1
Fork 0
mirror of https://github.com/RGBCube/superfreq synced 2025-07-28 09:27:44 +00:00
superfreq/watt/daemon.rs

463 lines
12 KiB
Rust

use std::{
cell::LazyCell,
collections::{
HashMap,
VecDeque,
},
sync::{
Arc,
atomic::{
AtomicBool,
Ordering,
},
},
thread,
time::{
Duration,
Instant,
},
};
use anyhow::Context;
use crate::{
config,
system,
};
/// Calculate the idle time multiplier based on system idle time.
///
/// Returns a multiplier between 1.0 and 5.0:
/// - For idle times < 2 minutes: Linear interpolation from 1.0 to 2.0
/// - For idle times >= 2 minutes: Logarithmic scaling (1.0 + log2(minutes))
fn idle_multiplier(idle_for: Duration) -> f64 {
let factor = match idle_for.as_secs() < 120 {
// Less than 2 minutes.
// Linear interpolation from 1.0 (at 0s) to 2.0 (at 120s)
true => (idle_for.as_secs() as f64) / 120.0,
// 2 minutes or more.
// Logarithmic scaling: 1.0 + log2(minutes)
false => {
let idle_minutes = idle_for.as_secs() as f64 / 60.0;
idle_minutes.log2()
},
};
// Clamp the multiplier to avoid excessive delays.
(1.0 + factor).clamp(1.0, 5.0)
}
#[derive(Debug)]
struct Daemon {
/// Last time when there was user activity.
last_user_activity: Instant,
/// The last computed polling delay.
last_polling_delay: Option<Duration>,
/// The system state.
system: system::System,
/// CPU usage and temperature log.
cpu_log: VecDeque<CpuLog>,
/// Power supply status log.
power_supply_log: VecDeque<PowerSupplyLog>,
}
impl Daemon {
fn rescan(&mut self) -> anyhow::Result<()> {
self.system.rescan()?;
log::debug!("appending daemon logs...");
let at = Instant::now();
while self.cpu_log.len() > 100 {
log::debug!("daemon CPU log was too long, popping element");
self.cpu_log.pop_front();
}
let cpu_log = CpuLog {
at,
usage: self
.system
.cpus
.iter()
.map(|cpu| cpu.stat.usage())
.sum::<f64>()
/ self.system.cpus.len() as f64,
temperature: self.system.cpu_temperatures.values().sum::<f64>()
/ self.system.cpu_temperatures.len() as f64,
};
log::debug!("appending CPU log item: {cpu_log:?}");
self.cpu_log.push_back(cpu_log);
while self.power_supply_log.len() > 100 {
log::debug!("daemon power supply log was too long, popping element");
self.power_supply_log.pop_front();
}
let power_supply_log = PowerSupplyLog {
at,
charge: {
let (charge_sum, charge_nr) = self.system.power_supplies.iter().fold(
(0.0, 0u32),
|(sum, count), power_supply| {
if let Some(charge_percent) = power_supply.charge_percent {
(sum + charge_percent, count + 1)
} else {
(sum, count)
}
},
);
charge_sum / charge_nr as f64
},
};
log::debug!("appending power supply log item: {power_supply_log:?}");
self.power_supply_log.push_back(power_supply_log);
Ok(())
}
}
#[derive(Debug)]
struct CpuLog {
at: Instant,
/// CPU usage between 0-1, a percentage.
usage: f64,
/// CPU temperature in celsius.
temperature: f64,
}
#[derive(Debug)]
struct CpuVolatility {
usage: f64,
temperature: f64,
}
impl Daemon {
fn cpu_volatility(&self) -> Option<CpuVolatility> {
let recent_log_count = self
.cpu_log
.iter()
.rev()
.take_while(|log| log.at.elapsed() < Duration::from_secs(5 * 60))
.count();
if recent_log_count < 2 {
return None;
}
if self.cpu_log.len() < 2 {
return None;
}
let change_count = self.cpu_log.len() - 1;
let mut usage_change_sum = 0.0;
let mut temperature_change_sum = 0.0;
for index in 0..change_count {
let usage_change =
self.cpu_log[index + 1].usage - self.cpu_log[index].usage;
usage_change_sum += usage_change.abs();
let temperature_change =
self.cpu_log[index + 1].temperature - self.cpu_log[index].temperature;
temperature_change_sum += temperature_change.abs();
}
Some(CpuVolatility {
usage: usage_change_sum / change_count as f64,
temperature: temperature_change_sum / change_count as f64,
})
}
fn is_cpu_idle(&self) -> bool {
let recent_log_count = self
.cpu_log
.iter()
.rev()
.take_while(|log| log.at.elapsed() < Duration::from_secs(5 * 60))
.count();
if recent_log_count < 2 {
return false;
}
let recent_average = self
.cpu_log
.iter()
.rev()
.take(recent_log_count)
.map(|log| log.usage)
.sum::<f64>()
/ recent_log_count as f64;
recent_average < 0.1
&& self
.cpu_volatility()
.is_none_or(|volatility| volatility.usage < 0.05)
}
}
#[derive(Debug)]
struct PowerSupplyLog {
at: Instant,
/// Charge 0-1, as a percentage.
charge: f64,
}
impl Daemon {
fn discharging(&self) -> bool {
self.system.power_supplies.iter().any(|power_supply| {
power_supply.charge_state.as_deref() == Some("Discharging")
})
}
/// Calculates the discharge rate, returns a number between 0 and 1.
///
/// The discharge rate is averaged per hour.
/// So a return value of Some(0.3) means the battery has been
/// discharging 30% per hour.
fn power_supply_discharge_rate(&self) -> Option<f64> {
let mut last_charge = None;
// A list of increasing charge percentages.
let discharging: Vec<&PowerSupplyLog> = self
.power_supply_log
.iter()
.rev()
.take_while(move |log| {
let Some(last_charge_value) = last_charge else {
last_charge = Some(log.charge);
return true;
};
last_charge = Some(log.charge);
log.charge > last_charge_value
})
.collect();
if discharging.len() < 2 {
return None;
}
// Start of discharging. Has the most charge.
let start = discharging.last().unwrap();
// End of discharging, very close to now. Has the least charge.
let end = discharging.first().unwrap();
let discharging_duration_seconds = (start.at - end.at).as_secs_f64();
let discharging_duration_hours = discharging_duration_seconds / 60.0 / 60.0;
let discharged = start.charge - end.charge;
Some(discharged / discharging_duration_hours)
}
}
impl Daemon {
fn polling_delay(&mut self) -> Duration {
let mut delay = Duration::from_secs(5);
// We are on battery, so we must be more conservative with our polling.
if self.discharging() {
match self.power_supply_discharge_rate() {
Some(discharge_rate) => {
if discharge_rate > 0.2 {
delay *= 3;
} else if discharge_rate > 0.1 {
delay *= 2;
} else {
// *= 1.5;
delay /= 2;
delay *= 3;
}
},
// If we can't determine the discharge rate, that means that
// we were very recently started. Which is user activity.
None => {
delay *= 2;
},
}
}
if self.is_cpu_idle() {
let idle_for = self.last_user_activity.elapsed();
if idle_for > Duration::from_secs(30) {
let factor = idle_multiplier(idle_for);
log::debug!(
"system has been idle for {seconds} seconds (approx {minutes} \
minutes), applying idle factor: {factor:.2}x",
seconds = idle_for.as_secs(),
minutes = idle_for.as_secs() / 60,
);
delay = Duration::from_secs_f64(delay.as_secs_f64() * factor);
}
}
if let Some(volatility) = self.cpu_volatility() {
if volatility.usage > 0.1 || volatility.temperature > 0.02 {
delay = (delay / 2).max(Duration::from_secs(1));
}
}
let delay = match self.last_polling_delay {
Some(last_delay) => {
Duration::from_secs_f64(
// 30% of current computed delay, 70% of last delay.
delay.as_secs_f64() * 0.3 + last_delay.as_secs_f64() * 0.7,
)
},
None => delay,
};
let delay = Duration::from_secs_f64(delay.as_secs_f64().clamp(1.0, 30.0));
self.last_polling_delay = Some(delay);
delay
}
}
pub fn run(config: config::DaemonConfig) -> anyhow::Result<()> {
assert!(config.rules.is_sorted_by_key(|rule| rule.priority));
log::info!("starting daemon...");
let cancelled = Arc::new(AtomicBool::new(false));
log::debug!("setting ctrl-c handler...");
let cancelled_ = Arc::clone(&cancelled);
ctrlc::set_handler(move || {
log::info!("received shutdown signal");
cancelled_.store(true, Ordering::SeqCst);
})
.context("failed to set ctrl-c handler")?;
let mut daemon = Daemon {
last_user_activity: Instant::now(),
last_polling_delay: None,
system: system::System::new()?,
cpu_log: VecDeque::new(),
power_supply_log: VecDeque::new(),
};
while !cancelled.load(Ordering::SeqCst) {
daemon.rescan()?;
let delay = daemon.polling_delay();
log::info!(
"next poll will be in {seconds} seconds or {minutes} minutes, possibly \
delayed if application of rules takes more than the polling delay",
seconds = delay.as_secs_f64(),
minutes = delay.as_secs_f64() / 60.0,
);
log::debug!("filtering rules and applying them...");
let start = Instant::now();
let state = config::EvalState {
cpu_usage: daemon.cpu_log.back().unwrap().usage,
cpu_usage_volatility: daemon.cpu_volatility().map(|vol| vol.usage),
cpu_temperature: daemon.cpu_log.back().unwrap().temperature,
cpu_temperature_volatility: daemon
.cpu_volatility()
.map(|vol| vol.temperature),
cpu_idle_seconds: daemon
.last_user_activity
.elapsed()
.as_secs_f64(),
power_supply_charge: daemon
.power_supply_log
.back()
.unwrap()
.charge,
power_supply_discharge_rate: daemon.power_supply_discharge_rate(),
discharging: daemon.discharging(),
};
let mut cpu_delta_for = HashMap::<u32, config::CpuDelta>::new();
let all_cpus =
LazyCell::new(|| (0..num_cpus::get() as u32).collect::<Vec<_>>());
for rule in &config.rules {
let Some(condition) = rule.condition.eval(&state)? else {
continue;
};
let cpu_for = rule.cpu.for_.as_ref().unwrap_or_else(|| &*all_cpus);
for cpu in cpu_for {
let delta = cpu_delta_for.entry(*cpu).or_default();
delta.for_ = Some(vec![*cpu]);
if let Some(governor) = rule.cpu.governor.as_ref() {
delta.governor = Some(governor.clone());
}
if let Some(epp) = rule.cpu.energy_performance_preference.as_ref() {
delta.energy_performance_preference = Some(epp.clone());
}
if let Some(epb) = rule.cpu.energy_performance_bias.as_ref() {
delta.energy_performance_bias = Some(epb.clone());
}
if let Some(mhz_minimum) = rule.cpu.frequency_mhz_minimum {
delta.frequency_mhz_minimum = Some(mhz_minimum);
}
if let Some(mhz_maximum) = rule.cpu.frequency_mhz_maximum {
delta.frequency_mhz_maximum = Some(mhz_maximum);
}
if let Some(turbo) = rule.cpu.turbo {
delta.turbo = Some(turbo);
}
}
// TODO: Also merge this into one like CPU.
if condition.as_boolean()? {
rule.power.apply()?;
}
}
for delta in cpu_delta_for.values() {
delta.apply()?;
}
let elapsed = start.elapsed();
log::info!(
"filtered and applied rules in {seconds} seconds or {minutes} minutes",
seconds = elapsed.as_secs_f64(),
minutes = elapsed.as_secs_f64() / 60.0,
);
thread::sleep(delay.saturating_sub(elapsed));
}
log::info!("stopping polling loop and thus daemon...");
Ok(())
}