {minutes} minutes, possibly \
delayed if application of rules takes more than the polling delay",
seconds = delay.as_secs_f64(),
minutes = delay.as_secs_f64() / 60.0,
);
log::debug!("filtering rules and applying them...");
let start = Instant::now();
let state = config::EvalState {
cpu_usage: daemon.cpu_log.back().unwrap().usage,
cpu_usage_volatility: daemon.cpu_volatility().map(|vol| vol.usage),
cpu_temperature: daemon.cpu_log.back().unwrap().temperature,
cpu_temperature_volatility: daemon
.cpu_volatility()
.map(|vol| vol.temperature),
cpu_idle_seconds: daemon
.last_user_activity
.elapsed()
.as_secs_f64(),
power_supply_charge: daemon
.power_supply_log
.back()
.unwrap()
.charge,
power_supply_discharge_rate: daemon.power_supply_discharge_rate(),
discharging: daemon.discharging(),
};
let mut cpu_delta_for = HashMap::<u32, config::CpuDelta>::new();
let all_cpus =
LazyCell::new(|| (0..num_cpus::get() as u32).collect::<Vec<_>>());
for rule in &config.rules {
let Some(condition) = rule.condition.eval(&state)? else {
continue;
};
let cpu_for = rule.cpu.for_.as_ref().unwrap_or_else(|| &*all_cpus);
for cpu in cpu_for {
let delta = cpu_delta_for.entry(*cpu).or_default();
delta.for_ = Some(vec![*cpu]);
if let Some(governor) = rule.cpu.governor.as_ref() {
delta.governor = Some(governor.clone());
}
if let Some(epp) = rule.cpu.energy_performance_preference.as_ref() {
delta.energy_performance_preference = Some(epp.clone());
}
if let Some(epb) = rule.cpu.energy_performance_bias.as_ref() {
delta.energy_performance_bias = Some(epb.clone());
}
if let Some(mhz_minimum) = rule.cpu.frequency_mhz_minimum {
delta.frequency_mhz_minimum = Some(mhz_minimum);
}
if let Some(mhz_maximum) = rule.cpu.frequency_mhz_maximum {
delta.frequency_mhz_maximum = Some(mhz_maximum);
}
if let Some(turbo) = rule.cpu.turbo {
delta.turbo = Some(turbo);
}
}
// TODO: Also merge this into one like CPU.
if condition.as_boolean()? {
rule.power.apply()?;
}
}
for delta in cpu_delta_for.values() {
delta.apply()?;
}
let elapsed = start.elapsed();
log::info!(
"filtered and applied rules in {seconds} seconds or {minutes} minutes",
seconds = elapsed.as_secs_f64(),
minutes = elapsed.as_secs_f64() / 60.0,
);
thread::sleep(delay.saturating_sub(elapsed));
}
log::info!("stopping polling loop and thus daemon...");
Ok(())
}

80
watt/fs.rs Normal file
View file

@ -0,0 +1,80 @@
use std::{
error,
fs,
io,
path::Path,
str,
};
use anyhow::Context;
pub fn exists(path: impl AsRef<Path>) -> bool {
let path = path.as_ref();
path.exists()
}
pub fn read_dir(path: impl AsRef<Path>) -> anyhow::Result<Option<fs::ReadDir>> {
let path = path.as_ref();
match fs::read_dir(path) {
Ok(entries) => Ok(Some(entries)),
Err(error) if error.kind() == io::ErrorKind::NotFound => Ok(None),
Err(error) => {
Err(error).context(format!(
"failed to read directory '{path}'",
path = path.display()
))
},
}
}
pub fn read(path: impl AsRef<Path>) -> anyhow::Result<Option<String>> {
let path = path.as_ref();
match fs::read_to_string(path) {
Ok(string) => Ok(Some(string.trim().to_owned())),
Err(error) if error.kind() == io::ErrorKind::NotFound => Ok(None),
Err(error) => {
Err(error)
.context(format!("failed to read '{path}", path = path.display()))
},
}
}
pub fn read_n<N: str::FromStr>(
path: impl AsRef<Path>,
) -> anyhow::Result<Option<N>>
where
N::Err: error::Error + Send + Sync + 'static,
{
let path = path.as_ref();
match read(path)? {
Some(content) => {
Ok(Some(content.trim().parse().with_context(|| {
format!(
"failed to parse contents of '{path}' as a unsigned number",
path = path.display(),
)
})?))
},
None => Ok(None),
}
}
pub fn write(path: impl AsRef<Path>, value: &str) -> anyhow::Result<()> {
let path = path.as_ref();
fs::write(path, value).with_context(|| {
format!(
"failed to write '{value}' to '{path}'",
path = path.display(),
)
})
}

99
watt/lib.rs Normal file
View file

@ -0,0 +1,99 @@
use std::path::PathBuf;
use anyhow::Context as _;
use clap::Parser as _;
pub mod cpu;
pub mod power_supply;
pub mod system;
pub mod fs;
pub mod config;
pub mod daemon;
#[derive(clap::Parser, Debug)]
#[clap(author, version, about)]
pub struct Cli {
#[clap(subcommand)]
command: Command,
}
#[derive(clap::Parser, Debug)]
#[clap(multicall = true)]
pub enum Command {
/// Watt daemon.
Watt {
#[command(flatten)]
verbosity: clap_verbosity_flag::Verbosity,
/// The daemon config path.
#[arg(long, env = "WATT_CONFIG")]
config: Option<PathBuf>,
},
/// CPU metadata and modification utility.
Cpu {
#[command(flatten)]
verbosity: clap_verbosity_flag::Verbosity,
#[clap(subcommand)]
command: CpuCommand,
},
/// Power supply metadata and modification utility.
Power {
#[command(flatten)]
verbosity: clap_verbosity_flag::Verbosity,
#[clap(subcommand)]
command: PowerCommand,
},
}
#[derive(clap::Parser, Debug)]
pub enum CpuCommand {
/// Modify CPU attributes.
Set(config::CpuDelta),
}
#[derive(clap::Parser, Debug)]
pub enum PowerCommand {
/// Modify power supply attributes.
Set(config::PowerDelta),
}
pub fn main() -> anyhow::Result<()> {
let cli = Cli::parse();
yansi::whenever(yansi::Condition::TTY_AND_COLOR);
let (Command::Watt { verbosity, .. }
| Command::Cpu { verbosity, .. }
| Command::Power { verbosity, .. }) = cli.command;
env_logger::Builder::new()
.filter_level(verbosity.log_level_filter())
.format_timestamp(None)
.format_module_path(false)
.init();
match cli.command {
Command::Watt { config, .. } => {
let config = config::DaemonConfig::load_from(config.as_deref())
.context("failed to load daemon config")?;
daemon::run(config)
},
Command::Cpu {
command: CpuCommand::Set(delta),
..
} => delta.apply(),
Command::Power {
command: PowerCommand::Set(delta),
..
} => delta.apply(),
}
}

57
watt/main.rs Normal file
View file

@ -0,0 +1,57 @@
use std::{
fmt::Write as _,
io,
io::Write as _,
process,
};
use yansi::Paint as _;
fn main() {
let Err(error) = watt::main() else {
return;
};
let mut err = io::stderr();
let mut message = String::new();
let mut chain = error.chain().rev().peekable();
while let Some(error) = chain.next() {
let _ = write!(
err,
"{header} ",
header = if chain.peek().is_none() {
"error:"
} else {
"cause:"
}
.red()
.bold(),
);
String::clear(&mut message);
let _ = write!(message, "{error}");
let mut chars = message.char_indices();
let _ = match (chars.next(), chars.next()) {
(Some((_, first)), Some((second_start, second)))
if second.is_lowercase() =>
{
writeln!(
err,
"{first_lowercase}{rest}",
first_lowercase = first.to_lowercase(),
rest = &message[second_start..],
)
},
_ => {
writeln!(err, "{message}")
},
};
}
process::exit(1);
}

416
watt/power_supply.rs Normal file
View file

@ -0,0 +1,416 @@
use std::{
fmt,
path::{
Path,
PathBuf,
},
};
use anyhow::{
Context,
anyhow,
bail,
};
use yansi::Paint as _;
use crate::fs;
/// Represents a pattern of path suffixes used to control charge thresholds
/// for different device vendors.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct PowerSupplyThresholdConfig {
pub manufacturer: &'static str,
pub path_start: &'static str,
pub path_end: &'static str,
}
/// Power supply threshold configs.
const POWER_SUPPLY_THRESHOLD_CONFIGS: &[PowerSupplyThresholdConfig] = &[
PowerSupplyThresholdConfig {
manufacturer: "Standard",
path_start: "charge_control_start_threshold",
path_end: "charge_control_end_threshold",
},
PowerSupplyThresholdConfig {
manufacturer: "ASUS",
path_start: "charge_control_start_percentage",
path_end: "charge_control_end_percentage",
},
// Combine Huawei and ThinkPad since they use identical paths.
PowerSupplyThresholdConfig {
manufacturer: "ThinkPad/Huawei",
path_start: "charge_start_threshold",
path_end: "charge_stop_threshold",
},
// Framework laptop support.
PowerSupplyThresholdConfig {
manufacturer: "Framework",
path_start: "charge_behaviour_start_threshold",
path_end: "charge_behaviour_end_threshold",
},
];
/// Represents a power supply that supports charge threshold control.
#[derive(Debug, Clone, PartialEq)]
pub struct PowerSupply {
pub name: String,
pub path: PathBuf,
pub type_: String,
pub is_from_peripheral: bool,
pub charge_state: Option<String>,
pub charge_percent: Option<f64>,
pub charge_threshold_start: f64,
pub charge_threshold_end: f64,
pub drain_rate_watts: Option<f64>,
pub threshold_config: Option<PowerSupplyThresholdConfig>,
}
impl PowerSupply {
pub fn is_ac(&self) -> bool {
!self.is_from_peripheral
&& matches!(
&*self.type_,
"Mains" | "USB_PD_DRP" | "USB_PD" | "USB_DCP" | "USB_CDP" | "USB_ACA"
)
|| self.type_.starts_with("AC")
|| self.type_.contains("ACAD")
|| self.type_.contains("ADP")
}
}
impl fmt::Display for PowerSupply {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "power supply '{name}'", name = self.name.yellow())?;
if let Some(config) = self.threshold_config.as_ref() {
write!(
f,
" from manufacturer '{manufacturer}'",
manufacturer = config.manufacturer.green(),
)?;
}
Ok(())
}
}
const POWER_SUPPLY_PATH: &str = "/sys/class/power_supply";
impl PowerSupply {
pub fn from_name(name: String) -> anyhow::Result<Self> {
let mut power_supply = Self {
path: Path::new(POWER_SUPPLY_PATH).join(&name),
name,
type_: String::new(),
charge_state: None,
charge_percent: None,
charge_threshold_start: 0.0,
charge_threshold_end: 1.0,
drain_rate_watts: None,
is_from_peripheral: false,
threshold_config: None,
};
power_supply.rescan()?;
Ok(power_supply)
}
pub fn from_path(path: PathBuf) -> anyhow::Result<Self> {
let mut power_supply = PowerSupply {
name: path
.file_name()
.with_context(|| {
format!("failed to get file name of '{path}'", path = path.display(),)
})?
.to_string_lossy()
.to_string(),
path,
type_: String::new(),
charge_state: None,
charge_percent: None,
charge_threshold_start: 0.0,
charge_threshold_end: 1.0,
drain_rate_watts: None,
is_from_peripheral: false,
threshold_config: None,
};
power_supply.rescan()?;
Ok(power_supply)
}
pub fn all() -> anyhow::Result<Vec<PowerSupply>> {
let mut power_supplies = Vec::new();
for entry in fs::read_dir(POWER_SUPPLY_PATH)
.context("failed to read power supply entries")?
.with_context(|| {
format!("'{POWER_SUPPLY_PATH}' doesn't exist, are you on linux?")
})?
{
let entry = match entry {
Ok(entry) => entry,
Err(error) => {
log::warn!("failed to read power supply entry: {error}");
continue;
},
};
power_supplies.push(PowerSupply::from_path(entry.path())?);
}
Ok(power_supplies)
}
pub fn rescan(&mut self) -> anyhow::Result<()> {
if !self.path.exists() {
bail!("{self} does not exist");
}
self.type_ = {
let type_path = self.path.join("type");
fs::read(&type_path)
.with_context(|| {
format!("failed to read '{path}'", path = type_path.display())
})?
.with_context(|| {
format!("'{path}' doesn't exist", path = type_path.display())
})?
};
self.is_from_peripheral = 'is_from_peripheral: {
let name_lower = self.name.to_lowercase();
// Common peripheral battery names.
if name_lower.contains("mouse")
|| name_lower.contains("keyboard")
|| name_lower.contains("trackpad")
|| name_lower.contains("gamepad")
|| name_lower.contains("controller")
|| name_lower.contains("headset")
|| name_lower.contains("headphone")
{
break 'is_from_peripheral true;
}
// Small capacity batteries are likely not laptop batteries.
if let Some(energy_full) =
fs::read_n::<u64>(self.path.join("energy_full")).with_context(|| {
format!("failed to read the max charge {self} can hold")
})?
{
// Most laptop batteries are at least 20,000,000 µWh (20 Wh).
// Peripheral batteries are typically much smaller.
if energy_full < 10_000_000 {
// 10 Wh in µWh.
break 'is_from_peripheral true;
}
}
// Check for model name that indicates a peripheral
if let Some(model_name) = fs::read(self.path.join("model_name"))
.with_context(|| format!("failed to read the model name of {self}"))?
{
let model_name_lower = model_name.to_lowercase();
if model_name_lower.contains("bluetooth")
|| model_name_lower.contains("wireless")
{
break 'is_from_peripheral true;
}
}
false
};
if self.type_ == "Battery" {
self.charge_state = fs::read(self.path.join("status"))
.with_context(|| format!("failed to read {self} charge status"))?;
self.charge_percent = fs::read_n::<u64>(self.path.join("capacity"))
.with_context(|| format!("failed to read {self} charge percent"))?
.map(|percent| percent as f64 / 100.0);
self.charge_threshold_start =
fs::read_n::<u64>(self.path.join("charge_control_start_threshold"))
.with_context(|| {
format!("failed to read {self} charge threshold start")
})?
.map_or(0.0, |percent| percent as f64 / 100.0);
self.charge_threshold_end =
fs::read_n::<u64>(self.path.join("charge_control_end_threshold"))
.with_context(|| {
format!("failed to read {self} charge threshold end")
})?
.map_or(100.0, |percent| percent as f64 / 100.0);
self.drain_rate_watts =
match fs::read_n::<i64>(self.path.join("power_now"))
.with_context(|| format!("failed to read {self} power drain"))?
{
Some(drain) => Some(drain as f64),
None => {
let current_ua =
fs::read_n::<i32>(self.path.join("current_now"))
.with_context(|| format!("failed to read {self} current"))?;
let voltage_uv =
fs::read_n::<i32>(self.path.join("voltage_now"))
.with_context(|| format!("failed to read {self} voltage"))?;
current_ua.zip(voltage_uv).map(|(current, voltage)| {
// Power (W) = Voltage (V) * Current (A)
// (v / 1e6 V) * (c / 1e6 A) = (v * c / 1e12) W
current as f64 * voltage as f64 / 1e12
})
},
};
self.threshold_config = POWER_SUPPLY_THRESHOLD_CONFIGS
.iter()
.find(|config| {
self.path.join(config.path_start).exists()
&& self.path.join(config.path_end).exists()
})
.copied();
}
Ok(())
}
pub fn charge_threshold_path_start(&self) -> Option<PathBuf> {
self
.threshold_config
.map(|config| self.path.join(config.path_start))
}
pub fn charge_threshold_path_end(&self) -> Option<PathBuf> {
self
.threshold_config
.map(|config| self.path.join(config.path_end))
}
pub fn set_charge_threshold_start(
&mut self,
charge_threshold_start: f64,
) -> anyhow::Result<()> {
fs::write(
&self.charge_threshold_path_start().ok_or_else(|| {
anyhow!(
"power supply '{name}' does not support changing charge threshold \
levels",
name = self.name,
)
})?,
&((charge_threshold_start * 100.0) as u8).to_string(),
)
.with_context(|| {
format!("failed to set charge threshold start for {self}")
})?;
self.charge_threshold_start = charge_threshold_start;
log::info!(
"set battery threshold start for {self} to {charge_threshold_start}%"
);
Ok(())
}
pub fn set_charge_threshold_end(
&mut self,
charge_threshold_end: f64,
) -> anyhow::Result<()> {
fs::write(
&self.charge_threshold_path_end().ok_or_else(|| {
anyhow!(
"power supply '{name}' does not support changing charge threshold \
levels",
name = self.name,
)
})?,
&((charge_threshold_end * 100.0) as u8).to_string(),
)
.with_context(|| {
format!("failed to set charge threshold end for {self}")
})?;
self.charge_threshold_end = charge_threshold_end;
log::info!(
"set battery threshold end for {self} to {charge_threshold_end}%"
);
Ok(())
}
pub fn get_available_platform_profiles() -> anyhow::Result<Vec<String>> {
let path = "/sys/firmware/acpi/platform_profile_choices";
let Some(content) = fs::read(path)
.context("failed to read available ACPI platform profiles")?
else {
return Ok(Vec::new());
};
Ok(
content
.split_whitespace()
.map(ToString::to_string)
.collect(),
)
}
/// Sets the platform profile.
/// This changes the system performance, temperature, fan, and other hardware
/// related characteristics.
///
/// Also see [`The Kernel docs`] for this.
///
/// [`The Kernel docs`]: <https://docs.kernel.org/userspace-api/sysfs-platform_profile.html>
pub fn set_platform_profile(profile: &str) -> anyhow::Result<()> {
let profiles = Self::get_available_platform_profiles()?;
if !profiles
.iter()
.any(|avail_profile| avail_profile == profile)
{
bail!(
"profile '{profile}' is not available for system. valid profiles: \
{profiles}",
profiles = profiles.join(", "),
);
}
fs::write("/sys/firmware/acpi/platform_profile", profile).context(
"this probably means that your system does not support changing ACPI \
profiles",
)
}
pub fn platform_profile() -> anyhow::Result<String> {
fs::read("/sys/firmware/acpi/platform_profile")
.context("failed to read platform profile")?
.context("failed to find platform profile")
}
}

413
watt/system.rs Normal file
View file

@ -0,0 +1,413 @@
use std::{
collections::HashMap,
path::Path,
time::Instant,
};
use anyhow::{
Context,
bail,
};
use crate::{
cpu,
fs,
power_supply,
};
#[derive(Debug)]
pub struct System {
pub is_ac: bool,
pub load_average_1min: f64,
pub load_average_5min: f64,
pub load_average_15min: f64,
pub cpus: Vec<cpu::Cpu>,
pub cpu_temperatures: HashMap<u32, f64>,
pub power_supplies: Vec<power_supply::PowerSupply>,
}
impl System {
pub fn new() -> anyhow::Result<Self> {
let mut system = Self {
is_ac: false,
cpus: Vec::new(),
cpu_temperatures: HashMap::new(),
power_supplies: Vec::new(),
load_average_1min: 0.0,
load_average_5min: 0.0,
load_average_15min: 0.0,
};
system.rescan()?;
Ok(system)
}
pub fn rescan(&mut self) -> anyhow::Result<()> {
log::debug!("rescanning view of system hardware...");
{
let start = Instant::now();
self.cpus = cpu::Cpu::all().context("failed to scan CPUs")?;
log::debug!(
"rescanned all CPUs in {millis}ms",
millis = start.elapsed().as_millis(),
);
}
{
let start = Instant::now();
self.power_supplies = power_supply::PowerSupply::all()
.context("failed to scan power supplies")?;
log::debug!(
"rescanned all power supplies in {millis}ms",
millis = start.elapsed().as_millis(),
);
}
self.is_ac = self
.power_supplies
.iter()
.any(|power_supply| power_supply.is_ac())
|| {
log::debug!(
"checking whether if this device is a desktop to determine if it is \
AC as no power supplies are"
);
let start = Instant::now();
let is_desktop = self.is_desktop()?;
log::debug!(
"checked if is a desktop in {millis}ms",
millis = start.elapsed().as_millis(),
);
log::debug!(
"scan result: {elaborate}",
elaborate = if is_desktop {
"is a desktop, therefore is AC"
} else {
"not a desktop, and not AC"
},
);
is_desktop
};
{
let start = Instant::now();
self.rescan_load_average()?;
log::debug!(
"rescanned load average in {millis}ms",
millis = start.elapsed().as_millis(),
);
}
{
let start = Instant::now();
self.rescan_temperatures()?;
log::debug!(
"rescanned temperatures in {millis}ms",
millis = start.elapsed().as_millis(),
);
}
Ok(())
}
fn rescan_temperatures(&mut self) -> anyhow::Result<()> {
const PATH: &str = "/sys/class/hwmon";
let mut temperatures = HashMap::new();
for entry in fs::read_dir(PATH)
.context("failed to read hardware information")?
.with_context(|| format!("'{PATH}' doesn't exist, are you on linux?"))?
{
let entry =
entry.with_context(|| format!("failed to read entry of '{PATH}'"))?;
let entry_path = entry.path();
let Some(name) =
fs::read(entry_path.join("name")).with_context(|| {
format!(
"failed to read name of hardware entry at '{path}'",
path = entry_path.display(),
)
})?
else {
continue;
};
match &*name {
// TODO: 'zenergy' can also report those stats, I think?
"coretemp" | "k10temp" | "zenpower" | "amdgpu" => {
Self::get_temperatures(&entry_path, &mut temperatures)?;
},
// Other CPU temperature drivers.
_ if name.contains("cpu") || name.contains("temp") => {
Self::get_temperatures(&entry_path, &mut temperatures)?;
},
_ => {},
}
}
if temperatures.is_empty() {
const PATH: &str = "/sys/devices/virtual/thermal";
log::debug!(
"failed to get CPU temperature information by using hwmon, falling \
back to '{PATH}'"
);
let Some(thermal_zones) =
fs::read_dir(PATH).context("failed to read thermal information")?
else {
return Ok(());
};
let mut counter = 0;
for entry in thermal_zones {
let entry =
entry.with_context(|| format!("failed to read entry of '{PATH}'"))?;
let entry_path = entry.path();
let entry_name = entry.file_name();
let entry_name = entry_name.to_string_lossy();
if !entry_name.starts_with("thermal_zone") {
continue;
}
let Some(entry_type) =
fs::read(entry_path.join("type")).with_context(|| {
format!(
"failed to read type of zone at '{path}'",
path = entry_path.display(),
)
})?
else {
continue;
};
if !entry_type.contains("cpu")
&& !entry_type.contains("x86")
&& !entry_type.contains("core")
{
continue;
}
let Some(temperature_mc) = fs::read_n::<i64>(entry_path.join("temp"))
.with_context(|| {
format!(
"failed to read temperature of zone at '{path}'",
path = entry_path.display(),
)
})?
else {
continue;
};
// Magic value to see that it is from the thermal zones.
temperatures.insert(777 + counter, temperature_mc as f64 / 1000.0);
counter += 1;
}
}
self.cpu_temperatures = temperatures;
Ok(())
}
fn get_temperatures(
device_path: &Path,
temperatures: &mut HashMap<u32, f64>,
) -> anyhow::Result<()> {
// Increased range to handle systems with many sensors.
for i in 1..=96 {
let label_path = device_path.join(format!("temp{i}_label"));
let input_path = device_path.join(format!("temp{i}_input"));
if !label_path.exists() || !input_path.exists() {
log::debug!(
"{label_path} or {input_path} doesn't exist, skipping temp label",
label_path = label_path.display(),
input_path = input_path.display(),
);
continue;
}
log::debug!(
"{label_path} or {input_path} exists, scanning temp label...",
label_path = label_path.display(),
input_path = input_path.display(),
);
let Some(label) = fs::read(&label_path).with_context(|| {
format!(
"failed to read hardware hardware device label from '{path}'",
path = label_path.display(),
)
})?
else {
continue;
};
log::debug!("label content: {label}");
// Match various common label formats:
// "Core X", "core X", "Core-X", "CPU Core X", etc.
let number = label
.trim_start_matches("cpu")
.trim_start_matches("CPU")
.trim_start()
.trim_start_matches("core")
.trim_start_matches("Core")
.trim_start()
.trim_start_matches("Tctl")
.trim_start_matches("Tdie")
.trim_start_matches("Tccd")
.trim_start_matches(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'])
.trim_start()
.trim_start_matches("-")
.trim();
log::debug!(
"stripped 'Core' or similar identifier prefix of label content: \
{number}"
);
let Ok(number) = number.parse::<u32>() else {
log::debug!("stripped content not a valid number, skipping");
continue;
};
log::debug!(
"stripped content is a valid number, taking it as the core number"
);
log::debug!(
"it is fine if this number doesn't seem accurate due to CPU binning, see a more detailed explanation at: https://rgbcu.be/blog/why-cores"
);
let Some(temperature_mc) =
fs::read_n::<i64>(&input_path).with_context(|| {
format!(
"failed to read CPU temperature from '{path}'",
path = input_path.display(),
)
})?
else {
continue;
};
log::debug!(
"temperature content: {celsius} celsius",
celsius = temperature_mc as f64 / 1000.0
);
temperatures.insert(number, temperature_mc as f64 / 1000.0);
}
Ok(())
}
fn is_desktop(&mut self) -> anyhow::Result<bool> {
log::debug!("checking chassis type to determine if system is a desktop");
if let Some(chassis_type) = fs::read("/sys/class/dmi/id/chassis_type")
.context("failed to read chassis type")?
{
// 3=Desktop, 4=Low Profile Desktop, 5=Pizza Box, 6=Mini Tower,
// 7=Tower, 8=Portable, 9=Laptop, 10=Notebook, 11=Hand Held, 13=All In
// One, 14=Sub Notebook, 15=Space-saving, 16=Lunch Box, 17=Main
// Server Chassis, 31=Convertible Laptop
match chassis_type.trim() {
// Desktop form factors.
"3" | "4" | "5" | "6" | "7" | "15" | "16" | "17" => {
log::debug!("chassis is a desktop form factor, short circuting true");
return Ok(true);
},
// Laptop form factors.
"9" | "10" | "14" | "31" => {
log::debug!("chassis is a laptop form factor, short circuting false");
return Ok(false);
},
// Unknown, continue with other checks
_ => log::debug!("unknown chassis type"),
}
}
// Check battery-specific ACPI paths that laptops typically have
let laptop_acpi_paths = [
"/sys/class/power_supply/BAT0",
"/sys/class/power_supply/BAT1",
"/proc/acpi/battery",
];
log::debug!("checking existence of ACPI paths");
for path in laptop_acpi_paths {
if fs::exists(path) {
log::debug!("path '{path}' exists, short circuting false");
return Ok(false); // Likely a laptop.
}
}
log::debug!("checking if power saving paths exists");
// Check CPU power policies, desktops often don't have these
let power_saving_exists =
fs::exists("/sys/module/intel_pstate/parameters/no_hwp")
|| fs::exists("/sys/devices/system/cpu/cpufreq/conservative");
if !power_saving_exists {
log::debug!("power saving paths do not exist, short circuting true");
return Ok(true); // Likely a desktop.
}
// Default to assuming desktop if we can't determine.
log::debug!(
"cannot determine whether if we are a desktop, defaulting to true"
);
Ok(true)
}
fn rescan_load_average(&mut self) -> anyhow::Result<()> {
let content = fs::read("/proc/loadavg")
.context("failed to read load average from '/proc/loadavg'")?
.context("'/proc/loadavg' doesn't exist, are you on linux?")?;
let mut parts = content.split_whitespace();
let (
Some(load_average_1min),
Some(load_average_5min),
Some(load_average_15min),
) = (parts.next(), parts.next(), parts.next())
else {
bail!(
"failed to parse first 3 load average entries due to there not being \
enough, content: {content}"
);
};
self.load_average_1min = load_average_1min
.parse()
.context("failed to parse load average")?;
self.load_average_5min = load_average_5min
.parse()
.context("failed to parse load average")?;
self.load_average_15min = load_average_15min
.parse()
.context("failed to parse load average")?;
Ok(())
}
}